1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open CErrors
open Util
open Names
open Univ
open Term
open Constr
open Context
open Vars
open Declarations
open Environ
open Conversion
open Inductive
open Type_errors
module RelDecl = Context.Rel.Declaration
module NamedDecl = Context.Named.Declaration
exception NotConvertible
exception NotConvertibleVect of int
let conv_leq env x y = default_conv CUMUL env x y
let conv_leq_vecti env v1 v2 =
Array.fold_left2_i
(fun i _ t1 t2 ->
match conv_leq env t1 t2 with
| Result.Ok () -> ()
| Result.Error () -> raise (NotConvertibleVect i))
()
v1
v2
let check_constraints cst env =
if Environ.check_constraints cst env then ()
else error_unsatisfied_constraints env cst
let check_qconstraints qcst env =
if Sorts.QConstraints.trivial qcst then ()
else error_unsatisfied_qconstraints env qcst
(* This should be a type (a priori without intention to be an assumption) *)
let check_type env c t =
match kind(Reduction.whd_all env t) with
| Sort s -> s
| _ -> error_not_type env (make_judge c t)
(* This should be a type intended to be assumed. The error message is
not as useful as for [type_judgment]. *)
let infer_assumption env t ty =
try
let s = check_type env t ty in
Sorts.relevance_of_sort s
with TypeError _ ->
error_assumption env (make_judge t ty)
type ('constr,'types,'r) bad_relevance =
| BadRelevanceBinder of 'r * ('constr,'types,'r) Context.Rel.Declaration.pt
| BadRelevanceCase of 'r * 'constr
let warn_bad_relevance_name = "bad-relevance"
let bad_relevance_warning =
CWarnings.create_warning ~name:warn_bad_relevance_name ~default:CWarnings.AsError ()
let bad_relevance_msg = CWarnings.create_msg bad_relevance_warning ()
let default_print_bad_relevance = function
| BadRelevanceCase _ -> Pp.str "Bad relevance in case annotation."
| BadRelevanceBinder (_, na) ->
Pp.(str "Bad relevance for binder " ++ Name.print (RelDecl.get_name na) ++ str ".")
(* used eg in the checker *)
let () = CWarnings.register_printer bad_relevance_msg
(fun (_env,b) -> default_print_bad_relevance b)
let warn_bad_relevance_case ?loc env rlv case =
match CWarnings.warning_status bad_relevance_warning with
| CWarnings.Disabled | CWarnings.Enabled ->
CWarnings.warn bad_relevance_msg ?loc (env, BadRelevanceCase (rlv, mkCase case))
| CWarnings.AsError ->
error_bad_case_relevance env rlv case
let warn_bad_relevance_binder ?loc env rlv bnd =
match CWarnings.warning_status bad_relevance_warning with
| CWarnings.Disabled | CWarnings.Enabled ->
CWarnings.warn bad_relevance_msg ?loc (env, BadRelevanceBinder (rlv, bnd))
| CWarnings.AsError ->
error_bad_binder_relevance env rlv bnd
let check_assumption env x t ty =
let r = x.binder_relevance in
let r' = infer_assumption env t ty in
let x =
if Sorts.relevance_equal r r' then x
else
let () = warn_bad_relevance_binder env r' (RelDecl.LocalAssum (x, t)) in
{x with binder_relevance = r'}
in
x
let check_binding_relevance na1 na2 =
(* Since we know statically the relevance here, we are stricter *)
assert (Sorts.relevance_equal (binder_relevance na1) (binder_relevance na2))
let esubst u s c =
Vars.esubst Vars.lift_substituend s (subst_instance_constr u c)
exception ArgumentsMismatch
let instantiate_context u subst nas ctx =
let open Context.Rel.Declaration in
let instantiate_relevance na =
{ na with binder_relevance = UVars.subst_instance_relevance u na.binder_relevance }
in
let rec instantiate i ctx = match ctx with
| [] -> if 0 <= i then raise ArgumentsMismatch else []
| LocalAssum (na, ty) :: ctx ->
let ctx = instantiate (pred i) ctx in
let subst = Esubst.subs_liftn i subst in
let na = instantiate_relevance na in
let ty = esubst u subst ty in
let () = check_binding_relevance na nas.(i) in
LocalAssum (nas.(i), ty) :: ctx
| LocalDef (na, ty, bdy) :: ctx ->
let ctx = instantiate (pred i) ctx in
let subst = Esubst.subs_liftn i subst in
let na = instantiate_relevance na in
let ty = esubst u subst ty in
let bdy = esubst u subst bdy in
let () = check_binding_relevance na nas.(i) in
LocalDef (nas.(i), ty, bdy) :: ctx
in
instantiate (Array.length nas - 1) ctx
(************************************************)
(* Incremental typing rules: builds a typing judgment given the *)
(* judgments for the subterms. *)
(*s Type of sorts *)
(* Prop and Set *)
let type1 = mkSort Sorts.type1
(* Type of Type(i). *)
let type_of_type u =
let uu = Universe.super u in
mkType uu
let type_of_sort = function
| SProp | Prop | Set -> type1
| Type u -> type_of_type u
| QSort (_, u) -> type_of_type u
(*s Type of a de Bruijn index. *)
let type_of_relative env n =
try
env |> lookup_rel n |> RelDecl.get_type |> lift n
with Not_found ->
error_unbound_rel env n
(* Type of variables *)
let type_of_variable env id =
try named_type id env
with Not_found ->
error_unbound_var env id
(* Management of context of variables. *)
(* Checks if a context of variables can be instantiated by the
variables of the current env.
