1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Created by Jacek Chrzaszcz, Aug 2002 as part of the implementation of
the Coq module system *)
(* This module provides the main functions for type-checking module
declarations *)
open Util
open Names
open Declarations
open Entries
open Environ
open Modops
open Mod_subst
let rec mp_from_mexpr = function
| MEident mp -> mp
| MEapply (expr,_) -> mp_from_mexpr expr
| MEwith (expr,_) -> mp_from_mexpr expr
let is_modular = function
| SFBmodule _ | SFBmodtype _ -> true
| SFBconst _ | SFBmind _ | SFBrules _ -> false
(** Split a [structure_body] at some label corresponding to
a modular definition or not. *)
let split_struc k m struc =
let rec split rev_before = function
| [] -> raise Not_found
| (k',b)::after when Label.equal k k' && (is_modular b) == (m : bool) ->
List.rev rev_before,b,after
| h::tail -> split (h::rev_before) tail
in split [] struc
let discr_resolver mtb = match mtb.mod_type with
| NoFunctor _ -> mtb.mod_delta
| MoreFunctor _ -> empty_delta_resolver
let rec rebuild_mp mp l =
match l with
| []-> mp
| i::r -> rebuild_mp (MPdot(mp,Label.of_id i)) r
let infer_gen_conv state env c1 c2 =
Conversion.generic_conv Conversion.CONV ~l2r:false TransparentState.full env state c1 c2
let infer_gen_conv_leq state env c1 c2 =
Conversion.generic_conv Conversion.CUMUL ~l2r:false TransparentState.full env state c1 c2
type with_body = {
w_def : Constr.t;
w_univs : universes;
w_bytecode : Vmlibrary.indirect_code option;
}
let rec check_with_def (cst, ustate) env struc (idl, wth) mp reso =
let lab,idl = match idl with
| [] -> assert false
| id::idl -> Label.of_id id, idl
in
try
let modular = not (List.is_empty idl) in
let before,spec,after = split_struc lab modular struc in
let env' = Modops.add_structure mp before reso env in
if List.is_empty idl then
(* Toplevel definition *)
let cb = match spec with
| SFBconst cb -> cb
| _ -> error_not_a_constant lab
in
(* In the spirit of subtyping.check_constant, we accept
any implementations of parameters and opaque terms,
as long as they have the right type *)
let ctx' =
match cb.const_universes, wth.w_univs with
| Monomorphic, Monomorphic ->
let cst = match cb.const_body with
| Undef _ | OpaqueDef _ ->
let j = Typeops.infer env' wth.w_def in
assert (j.uj_val == wth.w_def); (* relevances should already be correct here *)
let typ = cb.const_type in
let cst = infer_gen_conv_leq (cst, ustate) env' j.uj_type typ in
cst
| Def c' ->
infer_gen_conv (cst, ustate) env' wth.w_def c'
| Primitive _ | Symbol _ ->
error_incorrect_with_constraint lab
in
begin match cst with
| Result.Ok cst -> cst
| Result.Error (None | Some _) ->
error_incorrect_with_constraint lab
end
| Polymorphic uctx, Polymorphic ctx ->
let () =
if not (UGraph.check_subtype (Environ.universes env) uctx ctx) then
error_incorrect_with_constraint lab
in
(** Terms are compared in a context with De Bruijn universe indices *)
let env' = Environ.push_context ~strict:false (UVars.AbstractContext.repr uctx) env in
let () = match cb.const_body with
| Undef _ | OpaqueDef _ ->
let j = Typeops.infer env' wth.w_def in
assert (j.uj_val == wth.w_def); (* relevances should already be correct here *)
let typ = cb.const_type in
begin match Conversion.conv_leq env' j.uj_type typ with
| Result.Ok () -> ()
| Result.Error () -> error_incorrect_with_constraint lab
end
| Def c' ->
begin match Conversion.conv env' wth.w_def c' with
