1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
|
.. _themodulesystem:
The Module System
=================
The module system extends the Calculus of Inductive Constructions
providing a convenient way to structure large developments as well as
a means of massive abstraction.
Modules and module types
----------------------------
**Access path.** An access path is denoted by :math:`p` and can be
either a module variable :math:`X` or, if :math:`p′` is an access path
and :math:`id` an identifier, then :math:`p′.id` is an access path.
**Structure element.** A structure element is denoted by :math:`e` and
is either a definition of a :term:`constant`, an assumption, a definition of
an inductive, a definition of a module, an alias of a module or a module
type abbreviation.
**Structure expression.** A structure expression is denoted by :math:`S` and can be:
+ an access path :math:`p`
+ a plain structure :math:`\Struct~e ; … ; e~\End`
+ a functor :math:`\Functor(X:S)~S′`, where :math:`X` is a module variable, :math:`S` and :math:`S′` are
structure expressions
+ an application :math:`S~p`, where :math:`S` is a structure expression and :math:`p` an
access path
+ a refined structure :math:`S~\with~p := p′` or :math:`S~\with~p := t:T` where :math:`S` is a
structure expression, :math:`p` and :math:`p′` are access paths, :math:`t` is a term and :math:`T` is
the type of :math:`t`.
**Module definition.** A module definition is written :math:`\Mod{X}{S}{S'}`
and consists of a module variable :math:`X`, a module type
:math:`S` which can be any structure expression and optionally a
module implementation :math:`S′` which can be any structure expression
except a refined structure.
**Module alias.** A module alias is written :math:`\ModA{X}{p}`
and consists of a module variable :math:`X` and a module path
:math:`p`.
**Module type abbreviation.**
A module type abbreviation is written :math:`\ModType{Y}{S}`,
where :math:`Y` is an identifier and :math:`S` is any structure
expression .
.. extracted from Gallina extensions chapter
Using modules
-------------
The module system provides a way of packaging related elements
together, as well as a means of massive abstraction.
.. cmd:: Module {? {| Import | Export } {? @import_categories } } @ident {* @module_binder } {? @of_module_type } {? := {+<+ @module_expr_inl } }
.. insertprodn module_binder module_expr_inl
.. prodn::
module_binder ::= ( {? {| Import | Export } {? @import_categories } } {+ @ident } : @module_type_inl )
module_type_inl ::= ! @module_type
| @module_type {? @functor_app_annot }
functor_app_annot ::= [ inline at level @natural ]
| [ no inline ]
module_type ::= @qualid
| ( @module_type )
| @module_type @module_expr_atom
| @module_type with @with_declaration
with_declaration ::= Definition @qualid {? @univ_decl } := @term
| Module @qualid := @qualid
module_expr_atom ::= @qualid
| ( @module_expr_atom )
of_module_type ::= : @module_type_inl
| {* <: @module_type_inl }
module_expr_inl ::= ! {+ @module_expr_atom }
| {+ @module_expr_atom } {? @functor_app_annot }
Defines a module named :token:`ident`. See the examples :ref:`here<module_examples>`.
The :n:`Import` and :n:`Export` flags specify whether the module should be automatically
imported or exported.
Specifying :n:`{* @module_binder }` starts a functor with
parameters given by the :n:`@module_binder`\s. (A *functor* is a function
from modules to modules.)
:n:`@of_module_type` specifies the module type. :n:`{+ <: @module_type_inl }`
starts a module that satisfies each :n:`@module_type_inl`.
.. todo: would like to find a better term than "interactive", not very descriptive
:n:`:= {+<+ @module_expr_inl }` specifies the body of a module or functor
definition. If it's not specified, then the module is defined *interactively*,
meaning that the module is defined as a series of commands terminated with :cmd:`End`
instead of in a single :cmd:`Module` command.
Interactively defining the :n:`@module_expr_inl`\s in a series of
:cmd:`Include` commands is equivalent to giving them all in a single
non-interactive :cmd:`Module` command.
The ! prefix indicates that any assumption command (such as :cmd:`Axiom`) with an :n:`Inline` clause
in the type of the functor arguments will be ignored.
.. todo: What is an Inline directive? sb command but still unclear. Maybe referring to the
"inline" in functor_app_annot? or assumption_token Inline assum_list?
.. cmd:: Module Type @ident {* @module_binder } {* <: @module_type_inl } {? := {+<+ @module_type_inl } }
Defines a module type named :n:`@ident`. See the example :ref:`here<example_def_simple_module_type>`.
Specifying :n:`{* @module_binder }` starts a functor type with
parameters given by the :n:`@module_binder`\s.
:n:`:= {+<+ @module_type_inl }` specifies the body of a module or functor type
definition. If it's not specified, then the module type is defined *interactively*,
meaning that the module type is defined as a series of commands terminated with :cmd:`End`
instead of in a single :cmd:`Module Type` command.
