1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Names
open Constr
(** This module defines the internal representation of global
declarations. This includes global constants/axioms, mutual
inductive definitions, modules and module types *)
(** {6 Representation of constants (Definition/Axiom) } *)
(** Non-universe polymorphic mode polymorphism (Coq 8.2+): inductives
and constants hiding inductives are implicitly polymorphic when
applied to parameters, on the universes appearing in the whnf of
their parameters and their conclusion, in a template style.
In truly universe polymorphic mode, we always use RegularArity.
*)
type template_arity = {
template_level : Sorts.t;
}
type template_universes = {
template_param_levels : Univ.Level.t option list;
template_context : Univ.ContextSet.t;
}
type ('a, 'b) declaration_arity =
| RegularArity of 'a
| TemplateArity of 'b
(** Inlining level of parameters at functor applications.
None means no inlining *)
type inline = int option
(** A constant can have no body (axiom/parameter), or a
transparent body, or an opaque one *)
(* Global declarations (i.e. constants) can be either: *)
type ('a, 'opaque, 'rules) constant_def =
| Undef of inline (** a global assumption *)
| Def of 'a (** or a transparent global definition *)
| OpaqueDef of 'opaque (** or an opaque global definition *)
| Primitive of CPrimitives.t (** or a primitive operation *)
| Symbol of 'rules (** or a symbol *)
type universes =
| Monomorphic
| Polymorphic of UVars.AbstractContext.t
(** The [typing_flags] are instructions to the type-checker which
modify its behaviour. The typing flags used in the type-checking
of a constant are tracked in their {!constant_body} so that they
can be displayed to the user. *)
type typing_flags = {
check_guarded : bool;
(** If [false] then fixed points and co-fixed points are assumed to
be total. *)
check_positive : bool;
(** If [false] then inductive types are assumed positive and co-inductive
types are assumed productive. *)
check_universes : bool;
(** If [false] universe constraints are not checked *)
conv_oracle : Conv_oracle.oracle;
(** Unfolding strategies for conversion *)
share_reduction : bool;
(** Use by-need reduction algorithm *)
enable_VM : bool;
(** If [false], all VM conversions fall back to interpreted ones *)
enable_native_compiler : bool;
(** If [false], all native conversions fall back to VM ones *)
indices_matter: bool;
(** The universe of an inductive type must be above that of its indices. *)
impredicative_set: bool;
(** Predicativity of the [Set] universe. *)
sprop_allowed: bool;
(** If [false], error when encountering [SProp]. *)
allow_uip: bool;
(** Allow definitional UIP (breaks termination) *)
}
(** {6 Representation of definitions/assumptions in the kernel } *)
(* some contraints are in constant_constraints, some other may be in
* the OpaqueDef *)
type ('opaque, 'bytecode) pconstant_body = {
const_hyps : Constr.named_context; (** younger hyp at top *)
const_univ_hyps : UVars.Instance.t;
const_body : (Constr.t, 'opaque, bool) constant_def;
(** [bool] is for [unfold_fix] in symbols *)
const_type : types;
const_relevance : Sorts.relevance;
const_body_code : 'bytecode;
const_universes : universes;
const_inline_code : bool;
const_typing_flags : typing_flags; (** The typing options which
were used for
type-checking. *)
}
type constant_body = (Opaqueproof.opaque, Vmlibrary.indirect_code option) pconstant_body
(** {6 Representation of mutual inductive types in the kernel } *)
type recarg_type =
| RecArgInd of inductive
| RecArgPrim of Constant.t
type recarg =
| Norec
| Mrec of recarg_type
type wf_paths = recarg Rtree.t
(**
{v
Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1
...
with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn
v}
*)
(** Record information:
If the type is not a record, then NotRecord
If the type is a non-primitive record, then FakeRecord
If it is a primitive record, for every type in the block, we get:
- The identifier for the binder name of the record in primitive projections.
- The constants associated to each projection.
- The projection types (under parameters).
The kernel does not exploit the difference between [NotRecord] and
[FakeRecord]. It is mostly used by extraction, and should be extruded from
the kernel at some point.
*)
type record_info =
| NotRecord
| FakeRecord
| PrimRecord of (Id.t * Label.t array * Sorts.relevance array * types array) array
type regular_inductive_arity = {
mind_user_arity : types;
mind_sort : Sorts.t;
}
type inductive_arity = (regular_inductive_arity, template_arity) declaration_arity
type squash_info =
| AlwaysSquashed
| SometimesSquashed of Sorts.Quality.Set.t
(** A sort polymorphic inductive [I@{...|...|...} : ... -> Type@{ s|...}]
is squashed at a given instantiation if any quality in the list is not smaller than [s].