| Result.Ok () -> ()
| Result.Error () -> error_incorrect_with_constraint lab
end
| Primitive _ | Symbol _ ->
error_incorrect_with_constraint lab
in
cst
| _ -> error_incorrect_with_constraint lab
in
let cb' =
{ cb with
const_body = Def wth.w_def;
const_universes = wth.w_univs;
const_body_code = wth.w_bytecode; }
in
before@(lab,SFBconst(cb'))::after, ctx'
else
(* Definition inside a sub-module *)
let mb = match spec with
| SFBmodule mb -> mb
| _ -> error_not_a_module_label lab
in
begin match mb.mod_expr with
| Abstract ->
let struc = Modops.destr_nofunctor (MPdot (mp,lab)) mb.mod_type in
let struc', cst =
check_with_def (cst, ustate) env' struc (idl, wth) (MPdot(mp,lab)) mb.mod_delta
in
let mb' = { mb with
mod_type = NoFunctor struc';
mod_type_alg = None }
in
before@(lab,SFBmodule mb')::after, cst
| _ -> error_generative_module_expected lab
end
with
| Not_found -> error_no_such_label lab mp
let rec check_with_mod (cst, ustate) env struc (idl,new_mp) mp reso =
let lab,idl = match idl with
| [] -> assert false
| id::idl -> Label.of_id id, idl
in
try
let before,spec,after = split_struc lab true struc in
let env' = Modops.add_structure mp before reso env in
let old = match spec with
| SFBmodule mb -> mb
| _ -> error_not_a_module_label lab
in
if List.is_empty idl then
(* Toplevel module definition *)
let new_mb = lookup_module new_mp env in
let new_mtb = module_type_of_module new_mb in
let cst = match old.mod_expr with
| Abstract ->
let mtb_old = module_type_of_module old in
let cst = Subtyping.check_subtypes (cst, ustate) env' new_mtb mtb_old in
cst
| Algebraic (MENoFunctor (MEident(mp'))) ->
check_modpath_equiv env' new_mp mp';
cst
| _ -> error_generative_module_expected lab
in
let mp' = MPdot (mp,lab) in
let new_mb = strengthen_and_subst_module_body new_mb mp' false in
let new_mb' =
{ new_mb with
mod_mp = mp';
mod_expr = Algebraic (MENoFunctor (MEident new_mp));
}
in
let new_reso = add_delta_resolver reso new_mb.mod_delta in
(* we propagate the new equality in the rest of the signature
with the identity substitution accompanied by the new resolver*)
let id_subst = map_mp mp' mp' new_mb.mod_delta in
let new_after = subst_structure id_subst after in
before@(lab,SFBmodule new_mb')::new_after, new_reso, cst
else
(* Module definition of a sub-module *)
let mp' = MPdot (mp,lab) in
let old = match spec with
| SFBmodule msb -> msb
| _ -> error_not_a_module_label lab
in
begin match old.mod_expr with
| Abstract ->
let struc = destr_nofunctor mp' old.mod_type in
let struc',reso',cst =
check_with_mod (cst, ustate) env' struc (idl,new_mp) mp' old.mod_delta
in
let new_mb =
{ old with
mod_type = NoFunctor struc';
mod_type_alg = None;
mod_delta = reso' }
in
let new_reso = add_delta_resolver reso reso' in
let id_subst = map_mp mp' mp' reso' in
let new_after = subst_structure id_subst after in
before@(lab,SFBmodule new_mb)::new_after, new_reso, cst
| Algebraic (MENoFunctor (MEident mp0)) ->
let mpnew = rebuild_mp mp0 idl in
check_modpath_equiv env' mpnew mp;
before@(lab,spec)::after, reso, cst
| _ -> error_generative_module_expected lab
end
with
| Not_found -> error_no_such_label lab mp
type 'a vm_handler = { vm_handler : env -> universes -> Constr.t -> 'a -> 'a * Vmlibrary.indirect_code option }
type 'a vm_state = 'a * 'a vm_handler
let check_with ustate vmstate env mp (sign,reso,cst,vm) = function
| WithDef(idl, (c, ctx)) ->
let struc = destr_nofunctor mp sign in
