1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open CErrors
open Util
open Names
open Term
open Constr
open Vars
open Declarations
open Declareops
open Inductive
open Environ
open Reduction
open Entries
open Context.Rel.Declaration
(* Terminology:
paramdecls (ou paramsctxt?)
args = params + realargs (called vargs when an array, largs when a list)
params = recparams + nonrecparams
nonrecargs = nonrecparams + realargs
env_ar = initial env + declaration of inductive types
env_ar_par = env_ar + declaration of parameters
nmr = ongoing computation of recursive parameters
*)
(* [weaker_noccur_between env n nvars t] (defined above), checks that
no de Bruijn indices between [n] and [n+nvars] occur in [t]. If
some such occurrences are found, then reduction is performed
(lazily for efficiency purposes) in order to determine whether
these occurrences are occurrences in the normal form. If the
occurrences are eliminated a witness reduct [Some t'] of [t] is
returned otherwise [None] is returned. *)
let weaker_noccur_between env x nvars t =
if noccur_between x nvars t then Some t
else
let t' = whd_all env t in
if noccur_between x nvars t' then Some t'
else None
(************************************************************************)
(* Various well-formedness check for inductive declarations *)
exception InductiveError = Type_errors.InductiveError
(************************************************************************)
(************************************************************************)
(* Positivity *)
type ill_formed_ind =
| LocalNonPos of int
| LocalNotEnoughArgs of int
| LocalNotConstructor of Constr.rel_context * int
| LocalNonPar of int * int * int
exception IllFormedInd of ill_formed_ind
(* [mind_extract_params mie] extracts the params from an inductive types
declaration, and checks that they are all present (and all the same)
for all the given types. *)
let mind_extract_params = decompose_prod_n_decls
let explain_ind_err id ntyp env nparamsctxt c err =
let open Type_errors in
let (_lparams,c') = mind_extract_params nparamsctxt c in
match err with
| LocalNonPos kt ->
raise (InductiveError (NonPos (env,c',mkRel (kt+nparamsctxt))))
| LocalNotEnoughArgs kt ->
raise (InductiveError
(NotEnoughArgs (env,c',mkRel (kt+nparamsctxt))))
| LocalNotConstructor (paramsctxt,nargs)->
let nparams = Context.Rel.nhyps paramsctxt in
raise (InductiveError
(NotConstructor (env,id,c',mkRel (ntyp+nparamsctxt),
nparams,nargs)))
| LocalNonPar (n,i,l) ->
raise (InductiveError
(NonPar (env,c',n,mkRel i,mkRel (l+nparamsctxt))))
let failwith_non_pos n ntypes c =
for k = n to n + ntypes - 1 do
if not (noccurn k c) then raise (IllFormedInd (LocalNonPos (k-n+1)))
done
let failwith_non_pos_vect n ntypes v =
Array.iter (failwith_non_pos n ntypes) v;
anomaly ~label:"failwith_non_pos_vect" (Pp.str "some k in [n;n+ntypes-1] should occur.")
let failwith_non_pos_list n ntypes l =
List.iter (failwith_non_pos n ntypes) l;
anomaly ~label:"failwith_non_pos_list" (Pp.str "some k in [n;n+ntypes-1] should occur.")
