File: modules.rst

package info (click to toggle)
coq-doc 8.20.0-2
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid, trixie
  • size: 46,708 kB
  • sloc: ml: 234,429; sh: 4,686; python: 3,359; ansic: 2,644; makefile: 842; lisp: 172; javascript: 87; xml: 24; sed: 2
file content (1177 lines) | stat: -rw-r--r-- 35,923 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
.. _themodulesystem:

The Module System
=================

The module system extends the Calculus of Inductive Constructions
providing a convenient way to structure large developments as well as
a means of massive abstraction.


Modules and module types
----------------------------

**Access path.** An access path is denoted by :math:`p` and can be
either a module variable :math:`X` or, if :math:`p′` is an access path
and :math:`id` an identifier, then :math:`p′.id` is an access path.


**Structure element.** A structure element is denoted by :math:`e` and
is either a definition of a :term:`constant`, an assumption, a definition of
an inductive, a definition of a module, an alias of a module or a module
type abbreviation.


**Structure expression.** A structure expression is denoted by :math:`S` and can be:

+ an access path :math:`p`
+ a plain structure :math:`\Struct~e ; … ; e~\End`
+ a functor :math:`\Functor(X:S)~S′`, where :math:`X` is a module variable, :math:`S` and :math:`S′` are
  structure expressions
+ an application :math:`S~p`, where :math:`S` is a structure expression and :math:`p` an
  access path
+ a refined structure :math:`S~\with~p := p′` or :math:`S~\with~p := t:T` where :math:`S` is a
  structure expression, :math:`p` and :math:`p′` are access paths, :math:`t` is a term and :math:`T` is
  the type of :math:`t`.

**Module definition.** A module definition is written :math:`\Mod{X}{S}{S'}`
and consists of a module variable :math:`X`, a module type
:math:`S` which can be any structure expression and optionally a
module implementation :math:`S′` which can be any structure expression
except a refined structure.


**Module alias.** A module alias is written :math:`\ModA{X}{p}`
and consists of a module variable :math:`X` and a module path
:math:`p`.

**Module type abbreviation.**
A module type abbreviation is written :math:`\ModType{Y}{S}`,
where :math:`Y` is an identifier and :math:`S` is any structure
expression .

.. extracted from Gallina extensions chapter

Using modules
-------------

The module system provides a way of packaging related elements
together, as well as a means of massive abstraction.


.. cmd:: Module {? {| Import | Export } {? @import_categories } } @ident {* @module_binder } {? @of_module_type } {? := {+<+ @module_expr_inl } }

   .. insertprodn module_binder module_expr_inl

   .. prodn::
      module_binder ::= ( {? {| Import | Export } {? @import_categories } } {+ @ident } : @module_type_inl )
      module_type_inl ::= ! @module_type
      | @module_type {? @functor_app_annot }
      functor_app_annot ::= [ inline at level @natural ]
      | [ no inline ]
      module_type ::= @qualid
      | ( @module_type )
      | @module_type @module_expr_atom
      | @module_type with @with_declaration
      with_declaration ::= Definition @qualid {? @univ_decl } := @term
      | Module @qualid := @qualid
      module_expr_atom ::= @qualid
      | ( @module_expr_atom )
      of_module_type ::= : @module_type_inl
      | {* <: @module_type_inl }
      module_expr_inl ::= ! {+ @module_expr_atom }
      | {+ @module_expr_atom } {? @functor_app_annot }

   Defines a module named :token:`ident`.  See the examples :ref:`here<module_examples>`.

   The :n:`Import` and :n:`Export` flags specify whether the module should be automatically
   imported or exported.

   Specifying :n:`{* @module_binder }` starts a functor with
   parameters given by the :n:`@module_binder`\s.  (A *functor* is a function
   from modules to modules.)

   :n:`@of_module_type` specifies the module type.  :n:`{+ <: @module_type_inl }`
   starts a module that satisfies each :n:`@module_type_inl`.

   .. todo: would like to find a better term than "interactive", not very descriptive

   :n:`:= {+<+ @module_expr_inl }` specifies the body of a module or functor
   definition.  If it's not specified, then the module is defined *interactively*,
   meaning that the module is defined as a series of commands terminated with :cmd:`End`
   instead of in a single :cmd:`Module` command.
   Interactively defining the :n:`@module_expr_inl`\s in a series of
   :cmd:`Include` commands is equivalent to giving them all in a single
   non-interactive :cmd:`Module` command.

   The ! prefix indicates that any assumption command (such as :cmd:`Axiom`) with an :n:`Inline` clause
   in the type of the functor arguments will be ignored.

   .. todo: What is an Inline directive?  sb command but still unclear.  Maybe referring to the
      "inline" in functor_app_annot?  or assumption_token Inline assum_list?

.. cmd:: Module Type @ident {* @module_binder } {* <: @module_type_inl } {? := {+<+ @module_type_inl } }

   Defines a module type named :n:`@ident`.  See the example :ref:`here<example_def_simple_module_type>`.

   Specifying :n:`{* @module_binder }` starts a functor type with
   parameters given by the :n:`@module_binder`\s.