let univs = match ctx with None -> Monomorphic | Some uctx -> Polymorphic uctx in
let vm, bcode = vmstate.vm_handler env univs c vm in
let body = { w_def = c; w_univs = univs; w_bytecode = bcode } in
let struc', cst = check_with_def (cst, ustate) env struc (idl, body) mp reso in
NoFunctor struc', reso, cst, vm
| WithMod(idl,new_mp) ->
let struc = destr_nofunctor mp sign in
let struc',reso',cst = check_with_mod (cst, ustate) env struc (idl,new_mp) mp reso in
NoFunctor struc', reso', cst, vm
let check_with_alg ustate vmstate env mp (sign, alg, reso, cst, vm) wd =
let struc, reso, cst, vm = check_with ustate vmstate env mp (sign, reso, cst, vm) wd in
struc, MEwith (alg, wd), reso, cst, vm
let translate_apply ustate env inl (sign,alg,reso,cst,vm) mp1 mkalg =
let farg_id, farg_b, fbody_b = destr_functor sign in
let mtb = module_type_of_module (lookup_module mp1 env) in
let cst = Subtyping.check_subtypes (cst, ustate) env mtb farg_b in
let mp_delta = discr_resolver mtb in
let mp_delta = inline_delta_resolver env inl mp1 farg_id farg_b mp_delta in
let subst = map_mbid farg_id mp1 mp_delta in
let body = subst_signature subst fbody_b in
let alg' = mkalg alg mp1 in
let reso' = subst_codom_delta_resolver subst reso in
body, alg', reso', cst, vm
(** Translation of a module struct entry :
- We translate to a module when a [module_path] is given,
otherwise to a module type.
- The first output is the expanded signature
- The second output is the algebraic expression, kept for the extraction.
*)
let mk_alg_app alg arg = MEapply (alg,arg)
let rec translate_mse (cst, ustate) (vm, vmstate) env mpo inl = function
| MEident mp1 as me ->
let mb = match mpo with
| Some mp -> strengthen_and_subst_module_body (lookup_module mp1 env) mp false
| None ->
let mt = lookup_modtype mp1 env in
module_body_of_type mt.mod_mp mt
in
mb.mod_type, me, mb.mod_delta, cst, vm
| MEapply (fe,mp1) ->
translate_apply ustate env inl (translate_mse (cst, ustate) (vm, vmstate) env mpo inl fe) mp1 mk_alg_app
| MEwith(me, with_decl) ->
assert (Option.is_empty mpo); (* No 'with' syntax for modules *)
let mp = mp_from_mexpr me in
check_with_alg ustate vmstate env mp (translate_mse (cst, ustate) (vm, vmstate) env None inl me) with_decl
let mk_mod mp e ty reso =
{ mod_mp = mp;
mod_expr = e;
mod_type = ty;
mod_type_alg = None;
mod_delta = reso;
mod_retroknowledge = ModBodyRK []; }
let mk_modtype mp ty reso =
let mb = mk_mod mp Abstract ty reso in
{ mb with mod_expr = (); mod_retroknowledge = ModTypeRK }
let rec translate_mse_funct (cst, ustate) (vm, vmstate) env ~is_mod mp inl mse = function
| [] ->
let sign,alg,reso,cst,vm = translate_mse (cst, ustate) (vm, vmstate) env (if is_mod then Some mp else None) inl mse in
let sign,reso =
if is_mod then sign,reso
else subst_modtype_signature_and_resolver (mp_from_mexpr mse) mp sign reso in
sign, MENoFunctor alg, reso, cst, vm
| (mbid, ty, ty_inl) :: params ->
let mp_id = MPbound mbid in
let mtb, cst, vm = translate_modtype (cst, ustate) (vm, vmstate) env mp_id ty_inl ([],ty) in
let env' = add_module_type mp_id mtb env in
let sign,alg,reso,cst,vm = translate_mse_funct (cst, ustate) (vm, vmstate) env' ~is_mod mp inl mse params in
let alg' = MEMoreFunctor alg in
MoreFunctor (mbid, mtb, sign), alg',reso, cst, vm
and translate_modtype state vmstate env mp inl (params,mte) =
let sign,alg,reso,cst,vm = translate_mse_funct state vmstate env ~is_mod:false mp inl mte params in