(* Check the inductive type is called with the expected parameters *)
(* [n] is the index of the last inductive type in [env] *)
let check_correct_par ~chkpos (env,n,ntypes,_) paramdecls ind_index args =
let nparams = Context.Rel.nhyps paramdecls in
let args = Array.of_list args in
if Array.length args < nparams then
raise (IllFormedInd (LocalNotEnoughArgs ind_index));
let (params,realargs) = Array.chop nparams args in
let nparamdecls = List.length paramdecls in
let rec check param_index paramdecl_index = function
| [] -> ()
| LocalDef _ :: paramdecls ->
check param_index (paramdecl_index+1) paramdecls
| _::paramdecls ->
match kind (whd_all env params.(param_index)) with
| Rel w when Int.equal w paramdecl_index ->
check (param_index-1) (paramdecl_index+1) paramdecls
| _ ->
let paramdecl_index_in_env = paramdecl_index-n+nparamdecls+1 in
let err =
LocalNonPar (param_index+1, paramdecl_index_in_env, ind_index) in
raise (IllFormedInd err)
in check (nparams-1) (n-nparamdecls) paramdecls;
if chkpos && not (Array.for_all (noccur_between n ntypes) realargs) then
failwith_non_pos_vect n ntypes realargs
(* Computes the maximum number of recursive parameters:
the first parameters which are constant in recursive arguments
[n] is the current depth, [nmr] is the maximum number of possible
recursive parameters *)
let compute_rec_par (env,n,_,_) paramsctxt nmr largs =
if Int.equal nmr 0 then 0 else
(* start from 0, params will be in reverse order *)
let (lpar,_) = List.chop nmr largs in
let rec find k index =
function
([],_) -> nmr
| (_,[]) -> assert false (* |paramsctxt|>=nmr *)
| (lp, LocalDef _ :: paramsctxt) -> find k (index-1) (lp,paramsctxt)
| (p::lp,_::paramsctxt) ->
( match kind (whd_all env p) with
| Rel w when Int.equal w index -> find (k+1) (index-1) (lp,paramsctxt)
| _ -> k)
in find 0 (n-1) (lpar,List.rev paramsctxt)
(* [env] is the typing environment
[n] is the dB of the last inductive type
[ntypes] is the number of inductive types in the definition
(i.e. range of inductives is [n; n+ntypes-1])
[lra] is the list of recursive tree of each variable
*)
let ienv_push_var (env, n, ntypes, lra) (x,a,ra) =
(push_rel (LocalAssum (x,a)) env, n+1, ntypes, (Norec,ra)::lra)
let ienv_push_inductive (env, n, ntypes, ra_env) ((mi,u),lrecparams) =
let auxntyp = 1 in
let specif = (lookup_mind_specif env mi, u) in
let ty = type_of_inductive specif in
let env' =
let r = Inductive.relevance_of_ind_body (snd (fst specif)) u in
let anon = Context.make_annot Anonymous r in
let decl = LocalAssum (anon, hnf_prod_applist env ty lrecparams) in
push_rel decl env in
let ra_env' =
(Mrec (RecArgInd mi),(Rtree.mk_rec_calls 1).(0)) ::
List.map (fun (r,t) -> (r,Rtree.lift 1 t)) ra_env in
(* New index of the inductive types *)
let newidx = n + auxntyp in
(env', newidx, ntypes, ra_env')
let rec ienv_decompose_prod (env,_,_,_ as ienv) n c =
if Int.equal n 0 then (ienv,c) else
let c' = whd_all env c in
match kind c' with
Prod(na,a,b) ->
let ienv' = ienv_push_var ienv (na,a,mk_norec) in
ienv_decompose_prod ienv' (n-1) b
| _ -> assert false
let array_min nmr a = if Int.equal nmr 0 then 0 else
Array.fold_left (fun k (nmri,_) -> min k nmri) nmr a
(** [check_positivity_one ienv paramsctxt (mind,i) nnonrecargs lcnames indlc]
checks the positivity of the [i]-th member of the mutually
inductive definition [mind]. It returns an [Rtree.t] which
represents the position of the recursive calls of inductive in [i]
for use by the guard condition (terms at these positions are
considered sub-terms) as well as the number of of non-uniform
arguments (used to generate induction schemes, so a priori less
relevant to the kernel).