   :n:`:= {+<+ @module_type_inl }` specifies the body of a module or functor type
   definition.  If it's not specified, then the module type is defined *interactively*,
   meaning that the module type is defined as a series of commands terminated with :cmd:`End`
   instead of in a single :cmd:`Module Type` command.
   Interactively defining the :n:`@module_type_inl`\s in a series of
   :cmd:`Include` commands is equivalent to giving them all in a single
   non-interactive :cmd:`Module Type` command.

.. _terminating_module:

**Terminating an interactive module or module type definition**

Interactive modules are terminated with the :cmd:`End` command, which
is also used to terminate :ref:`Sections<section-mechanism>`.
:n:`End @ident` closes the interactive module or module type :token:`ident`.
If the module type was given, the command verifies that the content of the module
matches the module type.  If the module is not a
functor, its components (:term:`constants <constant>`, inductive types, submodules etc.)
are now available through the dot notation.

.. exn:: Signature components for field @ident do not match.
    :undocumented:

.. exn:: The field @ident is missing in @qualid.
   :undocumented:

.. |br| raw:: html

    <br>

.. note::

  #. Interactive modules and module types can be nested.
  #. Interactive modules and module types can't be defined inside of :ref:`sections<section-mechanism>`.
     Sections can be defined inside of interactive modules and module types.
  #. Hints and notations (the :ref:`Hint <creating_hints>` and :cmd:`Notation`
     commands) can also appear inside interactive
     modules and module types. Note that with module definitions like:

     :n:`Module @ident__1 : @module_type := @ident__2.`

     or

     :n:`Module @ident__1 : @module_type.` |br|
     :n:`Include @ident__2.` |br|
     :n:`End @ident__1.`

     hints and the like valid for :n:`@ident__1` are the ones defined in :n:`@module_type`
     rather then those defined in :n:`@ident__2` (or the module body).
  #. Within an interactive module type definition, the :cmd:`Parameter` command declares a
     :term:`constant` instead of definining a new axiom (which it does when not in a module type definition).
  #. Assumptions such as :cmd:`Axiom` that include the :n:`Inline` clause will be automatically
     expanded when the functor is applied, except when the function application is prefixed by ``!``.

.. cmd:: Include @module_type_inl {* <+ @module_type_inl }

   Includes the content of module(s) in the current
   interactive module. Here :n:`@module_type_inl` can be a module expression or a module
   type expression. If it is a high-order module or module type
   expression then the system tries to instantiate :n:`@module_type_inl` with the current
   interactive module.

   Including multiple modules in a single :cmd:`Include` is equivalent to including each module
   in a separate :cmd:`Include` command.

.. cmd:: Include Type {+<+ @module_type_inl }

   .. deprecated:: 8.3

      Use :cmd:`Include` instead.

.. cmd:: Declare Module {? {| Import | Export } {? @import_categories } } @ident {* @module_binder } : @module_type_inl

   Declares a module :token:`ident` of type :token:`module_type_inl`.

   If :n:`@module_binder`\s are specified, declares a functor with parameters given by the list of
   :token:`module_binder`\s.

.. cmd:: Import {? @import_categories } {+ @filtered_import }

   .. insertprodn import_categories filtered_import

   .. prodn::
      import_categories ::= {? - } ( {+, @qualid } )
      filtered_import ::= @qualid {? ( {+, @qualid {? ( .. ) } } ) }

   If :token:`qualid` denotes a valid basic module (i.e. its module type is a
   signature), makes its components available by their short names.

   .. example::

      .. coqtop:: reset in

         Module Mod.
         Definition T:=nat.
         Check T.
         End Mod.
         Check Mod.T.

      .. coqtop:: all

         Fail Check T.
         Import Mod.
         Check T.

   Some features defined in modules are activated only when a module is
   imported. This is for instance the case of notations (see :ref:`Notations`).

   Declarations made with the :attr:`local` attribute are never imported by the :cmd:`Import`
   command. Such declarations are only accessible through their fully
   qualified name.

   .. example::

      .. coqtop:: in

         Module A.
         Module B.
         Local Definition T := nat.
         End B.
         End A.
         Import A.

      .. coqtop:: all fail

         Check B.T.

   Appending a module name with a parenthesized list of names will
   make only those names available with short names, not other names
   defined in the module nor will it activate other features.

   The names to import may be :term:`constants <constant>`, inductive types and
   constructors, and notation aliases (for instance, Ltac definitions
   cannot be selectively imported). If they are from an inner module
   to the one being imported, they must be prefixed by the inner path.

   The name of an inductive type may also be followed by ``(..)`` to
   import it, its constructors and its eliminators if they exist. For
   this purpose "eliminator" means a :term:`constant` in the same module whose
   name is the inductive type's name suffixed by one of ``_sind``,
   ``_ind``, ``_rec`` or ``_rect``.

   .. example::

      .. coqtop:: reset in

         Module A.
         Module B.
         Inductive T := C.
         Definition U := nat.
         End B.
         Definition Z := Prop.
         End A.
         Import A(B.T(..), Z).

      .. coqtop:: all

         Check B.T.
         Check B.C.
         Check Z.
         Fail Check B.U.
         Check A.B.U.