Interactively defining the :n:`@module_type_inl`\s in a series of
:cmd:`Include` commands is equivalent to giving them all in a single
non-interactive :cmd:`Module Type` command.
.. _terminating_module:
**Terminating an interactive module or module type definition**
Interactive modules are terminated with the :cmd:`End` command, which
is also used to terminate :ref:`Sections<section-mechanism>`.
:n:`End @ident` closes the interactive module or module type :token:`ident`.
If the module type was given, the command verifies that the content of the module
matches the module type. If the module is not a
functor, its components (:term:`constants <constant>`, inductive types, submodules etc.)
are now available through the dot notation.
.. exn:: Signature components for field @ident do not match.
:undocumented:
.. exn:: The field @ident is missing in @qualid.
:undocumented:
.. |br| raw:: html
<br>
.. note::
#. Interactive modules and module types can be nested.
#. Interactive modules and module types can't be defined inside of :ref:`sections<section-mechanism>`.
Sections can be defined inside of interactive modules and module types.
#. Hints and notations (the :ref:`Hint <creating_hints>` and :cmd:`Notation`
commands) can also appear inside interactive
modules and module types. Note that with module definitions like:
:n:`Module @ident__1 : @module_type := @ident__2.`
or
:n:`Module @ident__1 : @module_type.` |br|
:n:`Include @ident__2.` |br|
:n:`End @ident__1.`
hints and the like valid for :n:`@ident__1` are the ones defined in :n:`@module_type`
rather then those defined in :n:`@ident__2` (or the module body).
#. Within an interactive module type definition, the :cmd:`Parameter` command declares a
:term:`constant` instead of definining a new axiom (which it does when not in a module type definition).
#. Assumptions such as :cmd:`Axiom` that include the :n:`Inline` clause will be automatically
expanded when the functor is applied, except when the function application is prefixed by ``!``.
.. cmd:: Include @module_type_inl {* <+ @module_type_inl }
Includes the content of module(s) in the current
interactive module. Here :n:`@module_type_inl` can be a module expression or a module
type expression. If it is a high-order module or module type
expression then the system tries to instantiate :n:`@module_type_inl` with the current
interactive module.
Including multiple modules in a single :cmd:`Include` is equivalent to including each module
in a separate :cmd:`Include` command.
.. cmd:: Include Type {+<+ @module_type_inl }
.. deprecated:: 8.3
Use :cmd:`Include` instead.
.. cmd:: Declare Module {? {| Import | Export } {? @import_categories } } @ident {* @module_binder } : @module_type_inl
Declares a module :token:`ident` of type :token:`module_type_inl`.
If :n:`@module_binder`\s are specified, declares a functor with parameters given by the list of
:token:`module_binder`\s.
.. cmd:: Import {? @import_categories } {+ @filtered_import }
.. insertprodn import_categories filtered_import
.. prodn::
import_categories ::= {? - } ( {+, @qualid } )
filtered_import ::= @qualid {? ( {+, @qualid {? ( .. ) } } ) }
If :token:`qualid` denotes a valid basic module (i.e. its module type is a
signature), makes its components available by their short names.
.. example::
.. coqtop:: reset in
Module Mod.
Definition T:=nat.
Check T.
End Mod.
Check Mod.T.
.. coqtop:: all
Fail Check T.
Import Mod.
Check T.
Some features defined in modules are activated only when a module is
imported. This is for instance the case of notations (see :ref:`Notations`).
Declarations made with the :attr:`local` attribute are never imported by the :cmd:`Import`
command. Such declarations are only accessible through their fully
qualified name.
.. example::
.. coqtop:: in
Module A.
Module B.
Local Definition T := nat.
End B.
End A.
Import A.
.. coqtop:: all fail
Check B.T.
Appending a module name with a parenthesized list of names will
make only those names available with short names, not other names
defined in the module nor will it activate other features.
The names to import may be :term:`constants <constant>`, inductive types and
constructors, and notation aliases (for instance, Ltac definitions
cannot be selectively imported). If they are from an inner module
to the one being imported, they must be prefixed by the inner path.
The name of an inductive type may also be followed by ``(..)`` to
import it, its constructors and its eliminators if they exist. For
this purpose "eliminator" means a :term:`constant` in the same module whose
name is the inductive type's name suffixed by one of ``_sind``,
``_ind``, ``_rec`` or ``_rect``.
.. example::
.. coqtop:: reset in
Module A.
Module B.
Inductive T := C.
Definition U := nat.
End B.
Definition Z := Prop.
End A.
Import A(B.T(..), Z).
.. coqtop:: all
Check B.T.
Check B.C.
Check Z.
Fail Check B.U.
Check A.B.U.
.. warn:: Cannot import local constant, it will be ignored.
This warning is printed when a name in the list of names to
import was declared as a local constant, and the name is not imported.
Putting a list of :n:`@import_categories` after ``Import`` will
restrict activation of features according to those categories.