Order does not have to be checked assuming that all names are distinct *)
let check_hyps_inclusion env ?evars c sign =
let conv env a b = conv env ?evars a b in
Context.Named.fold_outside
(fun d1 () ->
let open Context.Named.Declaration in
let id = NamedDecl.get_id d1 in
try
let d2 = lookup_named id env in
let () = match conv env (get_type d2) (get_type d1) with
| Result.Ok () -> ()
| Result.Error () -> raise NotConvertible
in
(match d2,d1 with
| LocalAssum _, LocalAssum _ -> ()
| LocalAssum _, LocalDef _ ->
(* This is wrong, because we don't know if the body is
needed or not for typechecking: *) ()
| LocalDef _, LocalAssum _ -> raise NotConvertible
| LocalDef (_,b2,_), LocalDef (_,b1,_) ->
match conv env b2 b1 with
| Result.Ok () -> ()
| Result.Error () -> raise NotConvertible);
with Not_found | NotConvertible | Option.Heterogeneous ->
error_reference_variables env id c)
sign
~init:()
(* Instantiation of terms on real arguments. *)
(* Make a type polymorphic if an arity *)
(* Type of constants *)
let type_of_constant env (kn,_u as cst) =
let cb = lookup_constant kn env in
let () = check_hyps_inclusion env (GlobRef.ConstRef kn) cb.const_hyps in
let ty, cu = constant_type env cst in
let () = check_constraints cu env in
ty
let type_of_constant_in env (kn,_u as cst) =
let cb = lookup_constant kn env in
let () = check_hyps_inclusion env (GlobRef.ConstRef kn) cb.const_hyps in
constant_type_in env cst
(* Type of a lambda-abstraction. *)
(* [judge_of_abstraction env name var j] implements the rule
env, name:typ |- j.uj_val:j.uj_type env, |- (name:typ)j.uj_type : s
-----------------------------------------------------------------------
env |- [name:typ]j.uj_val : (name:typ)j.uj_type
Since all products are defined in the Calculus of Inductive Constructions
and no upper constraint exists on the sort $s$, we don't need to compute $s$
*)
let type_of_abstraction _env name var ty =
mkProd (name, var, ty)
(* Type of an application. *)
let make_judgev c t =
Array.map2 make_judge c t
let rec check_empty_stack = function
| [] -> true
| CClosure.Zupdate _ :: s -> check_empty_stack s
| _ -> false
let type_of_apply env func funt argsv argstv =
let open CClosure in
let len = Array.length argsv in
let infos = create_clos_infos RedFlags.all env in
let tab = create_tab () in
let rec apply_rec i typ =
if Int.equal i len then term_of_fconstr typ
else
let typ, stk = whd_stack infos tab typ [] in
(** The return stack is known to be empty *)
let () = assert (check_empty_stack stk) in
match fterm_of typ with
| FProd (_, c1, c2, e) ->
let arg = argsv.(i) in
let argt = argstv.(i) in
let c1 = term_of_fconstr c1 in
begin match conv_leq env argt c1 with
| Result.Ok () -> apply_rec (i+1) (mk_clos (CClosure.usubs_cons (inject arg) e) c2)
| Result.Error () ->
error_cant_apply_bad_type env
(i+1,c1,argt)
(make_judge func funt)
(make_judgev argsv argstv)
end
| _ ->
error_cant_apply_not_functional env
(make_judge func funt)
(make_judgev argsv argstv)
in
apply_rec 0 (inject funt)
(* Checks that an array of terms has the type of a telescope. We assume that all
inputs are well-typed separately. *)
let type_of_parameters env ctx u argsv argstv =
let open Context.Rel.Declaration in
let ctx = List.rev ctx in
let rec apply_rec i subst ctx = match ctx with
| [] -> if Int.equal i (Array.length argsv) then subst else raise ArgumentsMismatch
| LocalAssum (_, t) :: ctx ->
let arg = argsv.(i) in
let argt = argstv.(i) in
let t = esubst u subst t in
begin match conv_leq env argt t with
| Result.Ok () -> apply_rec (i + 1) (Esubst.subs_cons (Vars.make_substituend arg) subst) ctx
| Result.Error () ->
error_actual_type env (make_judge arg argt) t
end
| LocalDef (_, b, _) :: ctx ->
let b = esubst u subst b in
apply_rec i (Esubst.subs_cons (Vars.make_substituend b) subst) ctx
in
apply_rec 0 (Esubst.subs_id 0) ctx
(* Type of primitive constructs *)
let type_of_prim_type _env u (type a) (prim : a CPrimitives.prim_type) = match prim with
| CPrimitives.PT_int63 ->
assert (UVars.Instance.is_empty u);
Constr.mkSet
| CPrimitives.PT_float64 ->
assert (UVars.Instance.is_empty u);
Constr.mkSet
| CPrimitives.PT_string ->
assert (UVars.Instance.is_empty u);
Constr.mkSet
| CPrimitives.PT_array ->
begin match UVars.Instance.to_array u with
| [||], [|u|] ->
let ty = Constr.mkType (Univ.Universe.make u) in
Constr.mkProd(Context.anonR, ty , ty)
| _ -> anomaly Pp.(str"universe instance for array type should have length 1")
end
let type_of_int env =
match env.retroknowledge.Retroknowledge.retro_int63 with
| Some c -> UnsafeMonomorphic.mkConst c
| None -> CErrors.user_err Pp.(str"The type int must be registered before this construction can be typechecked.")