   .. warn:: Cannot import local constant, it will be ignored.

      This warning is printed when a name in the list of names to
      import was declared as a local constant, and the name is not imported.

   Putting a list of :n:`@import_categories` after ``Import`` will
   restrict activation of features according to those categories.
   Currently supported categories are:

   - ``coercions`` corresponding to :cmd:`Coercion`.

   - ``hints`` corresponding to the `Hint` commands (e.g. :cmd:`Hint
     Resolve` or :cmd:`Hint Rewrite`) and :ref:`typeclass
     <typeclasses>` instances.

   - ``canonicals`` corresponding to :cmd:`Canonical Structure`.

   - ``notations`` corresponding to :cmd:`Notation` (including
     :cmd:`Reserved Notation`), scope controls (:cmd:`Delimit Scope`,
     :cmd:`Bind Scope`, :cmd:`Open Scope`) but not :ref:`Abbreviations`.

   - ``options`` for :ref:`flags-options-tables`

   - ``ltac.notations`` corresponding to :cmd:`Tactic Notation`.

   - ``ltac2.notations`` corresponding to :cmd:`Ltac2 Notation`
     (including Ltac2 abbreviations).

   Plugins may define their own categories.

.. cmd:: Export {? @import_categories } {+ @filtered_import }

   Similar to :cmd:`Import`, except that when the module containing this command
   is imported, the :n:`{+ @qualid }` are imported as well.

   The selective import syntax also works with Export.

   .. exn:: @qualid is not a module.
      :undocumented:

   .. warn:: Trying to mask the absolute name @qualid!
      :undocumented:

.. cmd:: Print Module @qualid

   Prints the module type and (optionally) the body of the module :n:`@qualid`.

.. cmd:: Print Module Type @qualid

   Prints the module type corresponding to :n:`@qualid`.

.. flag:: Short Module Printing

   This :term:`flag` (off by default) disables the printing of the types of fields,
   leaving only their names, for the commands :cmd:`Print Module` and
   :cmd:`Print Module Type`.

.. cmd:: Print Namespace @dirpath

   Prints the names and types of all loaded constants whose fully qualified
   names start with :n:`@dirpath`. For example, the command ``Print Namespace Coq.``
   displays the names and types of all loaded constants in the standard library.
   The command ``Print Namespace Coq.Init`` only shows constants defined in one
   of the files in the ``Init`` directory. The command ``Print Namespace
   Coq.Init.Nat`` shows what is in the ``Nat`` library file inside the ``Init``
   directory. Module names may appear in :n:`@dirpath`.

   .. example::

      .. coqtop:: reset in

         Module A.
         Definition foo := 0.
         Module B.
         Definition bar := 1.
         End B.
         End A.

      .. coqtop:: all

         Print Namespace Top.
         Print Namespace Top.A.
         Print Namespace Top.A.B.

.. _module_examples:

Examples
~~~~~~~~

.. example:: Defining a simple module interactively

    .. coqtop:: in

       Module M.
       Definition T := nat.
       Definition x := 0.

    .. coqtop:: all

       Definition y : bool.
       exact true.

    .. coqtop:: in

       Defined.
       End M.

Inside a module one can define :term:`constants <constant>`, prove theorems and do anything
else that can be done in the toplevel. Components of a closed
module can be accessed using the dot notation:

.. coqtop:: all

   Print M.x.

.. _example_def_simple_module_type:

.. example:: Defining a simple module type interactively

   .. coqtop:: in

      Module Type SIG.
      Parameter T : Set.
      Parameter x : T.
      End SIG.

.. _example_filter_module:

.. example:: Creating a new module that omits some items from an existing module

   Since :n:`SIG`, the type of the new module :n:`N`, doesn't define :n:`y` or
   give the body of :n:`x`, which are not included in :n:`N`.

   .. coqtop:: all

      Module N : SIG with Definition T := nat := M.
      Print N.T.
      Print N.x.
      Fail Print N.y.

   .. reset to remove N (undo in last coqtop block doesn't seem to do that), invisibly redefine M, SIG
   .. coqtop:: none reset

      Module M.
      Definition T := nat.
      Definition x := 0.
      Definition y : bool.
      exact true.
      Defined.
      End M.

      Module Type SIG.
      Parameter T : Set.
      Parameter x : T.
      End SIG.

The definition of :g:`N` using the module type expression :g:`SIG` with
:g:`Definition T := nat` is equivalent to the following one:

.. coqtop:: in

   Module Type SIG'.
   Definition T : Set := nat.
   Parameter x : T.
   End SIG'.

   Module N : SIG' := M.

.. exn:: No field named @ident in @qualid.

   Raised when the final :n:`@ident` in the left-hand side :n:`@qualid` of
   a :n:`@with_declaration` is applied to a module type :n:`@qualid` that
   has no field named this :n:`@ident`.

If we just want to be sure that our implementation satisfies a
given module type without restricting the interface, we can use a
transparent constraint

.. coqtop:: in

   Module P <: SIG := M.

.. coqtop:: all

   Print P.y.

.. example:: Creating a functor (a module with parameters)

   .. coqtop:: in

      Module Two (X Y: SIG).
      Definition T := (X.T * Y.T)%type.
      Definition x := (X.x, Y.x).
      End Two.

   and apply it to our modules and do some computations:

   .. coqtop:: in


      Module Q := Two M N.

   .. coqtop:: all

      Eval compute in (fst Q.x + snd Q.x).

.. example:: A module type with two sub-modules, sharing some fields

   .. coqtop:: in

      Module Type SIG2.
        Declare Module M1 : SIG.
        Module M2 <: SIG.
          Definition T := M1.T.
          Parameter x : T.
        End M2.
      End SIG2.

   .. coqtop:: in

      Module Mod <: SIG2.
        Module M1.
          Definition T := nat.
          Definition x := 1.
        End M1.
      Module M2 := M.
      End Mod.

Notice that ``M`` is a correct body for the component ``M2`` since its ``T``
component is ``nat`` as specified for ``M1.T``.

.. extracted from Gallina extensions chapter

.. _qualified-names:

Qualified names
---------------

Qualified names (:token:`qualid`\s) are hierarchical names that are used to
identify items such as definitions, theorems and parameters that may be defined
inside modules (see :cmd:`Module`).  In addition, they are used to identify
compiled files.  Syntactically, they have this form:

.. insertprodn qualid qualid

.. prodn::
   qualid ::= @ident {* .@ident }

*Fully qualified* or *absolute* qualified names uniquely identify files
(as in the `Require` command) and items within files, such as a single
:cmd:`Variable` definition.  It's usually possible to use a suffix of the fully
qualified name (a *short name*) that uniquely identifies an item.

The first part of a fully qualified name identifies a file, which may be followed
by a second part that identifies a specific item within that file.  Qualified names
that identify files don't have a second part.

While qualified names always consist of a series of dot-separated :n:`@ident`\s,
*the following few paragraphs omit the dots for the sake of simplicity.*

**File part.** Files are identified by :gdef:`logical paths <logical path>`,
which are prefixes in the form :n:`{* @ident__logical } {+ @ident__file }`, such