Currently supported categories are:
- ``coercions`` corresponding to :cmd:`Coercion`.
- ``hints`` corresponding to the `Hint` commands (e.g. :cmd:`Hint
Resolve` or :cmd:`Hint Rewrite`) and :ref:`typeclass
<typeclasses>` instances.
- ``canonicals`` corresponding to :cmd:`Canonical Structure`.
- ``notations`` corresponding to :cmd:`Notation` (including
:cmd:`Reserved Notation`), scope controls (:cmd:`Delimit Scope`,
:cmd:`Bind Scope`, :cmd:`Open Scope`) but not :ref:`Abbreviations`.
- ``options`` for :ref:`flags-options-tables`
- ``ltac.notations`` corresponding to :cmd:`Tactic Notation`.
- ``ltac2.notations`` corresponding to :cmd:`Ltac2 Notation`
(including Ltac2 abbreviations).
Plugins may define their own categories.
.. cmd:: Export {? @import_categories } {+ @filtered_import }
Similar to :cmd:`Import`, except that when the module containing this command
is imported, the :n:`{+ @qualid }` are imported as well.
The selective import syntax also works with Export.
.. exn:: @qualid is not a module.
:undocumented:
.. warn:: Trying to mask the absolute name @qualid!
:undocumented:
.. cmd:: Print Module @qualid
Prints the module type and (optionally) the body of the module :n:`@qualid`.
.. cmd:: Print Module Type @qualid
Prints the module type corresponding to :n:`@qualid`.
.. flag:: Short Module Printing
This :term:`flag` (off by default) disables the printing of the types of fields,
leaving only their names, for the commands :cmd:`Print Module` and
:cmd:`Print Module Type`.
.. cmd:: Print Namespace @dirpath
Prints the names and types of all loaded constants whose fully qualified
names start with :n:`@dirpath`. For example, the command ``Print Namespace Coq.``
displays the names and types of all loaded constants in the standard library.
The command ``Print Namespace Coq.Init`` only shows constants defined in one
of the files in the ``Init`` directory. The command ``Print Namespace
Coq.Init.Nat`` shows what is in the ``Nat`` library file inside the ``Init``
directory. Module names may appear in :n:`@dirpath`.
.. example::
.. coqtop:: reset in
Module A.
Definition foo := 0.
Module B.
Definition bar := 1.
End B.
End A.
.. coqtop:: all
Print Namespace Top.
Print Namespace Top.A.
Print Namespace Top.A.B.
.. _module_examples:
Examples
~~~~~~~~
.. example:: Defining a simple module interactively
.. coqtop:: in
Module M.
Definition T := nat.
Definition x := 0.
.. coqtop:: all
Definition y : bool.
exact true.
.. coqtop:: in
Defined.
End M.
Inside a module one can define :term:`constants <constant>`, prove theorems and do anything
else that can be done in the toplevel. Components of a closed
module can be accessed using the dot notation:
.. coqtop:: all
Print M.x.
.. _example_def_simple_module_type:
.. example:: Defining a simple module type interactively
.. coqtop:: in
Module Type SIG.
Parameter T : Set.
Parameter x : T.
End SIG.
.. _example_filter_module:
.. example:: Creating a new module that omits some items from an existing module
Since :n:`SIG`, the type of the new module :n:`N`, doesn't define :n:`y` or
give the body of :n:`x`, which are not included in :n:`N`.
.. coqtop:: all
Module N : SIG with Definition T := nat := M.
Print N.T.
Print N.x.
Fail Print N.y.
.. reset to remove N (undo in last coqtop block doesn't seem to do that), invisibly redefine M, SIG
.. coqtop:: none reset
Module M.
Definition T := nat.
Definition x := 0.
Definition y : bool.
exact true.
Defined.
End M.
Module Type SIG.
Parameter T : Set.
Parameter x : T.
End SIG.
The definition of :g:`N` using the module type expression :g:`SIG` with
:g:`Definition T := nat` is equivalent to the following one:
.. coqtop:: in
Module Type SIG'.
Definition T : Set := nat.
Parameter x : T.
End SIG'.
Module N : SIG' := M.
.. exn:: No field named @ident in @qualid.
Raised when the final :n:`@ident` in the left-hand side :n:`@qualid` of
a :n:`@with_declaration` is applied to a module type :n:`@qualid` that
has no field named this :n:`@ident`.
If we just want to be sure that our implementation satisfies a
given module type without restricting the interface, we can use a
transparent constraint
.. coqtop:: in
Module P <: SIG := M.
.. coqtop:: all
Print P.y.
.. example:: Creating a functor (a module with parameters)
.. coqtop:: in
Module Two (X Y: SIG).
Definition T := (X.T * Y.T)%type.
Definition x := (X.x, Y.x).
End Two.
and apply it to our modules and do some computations:
.. coqtop:: in
Module Q := Two M N.