let type_of_float env =
match env.retroknowledge.Retroknowledge.retro_float64 with
| Some c -> UnsafeMonomorphic.mkConst c
| None -> CErrors.user_err Pp.(str"The type float must be registered before this construction can be typechecked.")
let type_of_string env =
match env.retroknowledge.Retroknowledge.retro_string with
| Some c -> UnsafeMonomorphic.mkConst c
| None -> CErrors.user_err Pp.(str"The type string must be registered before this construction can be typechecked.")
let type_of_array env u =
assert (UVars.Instance.length u = (0,1));
match env.retroknowledge.Retroknowledge.retro_array with
| Some c -> mkConstU (c,u)
| None -> CErrors.user_err Pp.(str"The type array must be registered before this construction can be typechecked.")
(* Type of product *)
let sort_of_product env domsort rangsort =
match (domsort, rangsort) with
| (_, SProp) | (SProp, _) -> rangsort
(* Product rule (s,Prop,Prop) *)
| (_, Prop) -> rangsort
(* Product rule (Prop/Set,Set,Set) *)
| ((Prop | Set), Set) -> rangsort
(* Product rule (Type,Set,?) *)
| ((Type u1 | QSort (_, u1)), Set) ->
if is_impredicative_set env then
(* Rule is (Type,Set,Set) in the Set-impredicative calculus *)
rangsort
else
(* Rule is (Type_i,Set,Type_i) in the Set-predicative calculus *)
Sorts.sort_of_univ (Universe.sup Universe.type0 u1)
(* Product rule (Prop,Type_i,Type_i) *)
| (Set, Type u2) -> Sorts.sort_of_univ (Universe.sup Universe.type0 u2)
| (Set, QSort (q, u2)) ->
Sorts.qsort q (Universe.sup Universe.type0 u2)
(* Product rule (Prop,Type_i,Type_i) *)
| (Prop, (Type _ | QSort _)) -> rangsort
(* Product rule (Type_i,Type_i,Type_i) *)
| ((Type u1 | QSort (_, u1)), Type u2) -> Sorts.sort_of_univ (Universe.sup u1 u2)
| ((Type u1 | QSort (_, u1)), (QSort (q, u2))) ->
Sorts.qsort q (Universe.sup u1 u2)
(* [judge_of_product env name (typ1,s1) (typ2,s2)] implements the rule
env |- typ1:s1 env, name:typ1 |- typ2 : s2
-------------------------------------------------------------------------
s' >= (s1,s2), env |- (name:typ)j.uj_val : s'
where j.uj_type is convertible to a sort s2
*)
let type_of_product env _name s1 s2 =
let s = sort_of_product env s1 s2 in
mkSort s
(* Type of a type cast *)
(* [judge_of_cast env (c,typ1) (typ2,s)] implements the rule
env |- c:typ1 env |- typ2:s env |- typ1 <= typ2
---------------------------------------------------------------------
env |- c:typ2
*)
let check_cast env c ct k expected_type =
let ans = match k with
| VMcast ->
Vconv.vm_conv CUMUL env ct expected_type
| DEFAULTcast ->
default_conv CUMUL env ct expected_type
| NATIVEcast ->
let sigma = Genlambda.empty_evars env in
Nativeconv.native_conv CUMUL sigma env ct expected_type
in
match ans with
| Result.Ok () -> ()
| Result.Error () ->
error_actual_type env (make_judge c ct) expected_type
let judge_of_int env i =
make_judge (Constr.mkInt i) (type_of_int env)
let judge_of_float env f =
make_judge (Constr.mkFloat f) (type_of_float env)
let judge_of_string env s =
make_judge (Constr.mkString s) (type_of_string env)
let judge_of_array env u tj defj =
let def = defj.uj_val in
let ty = defj.uj_type in
Array.iter (fun j -> check_cast env j.uj_val j.uj_type DEFAULTcast ty) tj;
make_judge (mkArray(u, Array.map j_val tj, def, ty)) (mkApp (type_of_array env u, [|ty|]))
(* Inductive types. *)
(* The type is parametric over the uniform parameters whose conclusion
is in Type; to enforce the internal constraints between the
parameters and the instances of Type occurring in the type of the
constructors, we use the level variables _statically_ assigned to
the conclusions of the parameters as mediators: e.g. if a parameter
has conclusion Type(alpha), static constraints of the form alpha<=v
exist between alpha and the Type's occurring in the constructor
types; when the parameters is finally instantiated by a term of
conclusion Type(u), then the constraints u<=alpha is computed in
the App case of execute; from this constraints, the expected
dynamic constraints of the form u<=v are enforced *)
let make_param_univs env indu spec args argtys =
Array.to_list @@ Array.mapi (fun i argt ~expected ->
match (snd (Reduction.dest_arity env argt)) with
| SProp | exception Reduction.NotArity ->
Type_errors.error_cant_apply_bad_type env
(i+1, mkType (Universe.make expected), argt)
(make_judge (mkIndU indu) (Inductive.type_of_inductive (spec, snd indu)))
(make_judgev args argtys)
| Prop -> TemplateProp