NB: if [s] is a variable SometimesSquashed contains SProp
ie non ground instantiations are squashed. *)
(** {7 Datas specific to a single type of a block of mutually inductive type } *)
type one_inductive_body = {
(** {8 Primitive datas } *)
mind_typename : Id.t; (** Name of the type: [Ii] *)
mind_arity_ctxt : Constr.rel_context;
(** Arity context of [Ii]. It includes the context of parameters,
that is, it has the form [paramdecls, realdecls_i] such that [Ui]
(see above) is [forall realdecls_i, si] for some sort [si] and
such that [Ii] has thus type [forall paramdecls, forall
realdecls_i, si]. The context itself is represented internally as
a list in reverse order
[[realdecl_i{r_i};...;realdecl_i1;paramdecl_m;...;paramdecl_1]]. *)
mind_arity : inductive_arity; (** Arity sort and original user arity *)
mind_consnames : Id.t array; (** Names of the constructors: [cij] *)
mind_user_lc : types array;
(** Types of the constructors with parameters: [forall params, Tij],
where the recursive occurrences of the inductive types in [Tij]
(i.e. in the type of the j-th constructor of the i-th types of
the block a shown above) have the form [Ind ((mind,0),u)], ...,
[Ind ((mind,n-1),u)] for [u] the canonical abstract instance
associated to [mind_universes] and [mind] the name to which the
inductive block is bound in the environment. *)
(** {8 Derived datas } *)
mind_nrealargs : int; (** Number of expected real arguments of the type (no let, no params) *)
mind_nrealdecls : int; (** Length of realargs context (with let, no params) *)
mind_squashed : squash_info option;
(** Is elimination restricted to the inductive's sort? *)
mind_nf_lc : (rel_context * types) array;
(** Head normalized constructor types so that their conclusion
exposes the inductive type. It includes the parameters, i.e. each
component of the array has the form [(decls_ij, Ii params realargs_ij)]
where [decls_ij] is the concatenation of the context of parameters
(possibly with let-ins) and of the arguments of the constructor
(possibly with let-ins). This context is internally represented
as a list [[cstrdecl_ij{q_ij};...;cstrdecl_ij1;paramdecl_m;...;paramdecl_1]]
such that the constructor in fine has type [forall paramdecls,
forall cstrdecls_ij, Ii params realargs_ij] with [params] referring to
the assumptions of [paramdecls] and [realargs_ij] being the
"indices" specific to the constructor. *)
mind_consnrealargs : int array;
(** Number of expected proper arguments of the constructors (w/o params) *)
mind_consnrealdecls : int array;
(** Length of the signature of the constructors (with let, w/o params) *)
mind_recargs : wf_paths; (** Signature of recursive arguments in the constructors *)
mind_relevance : Sorts.relevance;
(** {8 Datas for bytecode compilation } *)
mind_nb_constant : int; (** number of constant constructor *)
mind_nb_args : int; (** number of no constant constructor *)
mind_reloc_tbl : Vmvalues.reloc_table;
}
type recursivity_kind =
| Finite (** = inductive *)
| CoFinite (** = coinductive *)
| BiFinite (** = non-recursive, like in "Record" definitions *)
(** {7 Datas associated to a full block of mutually inductive types } *)
type mutual_inductive_body = {
mind_packets : one_inductive_body array; (** The component of the mutual inductive block *)
mind_record : record_info; (** The record information *)
mind_finite : recursivity_kind; (** Whether the type is inductive, coinductive or non-recursive *)
mind_ntypes : int; (** Number of types in the block *)
mind_hyps : Constr.named_context; (** Section hypotheses on which the block depends *)
mind_univ_hyps : UVars.Instance.t; (** Section polymorphic universes. *)
mind_nparams : int; (** Number of expected parameters including non-uniform ones (i.e. length of mind_params_ctxt w/o let-in) *)
mind_nparams_rec : int; (** Number of recursively uniform (i.e. ordinary) parameters *)
mind_params_ctxt : Constr.rel_context; (** The context of parameters (includes let-in declaration) *)
mind_universes : universes; (** Information about monomorphic/polymorphic/cumulative inductives and their universes *)
mind_template : template_universes option;
mind_variance : UVars.Variance.t array option; (** Variance info, [None] when non-cumulative. *)
mind_sec_variance : UVars.Variance.t array option;
(** Variance info for section polymorphic universes. [None]
outside sections. The final variance once all sections are
discharged is [mind_sec_variance ++ mind_variance]. *)
mind_private : bool option; (** allow pattern-matching: Some true ok, Some false blocked *)
mind_typing_flags : typing_flags; (** typing flags at the time of the inductive creation *)
}
type mind_specif = mutual_inductive_body * one_inductive_body
(** {6 Rewrite rules } *)
type quality_pattern = Sorts.Quality.pattern =
| PQVar of int option | PQConstant of Sorts.Quality.constant
type instance_mask = UVars.Instance.mask
type sort_pattern = Sorts.pattern =
| PSProp | PSSProp | PSSet | PSType of int option | PSQSort of int option * int option
(** Patterns are internally represented as pairs of a head-pattern and a list of eliminations
Eliminations correspond to elements of the stack in a reduction machine,
they represent a pattern with a hole, to be filled with the head-pattern
*)
type 'arg head_pattern =
| PHRel of int
| PHSort of sort_pattern
| PHSymbol of Constant.t * instance_mask
| PHInd of inductive * instance_mask
| PHConstr of constructor * instance_mask
| PHInt of Uint63.t
| PHFloat of Float64.t
| PHString of Pstring.t
| PHLambda of 'arg array * 'arg
| PHProd of 'arg array * 'arg
type pattern_elimination =
| PEApp of pattern_argument array
| PECase of inductive * instance_mask * pattern_argument * pattern_argument array
| PEProj of Projection.t
and head_elimination = pattern_argument head_pattern * pattern_elimination list
and pattern_argument =
| EHole of int
| EHoleIgnored
| ERigid of head_elimination
type rewrite_rule = {
nvars : int * int * int;
lhs_pat : instance_mask * pattern_elimination list;
rhs : constr;
}
(** {6 Representation of rewrite rules in the kernel } *)
(** [(c, { lhs_pat = (u, elims); rhs })] in this list stands for [(PHSymbol (c,u), elims) ==> rhs] *)
type rewrite_rules_body = {
rewrules_rules : (Constant.t * rewrite_rule) list;
}
(** {6 Module declarations } *)
(** Functor expressions are forced to be on top of other expressions *)
type ('ty,'a) functorize =
| NoFunctor of 'a
| MoreFunctor of MBId.t * 'ty * ('ty,'a) functorize
(** The fully-algebraic module expressions : names, applications, 'with ...'.