.. coqtop:: all
Eval compute in (fst Q.x + snd Q.x).
.. example:: A module type with two sub-modules, sharing some fields
.. coqtop:: in
Module Type SIG2.
Declare Module M1 : SIG.
Module M2 <: SIG.
Definition T := M1.T.
Parameter x : T.
End M2.
End SIG2.
.. coqtop:: in
Module Mod <: SIG2.
Module M1.
Definition T := nat.
Definition x := 1.
End M1.
Module M2 := M.
End Mod.
Notice that ``M`` is a correct body for the component ``M2`` since its ``T``
component is ``nat`` as specified for ``M1.T``.
.. extracted from Gallina extensions chapter
.. _qualified-names:
Qualified names
---------------
Qualified names (:token:`qualid`\s) are hierarchical names that are used to
identify items such as definitions, theorems and parameters that may be defined
inside modules (see :cmd:`Module`). In addition, they are used to identify
compiled files. Syntactically, they have this form:
.. insertprodn qualid qualid
.. prodn::
qualid ::= @ident {* .@ident }
*Fully qualified* or *absolute* qualified names uniquely identify files
(as in the `Require` command) and items within files, such as a single
:cmd:`Variable` definition. It's usually possible to use a suffix of the fully
qualified name (a *short name*) that uniquely identifies an item.
The first part of a fully qualified name identifies a file, which may be followed
by a second part that identifies a specific item within that file. Qualified names
that identify files don't have a second part.
While qualified names always consist of a series of dot-separated :n:`@ident`\s,
*the following few paragraphs omit the dots for the sake of simplicity.*
**File part.** Files are identified by :gdef:`logical paths <logical path>`,
which are prefixes in the form :n:`{* @ident__logical } {+ @ident__file }`, such
as :n:`Coq.Init.Logic`, in which:
- :n:`{* @ident__logical }`, the :gdef:`logical name`, maps to one or more
directories (or :gdef:`physical paths <physical path>`) in the user's file system.
The logical name
is used so that Coq scripts don't depend on where files are installed.
For example, the directory associated with :n:`Coq` contains Coq's standard library.
The logical name is generally a single :n:`@ident`.
- :n:`{+ @ident__file }` corresponds to the file system path of the file relative
to the directory that contains it. For example, :n:`Init.Logic`
corresponds to the file system path :n:`Init/Logic.v` on Linux)
When Coq is processing a script that hasn't been saved in a file, such as a new
buffer in CoqIDE or anything in coqtop, definitions in the script are associated
with the logical name :n:`Top` and there is no associated file system path.
**Item part.** Items are further qualified by a suffix in the form
:n:`{* @ident__module } @ident__base` in which:
- :n:`{* @ident__module }` gives the names of the nested modules, if any,
that syntactically contain the definition of the item. (See :cmd:`Module`.)
- :n:`@ident__base` is the base name used in the command defining
the item. For example, :n:`eq` in the :cmd:`Inductive` command defining it
in `Coq.Init.Logic` is the base name for `Coq.Init.Logic.eq`, the standard library
definition of :term:`Leibniz equality`.
If :n:`@qualid` is the fully qualified name of an item, Coq
always interprets :n:`@qualid` as a reference to that item. If :n:`@qualid` is also a
partially qualified name for another item, then you must provide a more-qualified
name to uniquely identify that other item. For example, if there are two
fully qualified items named `Foo.Bar` and `Coq.X.Foo.Bar`, then `Foo.Bar` refers
to the first item and `X.Foo.Bar` is the shortest name for referring to the second item.
Definitions with the :attr:`local` attribute are only accessible with
their fully qualified name (see :ref:`gallina-definitions`).
.. example::
.. coqtop:: all
Check 0.
Definition nat := bool.
Check 0.
Check Datatypes.nat.
Locate nat.
.. seealso:: Commands :cmd:`Locate`.
:ref:`logical-paths-load-path` describes how :term:`logical paths <logical path>`
become associated with specific files.
.. _controlling-locality-of-commands:
Controlling the scope of commands with locality attributes
----------------------------------------------------------
Many commands have effects that apply only within a specific scope,
typically the section or the module in which the command was
called. Locality :term:`attributes <attribute>` can alter the scope of
the effect. Below, we give the semantics of each locality attribute
while noting a few exceptional commands for which :attr:`local` and
:attr:`global` attributes are interpreted differently.
.. attr:: local
This :term:`attribute` limits the effect of the command to the
current scope (section or module).
The ``Local`` prefix is an alternative syntax for the :attr:`local`
attribute (see :n:`@legacy_attr`).
.. note::
- For some commands, this is the only locality supported within
sections (e.g., for :cmd:`Notation`, :cmd:`Ltac` and
:ref:`Hint <creating_hints>` commands).
- For some commands, this is the default locality within
sections even though other locality attributes are supported
as well (e.g., for the :cmd:`Arguments` command).