If [chkpos] is [false] then positivity is assumed, and
[check_positivity_one] computes the subterms occurrences in a
best-effort fashion. *)
let check_positivity_one ~chkpos recursive (env,_,ntypes,_ as ienv) paramsctxt (mind,i as ind) nnonrecargs lcnames indlc =
let nparamsctxt = Context.Rel.length paramsctxt in
let nmr = Context.Rel.nhyps paramsctxt in
(** Positivity of one argument [c] of a constructor (i.e. the
constructor [cn] has a type of the shape [… -> c … -> P], where,
more generally, the arrows may be dependent). *)
let rec check_strict_positivity (env, n, ntypes, ra_env as ienv) nmr c =
let x,largs = decompose_app_list (whd_all env c) in
match kind x with
| Prod (na,b,d) ->
let () = assert (List.is_empty largs) in
(** If one of the inductives of the mutually inductive
block occurs in the left-hand side of a product, then
such an occurrence is a non-strictly-positive
recursive call. Occurrences in the right-hand side of
the product must be strictly positive.*)
(match weaker_noccur_between env n ntypes b with
| None when chkpos ->
failwith_non_pos_list n ntypes [b]
| None ->
check_strict_positivity (ienv_push_var ienv (na, b, mk_norec)) nmr d
| Some b ->
check_strict_positivity (ienv_push_var ienv (na, b, mk_norec)) nmr d)
| Rel k ->
(match List.nth_opt ra_env (k-1) with
| Some (ra,rarg) ->
let largs = List.map (whd_all env) largs in
let nmr1 =
(match ra with
(* Are we referring to the original block of mutual inductive types? *)
| Mrec (RecArgInd (mind',_)) ->
if Names.MutInd.CanOrd.equal mind mind'
then compute_rec_par ienv paramsctxt nmr largs
else nmr
| Norec | Mrec (RecArgPrim _) -> nmr)
in
(** The case where one of the inductives of the mutually
inductive block occurs as an argument of another is not
known to be safe. So Coq rejects it. *)
if chkpos &&
not (List.for_all (noccur_between n ntypes) largs)
then failwith_non_pos_list n ntypes largs
else (nmr1,rarg)
| None -> (nmr,mk_norec))
| Ind ind_kn ->
(** If one of the inductives of the mutually inductive
block being defined appears in a parameter, then we
have a nested inductive type. The positivity is then
discharged to the [check_positivity_nested] function. *)
if List.for_all (noccur_between n ntypes) largs then (nmr,mk_norec)
else check_positivity_nested ienv nmr (ind_kn, largs)
| Const (c,_) when is_primitive_positive_container env c ->
if List.for_all (noccur_between n ntypes) largs then (nmr,mk_norec)
else check_positivity_nested_primitive ienv nmr (c, largs)
| _err ->
(** If an inductive of the mutually inductive block
appears in any other way, then the positivy check gives
up. *)
if not chkpos ||
(noccur_between n ntypes x &&
List.for_all (noccur_between n ntypes) largs)
then (nmr,mk_norec)
else failwith_non_pos_list n ntypes (x::largs)
(** [check_positivity_nested] handles the case of nested inductive
calls, that is, when an inductive types from the mutually
inductive block is called as an argument of an inductive types
(for the moment, this inductive type must be a previously
defined types, not one of the types of the mutually inductive
block being defined). *)
(* accesses to the environment are not factorised, but is it worth? *)
and check_positivity_nested (env,n,ntypes,_ra_env as ienv) nmr (((mind,_ as ind),u), largs) =
let (mib,mip) = lookup_mind_specif env ind in
let auxnrecpar = mib.mind_nparams_rec in
let auxnnonrecpar = mib.mind_nparams - auxnrecpar in
let (auxrecparams,auxnonrecargs) =
try List.chop auxnrecpar largs
with Failure _ -> raise (IllFormedInd (LocalNonPos n)) in
(** Inductives of the inductive block being defined are only
allowed to appear nested in the parameters of another inductive
type. Not in the proper indices. *)
if chkpos && not (List.for_all (noccur_between n ntypes) auxnonrecargs) then
failwith_non_pos_list n ntypes auxnonrecargs;
(* Nested mutual inductive types are not supported *)
let auxntyp = mib.mind_ntypes in
if not (Int.equal auxntyp 1) then raise (IllFormedInd (LocalNonPos n));
(* The nested inductive type with parameters removed *)
let auxlcvect = abstract_mind_lc auxntyp auxnrecpar mind mip.mind_nf_lc in
(* Extends the environment with a variable corresponding to
the inductive def *)
let (env',_,_,_ as ienv') = ienv_push_inductive ienv ((ind,u),auxrecparams) in
(* Parameters expressed in env' *)
let auxrecparams' = List.map (lift auxntyp) auxrecparams in
let irecargs_nmr =
(** Checks that the "nesting" inductive type is covariant in
the relevant parameters. In other words, that the
(nested) parameters which are instantiated with
inductives of the mutually inductive block occur
positively in the types of the nested constructors. *)
Array.map
(function c ->
let c' = hnf_prod_applist env' c auxrecparams' in
(* skip non-recursive parameters *)