let mtb = mk_modtype mp sign reso in
{ mtb with mod_type_alg = Some alg }, cst, vm
(** [finalize_module] :
from an already-translated (or interactive) implementation and
an (optional) signature entry, produces a final [module_body] *)
let finalize_module_alg (cst, ustate) (vm, vmstate) env mp (sign,alg,reso) restype = match restype with
| None ->
let impl = match alg with Some e -> Algebraic e | None -> FullStruct in
mk_mod mp impl sign reso, cst, vm
| Some (params_mte,inl) ->
let res_mtb, cst, vm = translate_modtype (cst, ustate) (vm, vmstate) env mp inl params_mte in
let auto_mtb = mk_modtype mp sign reso in
let cst = Subtyping.check_subtypes (cst, ustate) env auto_mtb res_mtb in
let impl = match alg with
| Some e -> Algebraic e
| None ->
let sign = match sign with
| NoFunctor s -> s
| MoreFunctor _ -> assert false (* All non-algebraic callers enforce this *)
in
Struct sign
in
{ res_mtb with
mod_mp = mp;
mod_expr = impl;
mod_retroknowledge = ModBodyRK [];
},
(** constraints from module body typing + subtyping + module type. *)
cst,
vm
let finalize_module univs vm env mp (sign, reso) typ =
finalize_module_alg univs vm env mp (sign, None, reso) typ
let translate_module (cst, ustate) (vm, vmstate) env mp inl = function
| MType (params,ty) ->
let mtb, cst, vm = translate_modtype (cst, ustate) (vm, vmstate) env mp inl (params,ty) in
module_body_of_type mp mtb, cst, vm
| MExpr (params,mse,oty) ->
let (sg,alg,reso,cst,vm) = translate_mse_funct (cst, ustate) (vm, vmstate) env ~is_mod:true mp inl mse params in
let restype = Option.map (fun ty -> ((params,ty),inl)) oty in
finalize_module_alg (cst, ustate) (vm, vmstate) env mp (sg,Some alg,reso) restype
(** We now forbid any Include of functors with restricted signatures.
Otherwise, we could end with the creation of undesired axioms
(see #3746). Note that restricted non-functorized modules are ok,
thanks to strengthening. *)
let rec unfunct = function
| MENoFunctor me -> me
| MEMoreFunctor me -> unfunct me
let rec forbid_incl_signed_functor env = function
| MEapply(fe,_) -> forbid_incl_signed_functor env fe
| MEwith _ -> assert false (* No 'with' syntax for modules *)
| MEident mp1 ->
let mb = lookup_module mp1 env in
match mb.mod_type, mb.mod_type_alg, mb.mod_expr with
| MoreFunctor _, Some _, _ ->
(* functor + restricted signature = error *)
error_include_restricted_functor mp1
| MoreFunctor _, None, Algebraic me ->
(* functor, no signature yet, a definition which may be restricted *)
forbid_incl_signed_functor env (unfunct me)
| _ -> ()
let rec translate_mse_include_module (cst, ustate) (vm, vmstate) env mp inl = function
| MEident mp1 ->
let mb = strengthen_and_subst_module_body (lookup_module mp1 env) mp true in
let sign = clean_bounded_mod_expr mb.mod_type in
sign,(),mb.mod_delta,cst,vm
| MEapply (fe,arg) ->
let ftrans = translate_mse_include_module (cst, ustate) (vm, vmstate) env mp inl fe in
translate_apply ustate env inl ftrans arg (fun _ _ -> ())
| MEwith _ -> assert false (* No 'with' syntax for modules *)
let translate_mse_include is_mod (cst, ustate) (vm, vmstate) env mp inl me =
if is_mod then
let () = forbid_incl_signed_functor env me in
translate_mse_include_module (cst, ustate) (vm, vmstate) env mp inl me
else
let mtb, cst, vm = translate_modtype (cst, ustate) (vm, vmstate) env mp inl ([],me) in
let sign = clean_bounded_mod_expr mtb.mod_type in
sign, (), mtb.mod_delta, cst, vm
|