as :n:`Coq.Init.Logic`, in which:

- :n:`{* @ident__logical }`, the :gdef:`logical name`, maps to one or more
  directories (or :gdef:`physical paths <physical path>`) in the user's file system.
  The logical name
  is used so that Coq scripts don't depend on where files are installed.
  For example, the directory associated with :n:`Coq` contains Coq's standard library.
  The logical name is generally a single :n:`@ident`.

- :n:`{+ @ident__file }` corresponds to the file system path of the file relative
  to the directory that contains it.  For example, :n:`Init.Logic`
  corresponds to the file system path :n:`Init/Logic.v` on Linux)

When Coq is processing a script that hasn't been saved in a file, such as a new
buffer in CoqIDE or anything in coqtop, definitions in the script are associated
with the logical name :n:`Top` and there is no associated file system path.

**Item part.** Items are further qualified by a suffix in the form
:n:`{* @ident__module } @ident__base` in which:

- :n:`{* @ident__module }` gives the names of the nested modules, if any,
  that syntactically contain the definition of the item.  (See :cmd:`Module`.)

- :n:`@ident__base` is the base name used in the command defining
  the item.  For example, :n:`eq` in the :cmd:`Inductive` command defining it
  in `Coq.Init.Logic` is the base name for `Coq.Init.Logic.eq`, the standard library
  definition of :term:`Leibniz equality`.

If :n:`@qualid` is the fully qualified name of an item, Coq
always interprets :n:`@qualid` as a reference to that item.  If :n:`@qualid` is also a
partially qualified name for another item, then you must provide a more-qualified
name to uniquely identify that other item.  For example, if there are two
fully qualified items named `Foo.Bar` and `Coq.X.Foo.Bar`, then `Foo.Bar` refers
to the first item and `X.Foo.Bar` is the shortest name for referring to the second item.

Definitions with the :attr:`local` attribute are only accessible with
their fully qualified name (see :ref:`gallina-definitions`).

.. example::

    .. coqtop:: all

       Check 0.

       Definition nat := bool.

       Check 0.

       Check Datatypes.nat.

       Locate nat.

.. seealso:: Commands :cmd:`Locate`.

:ref:`logical-paths-load-path` describes how :term:`logical paths <logical path>`
become associated with specific files.

.. _controlling-locality-of-commands:

Controlling the scope of commands with locality attributes
----------------------------------------------------------

Many commands have effects that apply only within a specific scope,
typically the section or the module in which the command was
called. Locality :term:`attributes <attribute>` can alter the scope of
the effect. Below, we give the semantics of each locality attribute
while noting a few exceptional commands for which :attr:`local` and
:attr:`global` attributes are interpreted differently.

.. attr:: local

   This :term:`attribute` limits the effect of the command to the
   current scope (section or module).

   The ``Local`` prefix is an alternative syntax for the :attr:`local`
   attribute (see :n:`@legacy_attr`).

   .. note::

      - For some commands, this is the only locality supported within
        sections (e.g., for :cmd:`Notation`, :cmd:`Ltac` and
        :ref:`Hint <creating_hints>` commands).

      - For some commands, this is the default locality within
        sections even though other locality attributes are supported
        as well (e.g., for the :cmd:`Arguments` command).

   .. warning::

      **Exception:** when :attr:`local` is applied to
      :cmd:`Definition`, :cmd:`Theorem` or their variants, its
      semantics are different: it makes the defined objects available
      only through their fully qualified names rather than their
      unqualified names after an :cmd:`Import`.

.. attr:: export

   This :term:`attribute` makes the effect of the command
   persist when the section is closed and applies the effect when the
   module containing the command is imported.

   Commands supporting this attribute include :cmd:`Set`, :cmd:`Unset`
   and the :ref:`Hint <creating_hints>` commands, although the latter
   don't support it within sections.

.. attr:: global

   This :term:`attribute` makes the effect of the command
   persist even when the current section or module is closed.  Loading
   the file containing the command (possibly transitively) applies the