let (ienv',c') = ienv_decompose_prod ienv' auxnnonrecpar c' in
check_constructors ienv' false nmr c')
auxlcvect
in
let irecargs = Array.map snd irecargs_nmr
and nmr' = array_min nmr irecargs_nmr
in
(nmr',(Rtree.mk_rec [|mk_paths (Mrec (RecArgInd ind)) irecargs|]).(0))
and check_positivity_nested_primitive (env,n,ntypes,ra_env) nmr (c, largs) =
(* We model the primitive type c X1 ... Xn as if it had one constructor
C : X1 -> ... -> Xn -> c X1 ... Xn
The subterm relation is defined for each primitive in `inductive.ml`. *)
let ra_env = List.map (fun (r,t) -> (r,Rtree.lift 1 t)) ra_env in
let ienv = (env,n,ntypes,ra_env) in
let nmr',recargs = List.fold_left_map (check_strict_positivity ienv) nmr largs in
(nmr', (Rtree.mk_rec [| mk_paths (Mrec (RecArgPrim c)) [| recargs |] |]).(0))
(** [check_constructors ienv check_head nmr c] checks the positivity
condition in the type [c] of a constructor (i.e. that recursive
calls to the inductives of the mutually inductive definition
appear strictly positively in each of the arguments of the
constructor, see also [check_strict_positivity]). If [check_head] is [true],
then the type of the fully applied constructor (the "head" of
the type [c]) is checked to be the right (properly applied)
inductive type. *)
and check_constructors ienv check_head nmr c =
let rec check_constr_rec (env,n,ntypes,_ra_env as ienv) nmr lrec c =
let x,largs = decompose_app_list (whd_all env c) in
match kind x with
| Prod (na,b,d) ->
let () = assert (List.is_empty largs) in
if not recursive && not (noccur_between n ntypes b) then
raise (InductiveError Type_errors.BadEntry);
let nmr',recarg = check_strict_positivity ienv nmr b in
let ienv' = ienv_push_var ienv (na,b,mk_norec) in
check_constr_rec ienv' nmr' (recarg::lrec) d
| hd ->
let () =
if check_head then
begin match hd with
| Rel j when Int.equal j (n + ntypes - i - 1) ->
check_correct_par ~chkpos ienv paramsctxt (ntypes - i) largs
| _ -> raise (IllFormedInd (LocalNotConstructor(paramsctxt,nnonrecargs)))
end
else
if chkpos &&
not (List.for_all (noccur_between n ntypes) largs)
then failwith_non_pos_list n ntypes largs
in
(nmr, List.rev lrec)
in check_constr_rec ienv nmr [] c
in
let irecargs_nmr =
Array.map2
(fun id c ->
let _,rawc = mind_extract_params nparamsctxt c in
try
check_constructors ienv true nmr rawc
with IllFormedInd err ->
explain_ind_err id (ntypes-i) env nparamsctxt c err)
(Array.of_list lcnames) indlc
in
let irecargs = Array.map snd irecargs_nmr
and nmr' = array_min nmr irecargs_nmr
in (nmr', mk_paths (Mrec (RecArgInd ind)) irecargs)
(** [check_positivity ~chkpos kn env_ar paramsctxt inds] checks that the mutually
inductive block [inds] is strictly positive.
If [chkpos] is [false] then positivity is assumed, and
[check_positivity_one] computes the subterms occurrences in a
best-effort fashion. *)
let check_positivity ~chkpos kn names env_ar_par paramsctxt finite inds =
let ntypes = Array.length inds in
let recursive = finite != BiFinite in
if not recursive && Array.length inds <> 1 then raise (InductiveError Type_errors.BadEntry);
let rc = Array.mapi (fun j t -> (Mrec (RecArgInd (kn,j)),t)) (Rtree.mk_rec_calls ntypes) in
let ra_env_ar = Array.rev_to_list rc in
let nparamsctxt = Context.Rel.length paramsctxt in
let nmr = Context.Rel.nhyps paramsctxt in
let check_one i (_,lcnames) (nindices,lc) =
let ra_env_ar_par =
List.init nparamsctxt (fun _ -> (Norec,mk_norec)) @ ra_env_ar in
let ienv = (env_ar_par, 1+nparamsctxt, ntypes, ra_env_ar_par) in
check_positivity_one ~chkpos recursive ienv paramsctxt (kn,i) nindices lcnames lc
in
let irecargs_nmr = Array.map2_i check_one names inds in
let irecargs = Array.map snd irecargs_nmr
and nmr' = array_min nmr irecargs_nmr
in (nmr',Rtree.mk_rec irecargs)
(************************************************************************)
(************************************************************************)
(* Build the inductive packet *)
let fold_arity f acc params arity indices = match arity with
| RegularArity ar -> f acc ar.mind_user_arity
| TemplateArity _ ->
let fold_ctx acc ctx =
List.fold_left (fun acc d ->
Context.Rel.Declaration.fold_constr (fun c acc -> f acc c) d acc)
acc
ctx
in
fold_ctx (fold_ctx acc params) indices
let fold_inductive_blocks f acc params inds =
Array.fold_left (fun acc ((arity,lc),(indices,_),_) ->
fold_arity f (Array.fold_left f acc lc) params arity indices)
acc inds
let used_section_variables env params inds =
let fold l c = Id.Set.union (Environ.global_vars_set env c) l in
let ids = fold_inductive_blocks fold Id.Set.empty params inds in
keep_hyps env ids
let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i))
(** From a rel context describing the constructor arguments,
build an expansion function.