They correspond to the user entries of non-interactive modules.
They will be later expanded into module structures in [Mod_typing],
and won't play any role into the kernel after that : they are kept
only for short module printing and for extraction. *)
type 'uconstr with_declaration =
| WithMod of Id.t list * ModPath.t
| WithDef of Id.t list * 'uconstr
type 'uconstr module_alg_expr =
| MEident of ModPath.t
| MEapply of 'uconstr module_alg_expr * ModPath.t
| MEwith of 'uconstr module_alg_expr * 'uconstr with_declaration
type 'uconstr functor_alg_expr =
| MENoFunctor of 'uconstr module_alg_expr
| MEMoreFunctor of 'uconstr functor_alg_expr
(** A module expression is an algebraic expression, possibly functorized. *)
type module_expression = (constr * UVars.AbstractContext.t option) functor_alg_expr
(** A component of a module structure *)
type structure_field_body =
| SFBconst of constant_body
| SFBmind of mutual_inductive_body
| SFBrules of rewrite_rules_body
| SFBmodule of module_body
| SFBmodtype of module_type_body
(** A module structure is a list of labeled components.
Note : we may encounter now (at most) twice the same label in
a [structure_body], once for a module ([SFBmodule] or [SFBmodtype])
and once for an object ([SFBconst] or [SFBmind]) *)
and structure_body = (Label.t * structure_field_body) list
(** A module signature is a structure, with possibly functors on top of it *)
and module_signature = (module_type_body,structure_body) functorize
and module_implementation =
| Abstract (** no accessible implementation *)
| Algebraic of module_expression (** non-interactive algebraic expression *)
| Struct of structure_body (** interactive body living in the parameter context of [mod_type] *)
| FullStruct (** special case of [Struct] : the body is exactly [mod_type] *)
and 'a generic_module_body =
{ mod_mp : ModPath.t; (** absolute path of the module *)
mod_expr : 'a; (** implementation *)
mod_type : module_signature; (** expanded type *)
mod_type_alg : module_expression option; (** algebraic type *)
mod_delta : Mod_subst.delta_resolver; (**
quotiented set of equivalent constants and inductive names *)
mod_retroknowledge : 'a module_retroknowledge }
(** For a module, there are five possible situations:
- [Declare Module M : T] then [mod_expr = Abstract; mod_type_alg = Some T]
- [Module M := E] then [mod_expr = Algebraic E; mod_type_alg = None]
- [Module M : T := E] then [mod_expr = Algebraic E; mod_type_alg = Some T]
- [Module M. ... End M] then [mod_expr = FullStruct; mod_type_alg = None]
- [Module M : T. ... End M] then [mod_expr = Struct; mod_type_alg = Some T]
And of course, all these situations may be functors or not. *)
and module_body = module_implementation generic_module_body
(** A [module_type_body] is just a [module_body] with no implementation and
also an empty [mod_retroknowledge]. Its [mod_type_alg] contains
the algebraic definition of this module type, or [None]
if it has been built interactively. *)
and module_type_body = unit generic_module_body
and _ module_retroknowledge =
| ModBodyRK :
Retroknowledge.action list -> module_implementation module_retroknowledge
| ModTypeRK : unit module_retroknowledge
(** Extra invariants :
- No [MEwith] inside a [mod_expr] implementation : the 'with' syntax
is only supported for module types
- A module application is atomic, for instance ((M N) P) :
* the head of [MEapply] can only be another [MEapply] or a [MEident]
* the argument of [MEapply] is now directly forced to be a [ModPath.t].
*)
|