.. warning::
**Exception:** when :attr:`local` is applied to
:cmd:`Definition`, :cmd:`Theorem` or their variants, its
semantics are different: it makes the defined objects available
only through their fully qualified names rather than their
unqualified names after an :cmd:`Import`.
.. attr:: export
This :term:`attribute` makes the effect of the command
persist when the section is closed and applies the effect when the
module containing the command is imported.
Commands supporting this attribute include :cmd:`Set`, :cmd:`Unset`
and the :ref:`Hint <creating_hints>` commands, although the latter
don't support it within sections.
.. attr:: global
This :term:`attribute` makes the effect of the command
persist even when the current section or module is closed. Loading
the file containing the command (possibly transitively) applies the
effect of the command.
The ``Global`` prefix is an alternative syntax for the
:attr:`global` attribute (see :n:`@legacy_attr`).
.. warning::
**Exception:** for a few commands (like :cmd:`Notation` and
:cmd:`Ltac`), this attribute behaves like :attr:`export`.
.. warning::
We strongly discourage using the :attr:`global` locality
attribute because the transitive nature of file loading gives
the user little control. We recommend using the :attr:`export`
locality attribute where it is supported.
.. _visibility-attributes-modules:
Summary of locality attributes in a module
------------------------------------------
This table sums up the effect of locality attributes on the scope of vernacular
commands in a module, when outside the module where they were entered. In the
following table:
* a cross (❌) marks an unsupported attribute (compilation error);
* “not available” means that the command has no effect outside the :cmd:`Module` it
was entered;
* “when imported” means that the command has effect outside the :cmd:`Module` if, and
only if, the :cmd:`Module` (or the command, via :n:`@filtered_import`) is imported
(with :cmd:`Import` or :cmd:`Export`).
* “short name when imported” means that the command has effects outside the
:cmd:`Module`; if the :cmd:`Module` (or command, via :n:`@filtered_import`) is not
imported, the associated identifiers must be qualified;
* “qualified name” means that the command has effects outside the :cmd:`Module`, but
the corresponding identifier may only be referred to with a qualified name;
* “always” means that the command always has effects outside the :cmd:`Module` (even
if it is not imported).
A similar table for :cmd:`Section` can be found
:ref:`here<visibility-attributes-sections>`.
.. list-table::
:header-rows: 1
* - ``Command``
- no attribute
- :attr:`local`
- :attr:`export`
- :attr:`global`
* - :cmd:`Definition`, :cmd:`Lemma`,
:cmd:`Axiom`, ...
- :attr:`global`
- qualified name
- ❌
- short name
when imported
* - :cmd:`Ltac`
- :attr:`global`
- not available
- ❌
- short name
when imported
* - :cmd:`Ltac2`
- :attr:`global`
- not available
- ❌
- short name
when imported
* - :cmd:`Notation (abbreviation)`
- :attr:`global`
- not available
- ❌
- short name
when imported
* - :cmd:`Notation`
- :attr:`global`
- not available
- ❌
- when imported
* - :cmd:`Tactic Notation`
- :attr:`global`
- not available
- ❌
- when imported
* - :cmd:`Ltac2 Notation`
- :attr:`global`
- not available
- ❌
- when imported
* - :cmd:`Coercion`
- :attr:`global`
- not available
- ❌
- when imported
* - :cmd:`Canonical Structure`
- :attr:`global`
- when imported
- ❌
- when imported
* - ``Hints`` (and :cmd:`Instance`)
- :attr:`export`
- not available
- when imported
- always
* - :cmd:`Set` or :cmd:`Unset` a flag
- :attr:`local`
- not available
- when imported
- always
Typing Modules
------------------
In order to introduce the typing system we first slightly extend the syntactic
class of terms and environments given in section :ref:`The-terms`. The
environments, apart from definitions of :term:`constants <constant>` and inductive types now also
hold any other structure elements. Terms, apart from variables, :term:`constants <constant>` and
complex terms, also include access paths.
We also need additional typing judgments:
+ :math:`\WFT{E}{S}`, denoting that a structure :math:`S` is well-formed,
+ :math:`\WTM{E}{p}{S}`, denoting that the module pointed by :math:`p` has type :math:`S` in
the global environment :math:`E`.
+ :math:`\WEV{E}{S}{\ovl{S}}`, denoting that a structure :math:`S` is evaluated to a
structure :math:`\ovl{S}` in weak head normal form.
+ :math:`\WS{E}{S_1}{S_2}` , denoting that a structure :math:`S_1` is a subtype of a
structure :math:`S_2`.
+ :math:`\WS{E}{e_1}{e_2}` , denoting that a structure element :math:`e_1` is more
precise than a structure element :math:`e_2`.