The term built is expecting to be substituted first by
a substitution of the form [params, x : ind params] *)
let compute_projections (_, i as ind) mib =
let pkt = mib.mind_packets.(i) in
let (ctx, _) = pkt.mind_nf_lc.(0) in
let ctx, paramslet = List.chop pkt.mind_consnrealdecls.(0) ctx in
(** We build a substitution smashing the lets in the record parameters so
that typechecking projections requires just a substitution and not
matching with a parameter context. *)
let paramsletsubst =
(* [Ind inst] is typed in context [params-wo-let] *)
let inst' = rel_vect 0 mib.mind_nparams in
(* {params-wo-let |- subst:params] *)
let subst = subst_of_rel_context_instance paramslet inst' in
(* {params-wo-let, x:Ind inst' |- subst':(params,x:Ind inst)] *)
let subst = (* For the record parameter: *)
mkRel 1 :: List.map (lift 1) subst in
subst
in
let projections decl (i, j, labs, rs, pbs, letsubst) =
match decl with
| LocalDef (_na,c,_t) ->
(* From [params, field1,..,fieldj |- c(params,field1,..,fieldj)]
to [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)] *)
let c = liftn 1 j c in
(* From [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)]
to [params-wo-let, x:I |- c(params,proj1 x,..,projj x)] *)
let c2 = substl letsubst c in
(* From [params-wo-let, x:I |- subst:(params, x:I, field1,..,fieldj)]
to [params-wo-let, x:I |- subst:(params, x:I, field1,..,fieldj+1)] *)
let letsubst = c2 :: letsubst in
(i, j+1, labs, rs, pbs, letsubst)
| LocalAssum (na,t) ->
match na.Context.binder_name with
| Name id ->
let r = na.Context.binder_relevance in
let lab = Label.of_id id in
let kn = Projection.Repr.make ind ~proj_npars:mib.mind_nparams ~proj_arg:i lab in
(* from [params, field1,..,fieldj |- t(params,field1,..,fieldj)]
to [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj] *)
let t = liftn 1 j t in
(* from [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj)]
to [params-wo-let, x:I |- t(params,proj1 x,..,projj x)] *)
let projty = substl letsubst t in
(* from [params, x:I, field1,..,fieldj |- t(field1,..,fieldj)]
to [params, x:I |- t(proj1 x,..,projj x)] *)
let fterm = mkProj (Projection.make kn false, r, mkRel 1) in
(i + 1, j + 1, lab :: labs, r :: rs, projty :: pbs, fterm :: letsubst)
| Anonymous -> assert false (* checked by indTyping *)
in
let (_, _, labs, rs, pbs, _letsubst) =
List.fold_right projections ctx (0, 1, [], [], [], paramsletsubst)
in
Array.of_list (List.rev labs),
Array.of_list (List.rev rs),
Array.of_list (List.rev pbs)
let build_inductive env ~sec_univs names prv univs template variance
paramsctxt kn isrecord isfinite inds nmr recargs =
let ntypes = Array.length inds in
(* Compute the set of used section variables *)
let hyps = used_section_variables env paramsctxt inds in
let nparamargs = Context.Rel.nhyps paramsctxt in
let u = UVars.make_abstract_instance (universes_context univs) in
let subst = List.init ntypes (fun i -> mkIndU ((kn, ntypes - i - 1), u)) in
(* Check one inductive *)
let build_one_packet (id,cnames) ((arity,lc),(indices,splayed_lc),squashed) recarg =
let lc = Array.map (substl subst) lc in
(* Type of constructors in normal form *)
let nf_lc =
Array.map (fun (d, b) ->
decompose_prod_decls (substl subst (it_mkProd_or_LetIn b (d@paramsctxt))))
splayed_lc in
let consnrealdecls =
Array.map (fun (d,_) -> Context.Rel.length d)
splayed_lc in
let consnrealargs =