| Set -> TemplateUniv Universe.type0
| Type u -> TemplateUniv u
| QSort _ -> assert false)
argtys
let type_of_inductive_knowing_parameters env (ind,u as indu) args argst =
let (mib,_mip) as spec = lookup_mind_specif env ind in
check_hyps_inclusion env (GlobRef.IndRef ind) mib.mind_hyps;
let t,cst = Inductive.constrained_type_of_inductive_knowing_parameters
(spec,u) (make_param_univs env indu spec args argst)
in
check_constraints cst env;
t
let type_of_inductive env (ind,u) =
let (mib,mip) = lookup_mind_specif env ind in
check_hyps_inclusion env (GlobRef.IndRef ind) mib.mind_hyps;
let t,cst = Inductive.constrained_type_of_inductive ((mib,mip),u) in
check_constraints cst env;
t
(* Constructors. *)
let type_of_constructor env (c,_u as cu) =
let (mib, _ as specif) = lookup_mind_specif env (inductive_of_constructor c) in
let () = check_hyps_inclusion env (GlobRef.ConstructRef c) mib.mind_hyps in
let t,cst = constrained_type_of_constructor cu specif in
let () = check_constraints cst env in
t
(* Case. *)
exception NotConvertibleBranch of int * rel_context * types * types
let check_branch_types env (_mib, mip) ci u pms c _ct lft (pctx, p) =
let open Context.Rel.Declaration in
let rec instantiate ctx args subst = match ctx, args with
| [], [] -> subst
| LocalAssum _ :: ctx, a :: args ->
let subst = Esubst.subs_cons (Vars.make_substituend a) subst in
instantiate ctx args subst
| LocalDef (_, a, _) :: ctx, args ->
let a = Vars.esubst Vars.lift_substituend subst a in
let subst = Esubst.subs_cons (Vars.make_substituend a) subst in
instantiate ctx args subst
| _ -> assert false
in
let iter i (brctx, brt, constrty) =
let brenv = push_rel_context brctx env in
let nargs = List.length brctx in
let pms = Array.map (fun c -> lift nargs c) pms in
let cargs = Context.Rel.instance mkRel 0 brctx in
let cstr = mkApp (mkConstructU ((ci.ci_ind, i + 1), u), Array.append pms cargs) in
let (_, retargs) = find_rectype brenv constrty in
let indices = List.lastn mip.mind_nrealargs retargs in
let subst = instantiate (List.rev pctx) (indices @ [cstr]) (Esubst.subs_shft (nargs, Esubst.subs_id 0)) in
let expbrt = Vars.esubst Vars.lift_substituend subst p in
match conv_leq brenv brt expbrt with
| Result.Ok () -> ()
| Result.Error () -> raise (NotConvertibleBranch (i, brctx, brt, expbrt))
in
try Array.iteri iter lft
with NotConvertibleBranch (i, brctx, brt, expbrt) ->
let brt = it_mkLambda_or_LetIn brt brctx in
let expbrt = it_mkLambda_or_LetIn expbrt brctx in
error_ill_formed_branch env c ((ci.ci_ind, i + 1), u) brt expbrt
let should_invert_case env r ci =
Sorts.relevance_equal r Sorts.Relevant &&
let mib,mip = lookup_mind_specif env ci.ci_ind in
Sorts.relevance_equal mip.mind_relevance Sorts.Irrelevant &&
(* NB: it's possible to have 2 ctors or arguments to 1 ctor by unsetting univ checks
but we don't do special reduction in such cases
XXX Someday consider more carefully what happens with letin params and arguments
(currently they're squashed, see indtyping)
*)
match Array.length mip.mind_nf_lc with
| 0 -> true
| 1 ->
List.length (fst mip.mind_nf_lc.(0)) = List.length mib.mind_params_ctxt
| _ -> false
let type_case_scrutinee env (mib, _mip) (u', largs) u pms (pctx, p) c =
let (params, realargs) = List.chop mib.mind_nparams largs in
(* Check that the type of the scrutinee is <= the expected argument type *)
let iter p1 p2 = match Conversion.conv ~l2r:true env p1 p2 with
| Result.Ok () -> ()
| Result.Error () -> raise NotConvertible
in
let () = try Array.iter2 iter (Array.of_list params) pms
with NotConvertible -> raise Type_errors.(TypeError (env,IllFormedCaseParams))
in
(* We use l2r:true for compat with old versions which used CONV with arguments
flipped. It is relevant for performance eg in bedrock / Kami. *)
let qcst, ucst = match mib.mind_variance with
| None -> UVars.enforce_eq_instances u u' Sorts.QUConstraints.empty
| Some variance -> UVars.enforce_leq_variance_instances variance u' u Sorts.QUConstraints.empty
in
let () = check_qconstraints qcst env in
let () = check_constraints ucst env in
let subst = Vars.subst_of_rel_context_instance_list pctx (realargs @ [c]) in
Vars.substl subst p
let type_of_case env (mib, mip as specif) ci u pms (pctx, pnas, p, rp, pt) iv c ct lf lft =
let ((ind, u'), largs) =
try find_rectype env ct
with Not_found -> error_case_not_inductive env (make_judge c ct) in
(* Various well-formedness conditions *)