The rules for forming structures are the following:
.. inference:: WF-STR
\WF{E;E′}{}
------------------------
\WFT{E}{ \Struct~E′ ~\End}
.. inference:: WF-FUN
\WFT{E; \ModS{X}{S}}{ \ovl{S′} }
--------------------------
\WFT{E}{ \Functor(X:S)~S′}
Evaluation of structures to weak head normal form:
.. inference:: WEVAL-APP
\begin{array}{c}
\WEV{E}{S}{\Functor(X:S_1 )~S_2}~~~~~\WEV{E}{S_1}{\ovl{S_1}} \\
\WTM{E}{p}{S_3}~~~~~ \WS{E}{S_3}{\ovl{S_1}}
\end{array}
--------------------------
\WEV{E}{S~p}{\subst{S_2}{X}{p}}
.. inference:: WEVAL-WITH-MOD
\begin{array}{c}
E[] ⊢ S \lra \Struct~e_1 ;…;e_i ; \ModS{X}{S_1 };e_{i+2} ;… ;e_n ~\End \\
E;e_1 ;…;e_i [] ⊢ S_1 \lra \ovl{S_1} ~~~~~~
E[] ⊢ p : S_2 \\
E;e_1 ;…;e_i [] ⊢ S_2 <: \ovl{S_1}
\end{array}
----------------------------------
\begin{array}{c}
\WEV{E}{S~\with~X := p}{}\\
\Struct~e_1 ;…;e_i ; \ModA{X}{p};\subst{e_{i+2}}{X}{p} ;…;\subst{e_n}{X}{p} ~\End
\end{array}
.. inference:: WEVAL-WITH-MOD-REC
\begin{array}{c}
\WEV{E}{S}{\Struct~e_1 ;…;e_i ; \ModS{X_1}{S_1 };e_{i+2} ;… ;e_n ~\End} \\
\WEV{E;e_1 ;…;e_i }{S_1~\with~p := p_1}{\ovl{S_2}}
\end{array}
--------------------------
\begin{array}{c}
\WEV{E}{S~\with~X_1.p := p_1}{} \\
\Struct~e_1 ;…;e_i ; \ModS{X}{\ovl{S_2}};\subst{e_{i+2}}{X_1.p}{p_1} ;…;\subst{e_n}{X_1.p}{p_1} ~\End
\end{array}
.. inference:: WEVAL-WITH-DEF
\begin{array}{c}
\WEV{E}{S}{\Struct~e_1 ;…;e_i ;(c:T_1);e_{i+2} ;… ;e_n ~\End} \\
\WS{E;e_1 ;…;e_i }{(c:=t:T)}{(c:T_1)}
\end{array}
--------------------------
\begin{array}{c}
\WEV{E}{S~\with~c := t:T}{} \\
\Struct~e_1 ;…;e_i ;(c:=t:T);e_{i+2} ;… ;e_n ~\End
\end{array}
.. inference:: WEVAL-WITH-DEF-REC
\begin{array}{c}
\WEV{E}{S}{\Struct~e_1 ;…;e_i ; \ModS{X_1 }{S_1 };e_{i+2} ;… ;e_n ~\End} \\
\WEV{E;e_1 ;…;e_i }{S_1~\with~p := p_1}{\ovl{S_2}}
\end{array}
--------------------------
\begin{array}{c}
\WEV{E}{S~\with~X_1.p := t:T}{} \\
\Struct~e_1 ;…;e_i ; \ModS{X}{\ovl{S_2} };e_{i+2} ;… ;e_n ~\End
\end{array}
.. inference:: WEVAL-PATH-MOD1
\begin{array}{c}
\WEV{E}{p}{\Struct~e_1 ;…;e_i ; \Mod{X}{S}{S_1};e_{i+2} ;… ;e_n ~\End} \\
\WEV{E;e_1 ;…;e_i }{S}{\ovl{S}}
\end{array}
--------------------------
E[] ⊢ p.X \lra \ovl{S}
.. inference:: WEVAL-PATH-MOD2
\WF{E}{}
\Mod{X}{S}{S_1}∈ E
\WEV{E}{S}{\ovl{S}}
--------------------------
\WEV{E}{X}{\ovl{S}}
.. inference:: WEVAL-PATH-ALIAS1
\begin{array}{c}
\WEV{E}{p}{~\Struct~e_1 ;…;e_i ; \ModA{X}{p_1};e_{i+2} ;… ;e_n ~\End} \\
\WEV{E;e_1 ;…;e_i }{p_1}{\ovl{S}}
\end{array}
--------------------------
\WEV{E}{p.X}{\ovl{S}}
.. inference:: WEVAL-PATH-ALIAS2
\WF{E}{}
\ModA{X}{p_1 }∈ E
\WEV{E}{p_1}{\ovl{S}}
--------------------------
\WEV{E}{X}{\ovl{S}}
.. inference:: WEVAL-PATH-TYPE1
\begin{array}{c}
\WEV{E}{p}{~\Struct~e_1 ;…;e_i ; \ModType{Y}{S};e_{i+2} ;… ;e_n ~\End} \\