   effect of the command.

   The ``Global`` prefix is an alternative syntax for the
   :attr:`global` attribute (see :n:`@legacy_attr`).

   .. warning::

      **Exception:** for a few commands (like :cmd:`Notation` and
      :cmd:`Ltac`), this attribute behaves like :attr:`export`.

   .. warning::

      We strongly discourage using the :attr:`global` locality
      attribute because the transitive nature of file loading gives
      the user little control. We recommend using the :attr:`export`
      locality attribute where it is supported.

.. _visibility-attributes-modules:

Summary of locality attributes in a module
------------------------------------------

This table sums up the effect of locality attributes on the scope of vernacular
commands in a module, when outside the module where they were entered. In the
following table:

* a cross (❌) marks an unsupported attribute (compilation error);
* “not available” means that the command has no effect outside the :cmd:`Module` it
  was entered;
* “when imported” means that the command has effect outside the :cmd:`Module` if, and
  only if, the :cmd:`Module` (or the command, via :n:`@filtered_import`) is imported
  (with :cmd:`Import` or :cmd:`Export`).
* “short name when imported” means that the command has effects outside the
  :cmd:`Module`; if the :cmd:`Module` (or command, via :n:`@filtered_import`) is not
  imported, the associated identifiers must be qualified;
* “qualified name” means that the command has effects outside the :cmd:`Module`, but
  the corresponding identifier may only be referred to with a qualified name;
* “always” means that the command always has effects outside the :cmd:`Module` (even
  if it is not imported).

A similar table for :cmd:`Section` can be found
:ref:`here<visibility-attributes-sections>`.

.. list-table::
  :header-rows: 1

  * - ``Command``
    - no attribute
    - :attr:`local`
    - :attr:`export`
    - :attr:`global`

  * - :cmd:`Definition`, :cmd:`Lemma`,

      :cmd:`Axiom`, ...
    - :attr:`global`
    - qualified name
    - ❌
    - short name

      when imported

  * - :cmd:`Ltac`
    - :attr:`global`
    - not available
    - ❌
    - short name

      when imported

  * - :cmd:`Ltac2`
    - :attr:`global`
    - not available
    - ❌
    - short name

      when imported

  * - :cmd:`Notation (abbreviation)`
    - :attr:`global`
    - not available
    - ❌
    - short name

      when imported

  * - :cmd:`Notation`
    - :attr:`global`
    - not available
    - ❌
    - when imported

  * - :cmd:`Tactic Notation`
    - :attr:`global`
    - not available
    - ❌
    - when imported

  * - :cmd:`Ltac2 Notation`
    - :attr:`global`
    - not available
    - ❌
    - when imported

  * - :cmd:`Coercion`
    - :attr:`global`
    - not available
    - ❌
    - when imported

  * - :cmd:`Canonical Structure`
    - :attr:`global`

    - when imported
    - ❌
    - when imported

  * - ``Hints`` (and :cmd:`Instance`)
    - :attr:`export`
    - not available
    - when imported
    - always

  * - :cmd:`Set` or :cmd:`Unset` a flag
    - :attr:`local`
    - not available
    - when imported
    - always

Typing Modules
------------------

In order to introduce the typing system we first slightly extend the syntactic
class of terms and environments given in section :ref:`The-terms`. The
environments, apart from definitions of :term:`constants <constant>` and inductive types now also
hold any other structure elements. Terms, apart from variables, :term:`constants <constant>` and
complex terms, also include access paths.

We also need additional typing judgments:


+ :math:`\WFT{E}{S}`, denoting that a structure :math:`S` is well-formed,
+ :math:`\WTM{E}{p}{S}`, denoting that the module pointed by :math:`p` has type :math:`S` in
  the global environment :math:`E`.
+ :math:`\WEV{E}{S}{\ovl{S}}`, denoting that a structure :math:`S` is evaluated to a
  structure :math:`\ovl{S}` in weak head normal form.
+ :math:`\WS{E}{S_1}{S_2}` , denoting that a structure :math:`S_1` is a subtype of a
  structure :math:`S_2`.
+ :math:`\WS{E}{e_1}{e_2}` , denoting that a structure element :math:`e_1` is more
  precise than a structure element :math:`e_2`.

The rules for forming structures are the following:

.. inference:: WF-STR

   \WF{E;E′}{}
   ------------------------
   \WFT{E}{ \Struct~E′ ~\End}

.. inference:: WF-FUN