let () = if Inductive.is_private specif then error_case_on_private_ind env ind in
let sp = match destSort (Reduction.whd_all (push_rel_context pctx env) pt) with
| sp -> sp
| exception DestKO ->
error_elim_arity env (ind, u') c None
in
let rp =
let expected = Sorts.relevance_of_sort sp in
if Sorts.relevance_equal rp expected then rp
else
let () = warn_bad_relevance_case env expected (ci, u, pms, ((pnas, p), rp), iv, c, lf) in
expected
in
let () = check_case_info env (ind, u') ci in
let () =
let is_inversion = match iv with
| NoInvert -> false
| CaseInvert _ -> true (* contents already checked *)
in
if not (is_inversion = should_invert_case env rp ci)
then error_bad_invert env
in
let () = if not (is_allowed_elimination (specif,u) sp) then begin
let kinds = Some sp in
error_elim_arity env (ind, u') c kinds
end
in
(* Check that the scrutinee has the right type *)
let rslty = type_case_scrutinee env (mib, mip) (u', largs) u pms (pctx, p) c in
(* We return the "higher" inductive universe instance from the predicate,
the branches must be typeable using these universes. *)
let () = check_branch_types env (mib, mip) ci u pms c ct lft (pctx, p) in
rp, rslty
let type_of_projection env p c ct =
let pr, pty = lookup_projection p env in
let (ind,u), args =
try find_rectype env ct
with Not_found -> error_case_not_inductive env (make_judge c ct)
in
assert(Ind.CanOrd.equal (Projection.inductive p) ind);
let pr = UVars.subst_instance_relevance u pr in
let ty = Vars.subst_instance_constr u pty in
pr, substl (c :: CList.rev args) ty
(* Fixpoints. *)
(* Checks the type of a general (co)fixpoint, i.e. without checking *)
(* the specific guard condition. *)
let check_fixpoint env lna lar vdef vdeft =
let lt = Array.length vdeft in
assert (Int.equal (Array.length lar) lt);
try
conv_leq_vecti env vdeft (Array.map (fun ty -> lift lt ty) lar)
with NotConvertibleVect i ->
error_ill_typed_rec_body env i lna (make_judgev vdef vdeft) lar
(* Global references *)
let type_of_global_in_context env r =
let open Names.GlobRef in
match r with
| VarRef id -> Environ.named_type id env, UVars.AbstractContext.empty
| ConstRef c ->
let cb = Environ.lookup_constant c env in
let univs = Declareops.constant_polymorphic_context cb in
cb.Declarations.const_type, univs
| IndRef ind ->
let (mib,_ as specif) = Inductive.lookup_mind_specif env ind in
let univs = Declareops.inductive_polymorphic_context mib in
let inst = UVars.make_abstract_instance univs in
Inductive.type_of_inductive (specif, inst), univs
| ConstructRef cstr ->
let (mib,_ as specif) =
Inductive.lookup_mind_specif env (inductive_of_constructor cstr)
in
let univs = Declareops.inductive_polymorphic_context mib in
let inst = UVars.make_abstract_instance univs in
Inductive.type_of_constructor (cstr,inst) specif, univs
(************************************************************************)
(************************************************************************)
let check_assum_annot env s x t =
let r = x.binder_relevance in
let r' = Sorts.relevance_of_sort s in
if Sorts.relevance_equal r' r
then x
else
let () = warn_bad_relevance_binder env r' (RelDecl.LocalAssum (x, t)) in
{x with binder_relevance = r'}
let check_let_annot env s x c t =
let r = x.binder_relevance in
let r' = Sorts.relevance_of_sort s in
if Sorts.relevance_equal r' r
then x
else
let () = warn_bad_relevance_binder env r' (RelDecl.LocalDef (x, c, t)) in
{x with binder_relevance = r'}
(* The typing machine. *)
(* ATTENTION : faudra faire le typage du contexte des Const,
Ind et Constructsi un jour cela devient des constructions
arbitraires et non plus des variables *)
let rec execute env cstr =
let open Context.Rel.Declaration in
match kind cstr with
(* Atomic terms *)
| Sort s ->
let () = match s with
| SProp -> if not (Environ.sprop_allowed env) then error_disallowed_sprop env
| QSort _ | Prop | Set | Type _ -> ()
in
cstr, type_of_sort s
| Rel n ->
cstr, type_of_relative env n
| Var id ->
cstr, type_of_variable env id
| Const c ->
cstr, type_of_constant env c
| Proj (p, r, c) ->
let c', ct = execute env c in
let r', ty = type_of_projection env p c' ct in
assert (Sorts.relevance_equal r r');
let cstr = if c == c' then cstr else mkProj (p,r,c') in
cstr, ty
(* Lambda calculus operators *)
| App (f,args) ->
let args', argst = execute_array env args in
let f', ft =
match kind f with
| Ind ind when Environ.template_polymorphic_pind ind env ->