\WEV{E;e_1 ;…;e_i }{S}{\ovl{S}}
\end{array}
--------------------------
\WEV{E}{p.Y}{\ovl{S}}
.. inference:: WEVAL-PATH-TYPE2
\WF{E}{}
\ModType{Y}{S}∈ E
\WEV{E}{S}{\ovl{S}}
--------------------------
\WEV{E}{Y}{\ovl{S}}
Rules for typing module:
.. inference:: MT-EVAL
\WEV{E}{p}{\ovl{S}}
--------------------------
E[] ⊢ p : \ovl{S}
.. inference:: MT-STR
E[] ⊢ p : S
--------------------------
E[] ⊢ p : S/p
The last rule, called strengthening is used to make all module fields
manifestly equal to themselves. The notation :math:`S/p` has the following
meaning:
+ if :math:`S\lra~\Struct~e_1 ;…;e_n ~\End` then :math:`S/p=~\Struct~e_1 /p;…;e_n /p ~\End`
where :math:`e/p` is defined as follows (note that opaque definitions are processed
as assumptions):
+ :math:`(c:=t:T)/p = (c:=t:T)`
+ :math:`(c:U)/p = (c:=p.c:U)`
+ :math:`\ModS{X}{S}/p = \ModA{X}{p.X}`
+ :math:`\ModA{X}{p′}/p = \ModA{X}{p′}`
+ :math:`\ind{r}{Γ_I}{Γ_C}/p = \Indp{r}{Γ_I}{Γ_C}{p}`
+ :math:`\Indpstr{r}{Γ_I}{Γ_C}{p'}{p} = \Indp{r}{Γ_I}{Γ_C}{p'}`
+ if :math:`S \lra \Functor(X:S′)~S″` then :math:`S/p=S`
The notation :math:`\Indp{r}{Γ_I}{Γ_C}{p}`
denotes an inductive definition that is definitionally equal to the
inductive definition in the module denoted by the path :math:`p`. All rules
which have :math:`\ind{r}{Γ_I}{Γ_C}` as premises are also valid for
:math:`\Indp{r}{Γ_I}{Γ_C}{p}`. We give the formation rule for
:math:`\Indp{r}{Γ_I}{Γ_C}{p}`
below as well as the equality rules on inductive types and
constructors.
The module subtyping rules:
.. inference:: MSUB-STR
\begin{array}{c}
\WS{E;e_1 ;…;e_n }{e_{σ(i)}}{e'_i ~\for~ i=1..m} \\
σ : \{1… m\} → \{1… n\} ~\injective
\end{array}
--------------------------
\WS{E}{\Struct~e_1 ;…;e_n ~\End}{~\Struct~e'_1 ;…;e'_m ~\End}
.. inference:: MSUB-FUN
\WS{E}{\ovl{S_1'}}{\ovl{S_1}}
\WS{E; \ModS{X}{S_1'}}{\ovl{S_2}}{\ovl{S_2'}}
--------------------------
E[] ⊢ \Functor(X:S_1 ) S_2 <: \Functor(X:S_1') S_2'
Structure element subtyping rules:
.. inference:: ASSUM-ASSUM
E[] ⊢ T_1 ≤_{βδιζη} T_2
--------------------------
\WS{E}{(c:T_1)}{(c:T_2)}
.. inference:: DEF-ASSUM
E[] ⊢ T_1 ≤_{βδιζη} T_2
--------------------------
\WS{E}{(c:=t:T_1)}{(c:T_2)}
.. inference:: ASSUM-DEF
E[] ⊢ T_1 ≤_{βδιζη} T_2
E[] ⊢ c =_{βδιζη} t_2
--------------------------
\WS{E}{(c:T_1)}{(c:=t_2:T_2)}
.. inference:: DEF-DEF
E[] ⊢ T_1 ≤_{βδιζη} T_2
E[] ⊢ t_1 =_{βδιζη} t_2
--------------------------
\WS{E}{(c:=t_1:T_1)}{(c:=t_2:T_2)}
.. inference:: IND-IND
E[] ⊢ Γ_I =_{βδιζη} Γ_I'
E[Γ_I] ⊢ Γ_C =_{βδιζη} Γ_C'
--------------------------
\WS{E}{\ind{r}{Γ_I}{Γ_C}}{\ind{r}{Γ_I'}{Γ_C'}}
.. inference:: INDP-IND
E[] ⊢ Γ_I =_{βδιζη} Γ_I'
E[Γ_I] ⊢ Γ_C =_{βδιζη} Γ_C'
--------------------------
\WS{E}{\Indp{r}{Γ_I}{Γ_C}{p}}{\ind{r}{Γ_I'}{Γ_C'}}