Array.map (fun (d,_) -> Context.Rel.nhyps d)
splayed_lc in
let mind_relevance = match arity with
| RegularArity { mind_sort;_ } -> Sorts.relevance_of_sort mind_sort
| TemplateArity _ -> Sorts.Relevant
in
(* Assigning VM tags to constructors *)
let nconst, nblock = ref 0, ref 0 in
let transf arity =
if Int.equal arity 0 then
let p = (!nconst, 0) in
incr nconst; p
else
let p = (!nblock + 1, arity) in
incr nblock; p
(* les tag des constructeur constant commence a 0,
les tag des constructeur non constant a 1 (0 => accumulator) *)
in
let rtbl = Array.map transf consnrealargs in
(* Build the inductive packet *)
{ mind_typename = id;
mind_arity = arity;
mind_arity_ctxt = indices @ paramsctxt;
mind_nrealargs = Context.Rel.nhyps indices;
mind_nrealdecls = Context.Rel.length indices;
mind_squashed = squashed;
mind_consnames = Array.of_list cnames;
mind_consnrealdecls = consnrealdecls;
mind_consnrealargs = consnrealargs;
mind_user_lc = lc;
mind_nf_lc = nf_lc;
mind_recargs = recarg;
mind_relevance;
mind_nb_constant = !nconst;
mind_nb_args = !nblock;
mind_reloc_tbl = rtbl;
} in
let packets = Array.map3 build_one_packet names inds recargs in
let variance, sec_variance = match variance with
| None -> None, None
| Some variance -> match sec_univs with
| None -> Some variance, None
| Some sec_univs ->
(* no variance for qualities *)
let _nsecq, nsecu = UVars.Instance.length sec_univs in
Some (Array.sub variance nsecu (Array.length variance - nsecu)),
Some (Array.sub variance 0 nsecu)
in
let univ_hyps = match sec_univs with
| None -> UVars.Instance.empty
| Some univs -> univs
in
let mib =
(* Build the mutual inductive *)
{ mind_record = NotRecord;
mind_ntypes = ntypes;
mind_finite = isfinite;
mind_hyps = hyps;
mind_univ_hyps = univ_hyps;
mind_nparams = nparamargs;
mind_nparams_rec = nmr;
mind_params_ctxt = paramsctxt;
mind_packets = packets;
mind_universes = univs;
mind_template = template;
mind_variance = variance;
mind_sec_variance = sec_variance;
mind_private = prv;
mind_typing_flags = Environ.typing_flags env;
}
in
let record_info = match isrecord with
| Some (Some rid) ->
(** The elimination criterion ensures that all projections can be defined. *)
let map i id =
let labs, rs, projs = compute_projections (kn, i) mib in
(id, labs, rs, projs)
in
PrimRecord (Array.mapi map rid)
| Some None -> FakeRecord
| None -> NotRecord
in
{ mib with mind_record = record_info }
(************************************************************************)
(************************************************************************)
let check_inductive env ~sec_univs kn mie =
(* First type-check the inductive definition *)
let (env_ar_par, univs, template, variance, record, paramsctxt, inds) =
IndTyping.typecheck_inductive env ~sec_univs mie
in
(* Then check positivity conditions *)
let chkpos = (Environ.typing_flags env).check_positive in
let names = Array.map_of_list (fun entry -> entry.mind_entry_typename, entry.mind_entry_consnames)
mie.mind_entry_inds
in
let (nmr,recargs) = check_positivity ~chkpos kn names
env_ar_par paramsctxt mie.mind_entry_finite
(Array.map (fun ((_,lc),(indices,_),_) -> Context.Rel.nhyps indices,lc) inds)
in
(* Build the inductive packets *)
build_inductive env ~sec_univs names mie.mind_entry_private univs template variance
paramsctxt kn record mie.mind_entry_finite
inds nmr recargs
|