f, type_of_inductive_knowing_parameters env ind args' argst
| _ ->
(* No template polymorphism *)
execute env f
in
let cstr = if f == f' && args == args' then cstr else mkApp (f',args') in
cstr, type_of_apply env f' ft args' argst
| Lambda (name,c1,c2) ->
let c1', s = execute_is_type env c1 in
let name' = check_assum_annot env s name c1' in
let env1 = push_rel (LocalAssum (name',c1')) env in
let c2', c2t = execute env1 c2 in
let cstr = if name == name' && c1 == c1' && c2 == c2' then cstr else mkLambda(name',c1',c2') in
cstr, type_of_abstraction env name' c1 c2t
| Prod (name,c1,c2) ->
let c1', vars = execute_is_type env c1 in
let name' = check_assum_annot env vars name c1' in
let env1 = push_rel (LocalAssum (name',c1')) env in
let c2', vars' = execute_is_type env1 c2 in
let cstr = if name == name' && c1 == c1' && c2 == c2' then cstr else mkProd(name',c1',c2') in
cstr, type_of_product env name' vars vars'
| LetIn (name,c1,c2,c3) ->
let c1', c1t = execute env c1 in
let c2', c2s = execute_is_type env c2 in
let name' = check_let_annot env c2s name c1' c2' in
let () = check_cast env c1' c1t DEFAULTcast c2' in
let env1 = push_rel (LocalDef (name',c1',c2')) env in
let c3', c3t = execute env1 c3 in
let cstr = if name == name' && c1 == c1' && c2 == c2' && c3 == c3' then cstr
else mkLetIn(name',c1',c2',c3')
in
cstr, subst1 c1 c3t
| Cast (c,k,t) ->
let c', ct = execute env c in
let t', _ts = execute_is_type env t in
let () = check_cast env c' ct k t' in
let cstr = if c == c' && t == t' then cstr else mkCast(c',k,t') in
cstr, t'
(* Inductive types *)
| Ind ind ->
cstr, type_of_inductive env ind
| Construct c ->
cstr, type_of_constructor env c
| Case (ci, u, pms, (p,rp), iv, c, lf) ->
let c', ct = execute env c in
let iv' = match iv with
| NoInvert -> NoInvert
| CaseInvert {indices} ->
let args = Array.append pms indices in
let ct' = mkApp (mkIndU (ci.ci_ind,u), args) in
let (ct', _) : constr * Sorts.t = execute_is_type env ct' in
let () = match conv_leq env ct ct' with
| Result.Ok () -> ()
| Result.Error () -> error_bad_invert env (* TODO: more informative message *)
in
let _, args' = decompose_app ct' in
if args == args' then iv
else CaseInvert {indices=Array.sub args' (Array.length pms) (Array.length indices)}
in
let mib, mip = Inductive.lookup_mind_specif env ci.ci_ind in
let cst = Inductive.instantiate_inductive_constraints mib u in
let () = check_constraints cst env in
let pms', pmst = execute_array env pms in
let paramsubst =
try type_of_parameters env mib.mind_params_ctxt u pms' pmst
with ArgumentsMismatch -> error_elim_arity env (ci.ci_ind, u) c' None
in
let (pctx, p', pt) =
let (nas, p) = p in
let realdecls, _ = List.chop mip.mind_nrealdecls mip.mind_arity_ctxt in
let self =
let args = Context.Rel.instance mkRel 0 mip.mind_arity_ctxt in
let inst = UVars.Instance.(abstract_instance (length u)) in
mkApp (mkIndU (ci.ci_ind, inst), args)
in
let realdecls = LocalAssum (Context.make_annot Anonymous mip.mind_relevance, self) :: realdecls in
let realdecls =
try instantiate_context u paramsubst nas realdecls
with ArgumentsMismatch -> error_elim_arity env (ci.ci_ind, u) c' None
in
let p_env = Environ.push_rel_context realdecls env in
let p', pt = execute p_env p in
(realdecls, p', pt)
in
let () =
let nbranches = Array.length mip.mind_nf_lc in
if not (Int.equal (Array.length lf) nbranches) then
error_number_branches env (make_judge c ct) nbranches
in
let lft = Array.make (Array.length lf) ([], mkProp, mkProp) in
let build_one_branch i (nas, br as b) =
let (ctx, cty) = mip.mind_nf_lc.(i) in
let ctx, _ = List.chop mip.mind_consnrealdecls.(i) ctx in
let ctx =
try instantiate_context u paramsubst nas ctx
with ArgumentsMismatch ->
(* Despite the name, the toplevel message is reasonable *)
error_elim_arity env (ci.ci_ind, u) c' None
in
let br_env = Environ.push_rel_context ctx env in
let br', brt = execute br_env br in
let cty = esubst u (Esubst.subs_liftn mip.mind_consnrealdecls.(i) paramsubst) cty in
let () = lft.(i) <- (ctx, brt, cty) in
if br == br' then b else (nas, br')
in
let lf' = Array.Smart.map_i build_one_branch lf in
let rp', t = type_of_case env (mib, mip) ci u pms' (pctx, fst p, p', rp, pt) iv' c' ct lf' lft in
let eqbr (_, br1) (_, br2) = br1 == br2 in
let cstr = if rp == rp' && pms == pms' && c == c' && snd p == p' && iv == iv' && Array.equal eqbr lf lf' then cstr