.. inference:: INDP-INDP
E[] ⊢ Γ_I =_{βδιζη} Γ_I'
E[Γ_I] ⊢ Γ_C =_{βδιζη} Γ_C'
E[] ⊢ p =_{βδιζη} p'
--------------------------
\WS{E}{\Indp{r}{Γ_I}{Γ_C}{p}}{\Indp{r}{Γ_I'}{Γ_C'}{p'}}
.. inference:: MOD-MOD
\WS{E}{S_1}{S_2}
--------------------------
\WS{E}{\ModS{X}{S_1 }}{\ModS{X}{S_2 }}
.. inference:: ALIAS-MOD
E[] ⊢ p : S_1
\WS{E}{S_1}{S_2}
--------------------------
\WS{E}{\ModA{X}{p}}{\ModS{X}{S_2 }}
.. inference:: MOD-ALIAS
E[] ⊢ p : S_2
\WS{E}{S_1}{S_2}
E[] ⊢ X =_{βδιζη} p
--------------------------
\WS{E}{\ModS{X}{S_1 }}{\ModA{X}{p}}
.. inference:: ALIAS-ALIAS
E[] ⊢ p_1 =_{βδιζη} p_2
--------------------------
\WS{E}{\ModA{X}{p_1 }}{\ModA{X}{p_2 }}
.. inference:: MODTYPE-MODTYPE
\WS{E}{S_1}{S_2}
\WS{E}{S_2}{S_1}
--------------------------
\WS{E}{\ModType{Y}{S_1 }}{\ModType{Y}{S_2 }}
New environment formation rules
.. inference:: WF-MOD1
\WF{E}{}
\WFT{E}{S}
--------------------------
\WF{E; \ModS{X}{S}}{}
.. inference:: WF-MOD2
\WS{E}{S_2}{S_1}
\WF{E}{}
\WFT{E}{S_1}
\WFT{E}{S_2}
--------------------------
\WF{E; \ModImp{X}{S_1}{S_2}}{}
.. inference:: WF-ALIAS
\WF{E}{}
E[] ⊢ p : S
--------------------------
\WF{E; \ModA{X}{p}}{}
.. inference:: WF-MODTYPE
\WF{E}{}
\WFT{E}{S}
--------------------------
\WF{E; \ModType{Y}{S}}{}
.. inference:: WF-IND
\begin{array}{c}
\WF{E;\ind{r}{Γ_I}{Γ_C}}{} \\
E[] ⊢ p:~\Struct~e_1 ;…;e_n ;\ind{r}{Γ_I'}{Γ_C'};… ~\End \\
E[] ⊢ \ind{r}{Γ_I'}{Γ_C'} <: \ind{r}{Γ_I}{Γ_C}
\end{array}
--------------------------
\WF{E; \Indp{r}{Γ_I}{Γ_C}{p} }{}
Component access rules
.. inference:: ACC-TYPE1
E[Γ] ⊢ p :~\Struct~e_1 ;…;e_i ;(c:T);… ~\End
--------------------------
E[Γ] ⊢ p.c : T
.. inference:: ACC-TYPE2
E[Γ] ⊢ p :~\Struct~e_1 ;…;e_i ;(c:=t:T);… ~\End
--------------------------
E[Γ] ⊢ p.c : T
Notice that the following rule extends the delta rule defined in section :ref:`Conversion-rules`
.. inference:: ACC-DELTA
E[Γ] ⊢ p :~\Struct~e_1 ;…;e_i ;(c:=t:U);… ~\End
--------------------------
E[Γ] ⊢ p.c \triangleright_δ t
In the rules below we assume
:math:`Γ_P` is :math:`[p_1{:}P_1 ; …; p_r {:}P_r ]`,
:math:`Γ_I` is :math:`[I_1{:}∀ Γ_P, A_1 ; …; I_k{:}∀ Γ_P, A_k ]`,
and :math:`Γ_C` is :math:`[c_1{:}∀ Γ_P, C_1 ; …; c_n{:}∀ Γ_P, C_n ]`.
.. inference:: ACC-IND1
E[Γ] ⊢ p :~\Struct~e_1 ;…;e_i ;\ind{r}{Γ_I}{Γ_C};… ~\End
--------------------------
E[Γ] ⊢ p.I_j : ∀ Γ_P, A_j
.. inference:: ACC-IND2
E[Γ] ⊢ p :~\Struct~e_1 ;…;e_i ;\ind{r}{Γ_I}{Γ_C};… ~\End
--------------------------
E[Γ] ⊢ p.c_m : ∀ Γ_P, C_m
.. inference:: ACC-INDP1
E[] ⊢ p :~\Struct~e_1 ;…;e_i ; \Indp{r}{Γ_I}{Γ_C}{p'} ;… ~\End
--------------------------
E[] ⊢ p.I_i \triangleright_δ p'.I_i
.. inference:: ACC-INDP2
E[] ⊢ p :~\Struct~e_1 ;…;e_i ; \Indp{r}{Γ_I}{Γ_C}{p'} ;… ~\End
--------------------------
E[] ⊢ p.c_i \triangleright_δ p'.c_i
|