   \WFT{E; \ModS{X}{S}}{ \ovl{S′} }
   --------------------------
   \WFT{E}{ \Functor(X:S)~S′}


Evaluation of structures to weak head normal form:

.. inference:: WEVAL-APP

   \begin{array}{c}
   \WEV{E}{S}{\Functor(X:S_1 )~S_2}~~~~~\WEV{E}{S_1}{\ovl{S_1}} \\
   \WTM{E}{p}{S_3}~~~~~ \WS{E}{S_3}{\ovl{S_1}}
   \end{array}
   --------------------------
   \WEV{E}{S~p}{\subst{S_2}{X}{p}}


.. inference:: WEVAL-WITH-MOD

   \begin{array}{c}
   E[] ⊢ S \lra \Struct~e_1 ;…;e_i ; \ModS{X}{S_1 };e_{i+2} ;… ;e_n ~\End \\
   E;e_1 ;…;e_i [] ⊢ S_1 \lra \ovl{S_1} ~~~~~~
   E[] ⊢ p : S_2 \\
   E;e_1 ;…;e_i [] ⊢ S_2 <: \ovl{S_1}
   \end{array}
   ----------------------------------
   \begin{array}{c}
   \WEV{E}{S~\with~X := p}{}\\
   \Struct~e_1 ;…;e_i ; \ModA{X}{p};\subst{e_{i+2}}{X}{p} ;…;\subst{e_n}{X}{p} ~\End
   \end{array}

.. inference:: WEVAL-WITH-MOD-REC

   \begin{array}{c}
   \WEV{E}{S}{\Struct~e_1 ;…;e_i ; \ModS{X_1}{S_1 };e_{i+2} ;… ;e_n ~\End} \\
   \WEV{E;e_1 ;…;e_i }{S_1~\with~p := p_1}{\ovl{S_2}}
   \end{array}
   --------------------------
   \begin{array}{c}
   \WEV{E}{S~\with~X_1.p := p_1}{} \\
   \Struct~e_1 ;…;e_i ; \ModS{X}{\ovl{S_2}};\subst{e_{i+2}}{X_1.p}{p_1} ;…;\subst{e_n}{X_1.p}{p_1} ~\End
   \end{array}

.. inference:: WEVAL-WITH-DEF

   \begin{array}{c}
   \WEV{E}{S}{\Struct~e_1 ;…;e_i ;(c:T_1);e_{i+2} ;… ;e_n ~\End} \\
   \WS{E;e_1 ;…;e_i }{(c:=t:T)}{(c:T_1)}
   \end{array}
   --------------------------
   \begin{array}{c}
   \WEV{E}{S~\with~c := t:T}{} \\
   \Struct~e_1 ;…;e_i ;(c:=t:T);e_{i+2} ;… ;e_n ~\End
   \end{array}

.. inference:: WEVAL-WITH-DEF-REC

   \begin{array}{c}
   \WEV{E}{S}{\Struct~e_1 ;…;e_i ; \ModS{X_1 }{S_1 };e_{i+2} ;… ;e_n ~\End} \\
   \WEV{E;e_1 ;…;e_i }{S_1~\with~p := p_1}{\ovl{S_2}}
   \end{array}
   --------------------------
   \begin{array}{c}
   \WEV{E}{S~\with~X_1.p := t:T}{} \\
   \Struct~e_1 ;…;e_i ; \ModS{X}{\ovl{S_2} };e_{i+2} ;… ;e_n ~\End
   \end{array}

.. inference:: WEVAL-PATH-MOD1

   \begin{array}{c}
   \WEV{E}{p}{\Struct~e_1 ;…;e_i ; \Mod{X}{S}{S_1};e_{i+2} ;… ;e_n ~\End} \\
   \WEV{E;e_1 ;…;e_i }{S}{\ovl{S}}
   \end{array}
   --------------------------
   E[] ⊢ p.X \lra \ovl{S}

.. inference:: WEVAL-PATH-MOD2

   \WF{E}{}
   \Mod{X}{S}{S_1}∈ E
   \WEV{E}{S}{\ovl{S}}
   --------------------------
   \WEV{E}{X}{\ovl{S}}

.. inference:: WEVAL-PATH-ALIAS1

   \begin{array}{c}
   \WEV{E}{p}{~\Struct~e_1 ;…;e_i ; \ModA{X}{p_1};e_{i+2}  ;… ;e_n ~\End} \\
   \WEV{E;e_1 ;…;e_i }{p_1}{\ovl{S}}
   \end{array}
   --------------------------
   \WEV{E}{p.X}{\ovl{S}}

.. inference:: WEVAL-PATH-ALIAS2

   \WF{E}{}
   \ModA{X}{p_1 }∈ E
   \WEV{E}{p_1}{\ovl{S}}
   --------------------------
   \WEV{E}{X}{\ovl{S}}

.. inference:: WEVAL-PATH-TYPE1

   \begin{array}{c}
   \WEV{E}{p}{~\Struct~e_1 ;…;e_i ; \ModType{Y}{S};e_{i+2} ;… ;e_n ~\End} \\
   \WEV{E;e_1 ;…;e_i }{S}{\ovl{S}}
   \end{array}
   --------------------------
   \WEV{E}{p.Y}{\ovl{S}}

.. inference:: WEVAL-PATH-TYPE2

   \WF{E}{}
   \ModType{Y}{S}∈ E
   \WEV{E}{S}{\ovl{S}}
   --------------------------
   \WEV{E}{Y}{\ovl{S}}


Rules for typing module:

.. inference:: MT-EVAL

   \WEV{E}{p}{\ovl{S}}
   --------------------------
   E[] ⊢ p : \ovl{S}

.. inference:: MT-STR

   E[] ⊢ p : S
   --------------------------
   E[] ⊢ p : S/p


The last rule, called strengthening is used to make all module fields
manifestly equal to themselves. The notation :math:`S/p` has the following
meaning:


+ if :math:`S\lra~\Struct~e_1 ;…;e_n ~\End` then :math:`S/p=~\Struct~e_1 /p;…;e_n /p ~\End`
  where :math:`e/p` is defined as follows (note that opaque definitions are processed
  as assumptions):

    + :math:`(c:=t:T)/p = (c:=t:T)`
    + :math:`(c:U)/p = (c:=p.c:U)`
    + :math:`\ModS{X}{S}/p = \ModA{X}{p.X}`
    + :math:`\ModA{X}{p′}/p = \ModA{X}{p′}`
    + :math:`\ind{r}{Γ_I}{Γ_C}/p = \Indp{r}{Γ_I}{Γ_C}{p}`
    + :math:`\Indpstr{r}{Γ_I}{Γ_C}{p'}{p} = \Indp{r}{Γ_I}{Γ_C}{p'}`

+ if :math:`S \lra \Functor(X:S′)~S″` then :math:`S/p=S`


The notation :math:`\Indp{r}{Γ_I}{Γ_C}{p}`
denotes an inductive definition that is definitionally equal to the
inductive definition in the module denoted by the path :math:`p`. All rules
which have :math:`\ind{r}{Γ_I}{Γ_C}` as premises are also valid for
:math:`\Indp{r}{Γ_I}{Γ_C}{p}`. We give the formation rule for
:math:`\Indp{r}{Γ_I}{Γ_C}{p}`
below as well as the equality rules on inductive types and