else mkCase (ci, u, pms', ((fst p, p'), rp'), iv', c', lf')
in
cstr, t
| Fix ((_vn,i as vni),recdef as fix) ->
let (fix_ty,recdef') = execute_recdef env recdef i in
let cstr, fix = if recdef == recdef' then cstr, fix else
let fix = (vni,recdef') in mkFix fix, fix
in
check_fix env fix; cstr, fix_ty
| CoFix (i,recdef as cofix) ->
let (fix_ty,recdef') = execute_recdef env recdef i in
let cstr, cofix = if recdef == recdef' then cstr, cofix else
let cofix = (i,recdef') in mkCoFix cofix, cofix
in
check_cofix env cofix; cstr, fix_ty
(* Primitive types *)
| Int _ -> cstr, type_of_int env
| Float _ -> cstr, type_of_float env
| String _ -> cstr, type_of_string env
| Array(u,t,def,ty) ->
(* ty : Type@{u} and all of t,def : ty *)
let ulev = match UVars.Instance.to_array u with
| [||], [|u|] -> u
| _ -> assert false
in
let ty',tyty = execute env ty in
check_cast env ty' tyty DEFAULTcast (mkType (Universe.make ulev));
let def', def_ty = execute env def in
check_cast env def' def_ty DEFAULTcast ty';
let ta = type_of_array env u in
let t' = Array.Smart.map (fun x ->
let x', xt = execute env x in
check_cast env x' xt DEFAULTcast ty';
x') t in
let cstr = if def'==def && t'==t && ty'==ty then cstr else mkArray(u, t',def',ty') in
cstr, mkApp(ta, [|ty'|])
(* Partial proofs: unsupported by the kernel *)
| Meta _ ->
anomaly (Pp.str "the kernel does not support metavariables.")
| Evar _ ->
anomaly (Pp.str "the kernel does not support existential variables.")
and execute_is_type env constr =
let c, t = execute env constr in
c, check_type env constr t
and execute_recdef env (names,lar,vdef as recdef) i =
let lar', lart = execute_array env lar in
let names' = Array.Smart.map_i (fun i na -> check_assumption env na lar'.(i) lart.(i)) names in
let env1 = push_rec_types (names',lar',vdef) env in (* vdef is ignored *)
let vdef', vdeft = execute_array env1 vdef in
let () = check_fixpoint env1 names' lar' vdef' vdeft in
let recdef = if names == names' && lar == lar' && vdef == vdef' then recdef else (names',lar',vdef') in
(lar'.(i),recdef)
and execute_array env cs =
let tys = Array.make (Array.length cs) mkProp in
let cs = Array.Smart.map_i (fun i c -> let c, ty = execute env c in tys.(i) <- ty; c) cs in
cs, tys
let execute env c =
NewProfile.profile "Typeops.infer" (fun () -> execute env c) ()
(* Derived functions *)
let check_declared_qualities env qualities =
let module S = Sorts.QVar.Set in
let unknown = S.diff qualities env.env_qualities in
if S.is_empty unknown then ()
else error_undeclared_qualities env unknown
let check_wellformed_universes env c =
let qualities, univs = sort_and_universes_of_constr c in
check_declared_qualities env qualities;
try UGraph.check_declared_universes (universes env) univs
with UGraph.UndeclaredLevel u ->
error_undeclared_universe env u
let check_wellformed_universes env c =
NewProfile.profile "check-wf-univs" (fun () -> check_wellformed_universes env c) ()
let infer env constr =
let () = check_wellformed_universes env constr in
let constr, t = execute env constr in
make_judge constr t
let assumption_of_judgment env {uj_val=c; uj_type=t} =
infer_assumption env c t
let type_judgment env {uj_val=c; uj_type=t} =
let s = check_type env c t in
{utj_val = c; utj_type = s }
let infer_type env constr =
let () = check_wellformed_universes env constr in
let constr, t = execute env constr in
let s = check_type env constr t in
{utj_val = constr; utj_type = s}
(* Typing of several terms. *)
let check_context env rels =
let open Context.Rel.Declaration in
Context.Rel.fold_outside (fun d (env,rels) ->
match d with
| LocalAssum (x,ty) ->
let jty = infer_type env ty in
let x = check_assum_annot env jty.utj_type x jty.utj_val in
push_rel d env, LocalAssum (x,jty.utj_val) :: rels
| LocalDef (x,bd,ty) ->
let j1 = infer env bd in
let jty = infer_type env ty in
let () = match conv_leq env j1.uj_type ty with
| Result.Ok () -> ()
| Result.Error () -> error_actual_type env j1 ty
in
let x = check_let_annot env jty.utj_type x j1.uj_val jty.utj_val in
push_rel d env, LocalDef (x,j1.uj_val,jty.utj_val) :: rels)
rels ~init:(env,[])
let judge_of_prop = make_judge mkProp type1
let judge_of_set = make_judge mkSet type1
let judge_of_type u = make_judge (mkType u) (type_of_type u)
let judge_of_relative env k = make_judge (mkRel k) (type_of_relative env k)
let judge_of_variable env x = make_judge (mkVar x) (type_of_variable env x)
let judge_of_constant env cst = make_judge (mkConstU cst) (type_of_constant env cst)
let judge_of_projection env p cj =
let r, ty = type_of_projection env p cj.uj_val cj.uj_type in
make_judge (mkProj (p,r,cj.uj_val)) ty
let dest_judgev v =
Array.map j_val v, Array.map j_type v
let judge_of_apply env funj argjv =
let args, argtys = dest_judgev argjv in
make_judge (mkApp (funj.uj_val, args)) (type_of_apply env funj.uj_val funj.uj_type args argtys)
(* let judge_of_abstraction env x varj bodyj = *)
(* make_judge (mkLambda (x, varj.utj_val, bodyj.uj_val)) *)
(* (type_of_abstraction env x varj.utj_val bodyj.uj_type) *)
(* let judge_of_product env x varj outj = *)
(* make_judge (mkProd (x, varj.utj_val, outj.utj_val)) *)
(* (mkSort (sort_of_product env varj.utj_type outj.utj_type)) *)
(* let judge_of_letin env name defj typj j = *)
(* make_judge (mkLetIn (name, defj.uj_val, typj.utj_val, j.uj_val)) *)
(* (subst1 defj.uj_val j.uj_type) *)
let judge_of_cast env cj k tj =
let () = check_cast env cj.uj_val cj.uj_type k tj.utj_val in
let c = mkCast (cj.uj_val, k, tj.utj_val) in
make_judge c tj.utj_val
let judge_of_inductive env indu =
make_judge (mkIndU indu) (type_of_inductive env indu)
let judge_of_constructor env cu =
make_judge (mkConstructU cu) (type_of_constructor env cu)
(* Building type of primitive operators and type *)
let type_of_prim_const env _u c =
let int_ty () = type_of_int env in
match c with
| CPrimitives.Arraymaxlength ->
int_ty ()
| CPrimitives.Stringmaxlength ->
int_ty ()
let type_of_prim env u t =
let module UM = UnsafeMonomorphic in
let int_ty () = type_of_int env in
let float_ty () = type_of_float env in
let string_ty () = type_of_string env in
let array_ty u a = mkApp(type_of_array env u, [|a|]) in
let bool_ty () =
match env.retroknowledge.Retroknowledge.retro_bool with
| Some ((ind,_),_) -> UM.mkInd ind
| None -> CErrors.user_err Pp.(str"The type bool must be registered before this primitive.")
in
let compare_ty () =
match env.retroknowledge.Retroknowledge.retro_cmp with
| Some ((ind,_),_,_) -> UM.mkInd ind
| None -> CErrors.user_err Pp.(str"The type compare must be registered before this primitive.")
in
let f_compare_ty () =
match env.retroknowledge.Retroknowledge.retro_f_cmp with
| Some ((ind,_),_,_,_) -> UM.mkInd ind
| None -> CErrors.user_err Pp.(str"The type float_comparison must be registered before this primitive.")
in
let f_class_ty () =
match env.retroknowledge.Retroknowledge.retro_f_class with
| Some ((ind,_),_,_,_,_,_,_,_,_) -> UM.mkInd ind
| None -> CErrors.user_err Pp.(str"The type float_class must be registered before this primitive.")
in
let pair_ty fst_ty snd_ty =
match env.retroknowledge.Retroknowledge.retro_pair with
| Some (ind,_) -> Constr.mkApp(UM.mkInd ind, [|fst_ty;snd_ty|])
| None -> CErrors.user_err Pp.(str"The type pair must be registered before this primitive.")
in
let carry_ty int_ty =
match env.retroknowledge.Retroknowledge.retro_carry with
| Some ((ind,_),_) -> Constr.mkApp(UM.mkInd ind, [|int_ty|])
| None -> CErrors.user_err Pp.(str"The type carry must be registered before this primitive.")
in
let open CPrimitives in
let tr_prim_type (tr_type : ind_or_type -> constr) (type a) (ty : a prim_type) (t : a) = match ty with
| PT_int63 -> int_ty t
| PT_float64 -> float_ty t
| PT_string -> string_ty t
| PT_array -> array_ty (fst t) (tr_type (snd t))
in
let tr_ind (tr_type : ind_or_type -> constr) (type t) (i : t prim_ind) (a : t) = match i, a with
| PIT_bool, () -> bool_ty ()
| PIT_carry, t -> carry_ty (tr_type t)
| PIT_pair, (t1, t2) -> pair_ty (tr_type t1) (tr_type t2)
| PIT_cmp, () -> compare_ty ()
| PIT_f_cmp, () -> f_compare_ty ()
| PIT_f_class, () -> f_class_ty ()
in
let rec tr_type n = function
| PITT_ind (i, a) -> tr_ind (tr_type n) i a
| PITT_type (ty,t) -> tr_prim_type (tr_type n) ty t
| PITT_param i -> Constr.mkRel (n+i)
in
let rec nary_op n ret_ty = function
| [] -> tr_type n ret_ty
| arg_ty :: r ->
Constr.mkProd (Context.nameR (Id.of_string "x"),
tr_type n arg_ty, nary_op (n + 1) ret_ty r)
in
let params, args_ty, ret_ty = types t in
assert (UVars.AbstractContext.size (univs t) = UVars.Instance.length u);
Vars.subst_instance_constr u
(Term.it_mkProd_or_LetIn (nary_op 0 ret_ty args_ty) params)
let type_of_prim_or_type env u = let open CPrimitives in
function
| OT_type t -> type_of_prim_type env u t
| OT_op op -> type_of_prim env u op
| OT_const c -> type_of_prim_const env u c
|