constructors.

The module subtyping rules:

.. inference:: MSUB-STR

   \begin{array}{c}
   \WS{E;e_1 ;…;e_n }{e_{σ(i)}}{e'_i ~\for~ i=1..m} \\
   σ : \{1… m\} → \{1… n\} ~\injective
   \end{array}
   --------------------------
   \WS{E}{\Struct~e_1 ;…;e_n ~\End}{~\Struct~e'_1 ;…;e'_m ~\End}

.. inference:: MSUB-FUN

   \WS{E}{\ovl{S_1'}}{\ovl{S_1}}
   \WS{E; \ModS{X}{S_1'}}{\ovl{S_2}}{\ovl{S_2'}}
   --------------------------
   E[] ⊢ \Functor(X:S_1 ) S_2 <: \Functor(X:S_1') S_2'


Structure element subtyping rules:

.. inference:: ASSUM-ASSUM

   E[] ⊢ T_1 ≤_{βδιζη} T_2
   --------------------------
   \WS{E}{(c:T_1)}{(c:T_2)}

.. inference:: DEF-ASSUM

   E[] ⊢ T_1 ≤_{βδιζη} T_2
   --------------------------
   \WS{E}{(c:=t:T_1)}{(c:T_2)}

.. inference:: ASSUM-DEF

   E[] ⊢ T_1 ≤_{βδιζη} T_2
   E[] ⊢ c =_{βδιζη} t_2
   --------------------------
   \WS{E}{(c:T_1)}{(c:=t_2:T_2)}

.. inference:: DEF-DEF

   E[] ⊢ T_1 ≤_{βδιζη} T_2
   E[] ⊢ t_1 =_{βδιζη} t_2
   --------------------------
   \WS{E}{(c:=t_1:T_1)}{(c:=t_2:T_2)}

.. inference:: IND-IND

   E[] ⊢ Γ_I =_{βδιζη} Γ_I'
   E[Γ_I] ⊢ Γ_C =_{βδιζη} Γ_C'
   --------------------------
   \WS{E}{\ind{r}{Γ_I}{Γ_C}}{\ind{r}{Γ_I'}{Γ_C'}}

.. inference:: INDP-IND

   E[] ⊢ Γ_I =_{βδιζη} Γ_I'
   E[Γ_I] ⊢ Γ_C =_{βδιζη} Γ_C'
   --------------------------
   \WS{E}{\Indp{r}{Γ_I}{Γ_C}{p}}{\ind{r}{Γ_I'}{Γ_C'}}

.. inference:: INDP-INDP

   E[] ⊢ Γ_I =_{βδιζη} Γ_I'
   E[Γ_I] ⊢ Γ_C =_{βδιζη} Γ_C'
   E[] ⊢ p =_{βδιζη} p'
   --------------------------
   \WS{E}{\Indp{r}{Γ_I}{Γ_C}{p}}{\Indp{r}{Γ_I'}{Γ_C'}{p'}}

.. inference:: MOD-MOD

   \WS{E}{S_1}{S_2}
   --------------------------
   \WS{E}{\ModS{X}{S_1 }}{\ModS{X}{S_2 }}

.. inference:: ALIAS-MOD

   E[] ⊢ p : S_1
   \WS{E}{S_1}{S_2}
   --------------------------
   \WS{E}{\ModA{X}{p}}{\ModS{X}{S_2 }}

.. inference:: MOD-ALIAS

   E[] ⊢ p : S_2
   \WS{E}{S_1}{S_2}
   E[] ⊢ X =_{βδιζη} p
   --------------------------
   \WS{E}{\ModS{X}{S_1 }}{\ModA{X}{p}}

.. inference:: ALIAS-ALIAS

   E[] ⊢ p_1 =_{βδιζη} p_2
   --------------------------
   \WS{E}{\ModA{X}{p_1 }}{\ModA{X}{p_2 }}

.. inference:: MODTYPE-MODTYPE

   \WS{E}{S_1}{S_2}
   \WS{E}{S_2}{S_1}
   --------------------------
   \WS{E}{\ModType{Y}{S_1 }}{\ModType{Y}{S_2 }}


New environment formation rules


.. inference:: WF-MOD1

   \WF{E}{}
   \WFT{E}{S}
   --------------------------
   \WF{E; \ModS{X}{S}}{}

.. inference:: WF-MOD2

   \WS{E}{S_2}{S_1}
   \WF{E}{}
   \WFT{E}{S_1}
   \WFT{E}{S_2}
   --------------------------
   \WF{E; \ModImp{X}{S_1}{S_2}}{}

.. inference:: WF-ALIAS

   \WF{E}{}
   E[] ⊢ p : S
   --------------------------
   \WF{E; \ModA{X}{p}}{}

.. inference:: WF-MODTYPE

   \WF{E}{}
   \WFT{E}{S}
   --------------------------
   \WF{E; \ModType{Y}{S}}{}

.. inference:: WF-IND

   \begin{array}{c}
   \WF{E;\ind{r}{Γ_I}{Γ_C}}{} \\
   E[] ⊢ p:~\Struct~e_1 ;…;e_n ;\ind{r}{Γ_I'}{Γ_C'};… ~\End \\
   E[] ⊢ \ind{r}{Γ_I'}{Γ_C'} <: \ind{r}{Γ_I}{Γ_C}
   \end{array}
   --------------------------
   \WF{E; \Indp{r}{Γ_I}{Γ_C}{p} }{}


Component access rules


.. inference:: ACC-TYPE1

   E[Γ] ⊢ p :~\Struct~e_1 ;…;e_i ;(c:T);… ~\End
   --------------------------
   E[Γ] ⊢ p.c : T

.. inference:: ACC-TYPE2

   E[Γ] ⊢ p :~\Struct~e_1 ;…;e_i ;(c:=t:T);… ~\End
   --------------------------
   E[Γ] ⊢ p.c : T

Notice that the following rule extends the delta rule defined in section :ref:`Conversion-rules`

.. inference:: ACC-DELTA

    E[Γ] ⊢ p :~\Struct~e_1 ;…;e_i ;(c:=t:U);… ~\End
    --------------------------
    E[Γ] ⊢ p.c \triangleright_δ t

In the rules below we assume
:math:`Γ_P` is :math:`[p_1{:}P_1 ; …; p_r {:}P_r ]`,
:math:`Γ_I` is :math:`[I_1{:}∀ Γ_P, A_1 ; …; I_k{:}∀ Γ_P, A_k ]`,
and :math:`Γ_C` is :math:`[c_1{:}∀ Γ_P, C_1 ; …; c_n{:}∀ Γ_P, C_n ]`.


.. inference:: ACC-IND1

   E[Γ] ⊢ p :~\Struct~e_1 ;…;e_i ;\ind{r}{Γ_I}{Γ_C};… ~\End
   --------------------------
   E[Γ] ⊢ p.I_j : ∀ Γ_P, A_j

.. inference:: ACC-IND2

   E[Γ] ⊢ p :~\Struct~e_1 ;…;e_i ;\ind{r}{Γ_I}{Γ_C};… ~\End
   --------------------------
   E[Γ] ⊢ p.c_m : ∀ Γ_P, C_m

.. inference:: ACC-INDP1

   E[] ⊢ p :~\Struct~e_1 ;…;e_i ; \Indp{r}{Γ_I}{Γ_C}{p'} ;… ~\End
   --------------------------
   E[] ⊢ p.I_i \triangleright_δ p'.I_i

.. inference:: ACC-INDP2

   E[] ⊢ p :~\Struct~e_1 ;…;e_i ; \Indp{r}{Γ_I}{Γ_C}{p'} ;… ~\End
   --------------------------
   E[] ⊢ p.c_i \triangleright_δ p'.c_i