1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Univ
open UVars
module G = AcyclicGraph.Make(struct
type t = Level.t
module Set = Level.Set
module Map = Level.Map
let equal = Level.equal
let compare = Level.compare
let raw_pr = Level.raw_pr
end)
(* Do not include G to make it easier to control universe specific
code (eg add_universe with a constraint vs G.add with no
constraint) *)
type t = {
graph: G.t;
type_in_type : bool;
}
(* Universe inconsistency: error raised when trying to enforce a relation
that would create a cycle in the graph of universes. *)
type path_explanation = G.explanation Lazy.t
type explanation =
| Path of path_explanation
| Other of Pp.t
type univ_variable_printers = (Sorts.QVar.t -> Pp.t) * (Level.t -> Pp.t)
type univ_inconsistency = univ_variable_printers option * (constraint_type * Sorts.t * Sorts.t * explanation option)
exception UniverseInconsistency of univ_inconsistency
type 'a check_function = t -> 'a -> 'a -> bool
let set_type_in_type b g = {g with type_in_type=b}
let type_in_type g = g.type_in_type
let check_smaller_expr g (u,n) (v,m) =
let diff = n - m in
match diff with
| 0 -> G.check_leq g.graph u v
| 1 -> G.check_lt g.graph u v
| x when x < 0 -> G.check_leq g.graph u v
| _ -> false
let exists_bigger g ul l =
Universe.exists (fun ul' ->
check_smaller_expr g ul ul') l
let real_check_leq g u v =
Universe.for_all (fun ul -> exists_bigger g ul v) u
let check_leq g u v =
type_in_type g || Universe.equal u v || (real_check_leq g u v)
let check_eq g u v =
type_in_type g || Universe.equal u v ||
(real_check_leq g u v && real_check_leq g v u)
let check_eq_level g u v =
u == v || type_in_type g || G.check_eq g.graph u v
let empty_universes = {graph=G.empty; type_in_type=false}
let initial_universes =
let big_rank = 1000000 in
let g = G.empty in
let g = G.add ~rank:big_rank Level.set g in
{empty_universes with graph=g}
let initial_universes_with g = {g with graph=initial_universes.graph}
let enforce_constraint (u,d,v) g =
match d with
| Le -> G.enforce_leq u v g
| Lt -> G.enforce_lt u v g
| Eq -> G.enforce_eq u v g
let enforce_constraint0 cst g = match enforce_constraint cst g.graph with
| None -> None
| Some g' ->
if g' == g.graph then Some g
else Some { g with graph = g' }
let enforce_constraint cst g = match enforce_constraint0 cst g with
| None ->
if not (type_in_type g) then
let (u, c, v) = cst in
let e = lazy (G.get_explanation cst g.graph) in
let mk u = Sorts.sort_of_univ @@ Universe.make u in
raise (UniverseInconsistency (None, (c, mk u, mk v, Some (Path e))))
else g
| Some g -> g
let merge_constraints csts g = Constraints.fold enforce_constraint csts g
let check_constraint { graph = g; type_in_type } (u,d,v) =
type_in_type
|| match d with
| Le -> G.check_leq g u v
| Lt -> G.check_lt g u v
| Eq -> G.check_eq g u v
let check_constraints csts g = Constraints.for_all (check_constraint g) csts
let leq_expr (u,m) (v,n) =
let d = match m - n with
| 1 -> Lt
| diff -> assert (diff <= 0); Le
in
(u,d,v)
let enforce_leq_alg u v g =
let open Util in
let enforce_one (u,v) = function
| Inr _ as orig -> orig
| Inl (cstrs,g) as orig ->
if check_smaller_expr g u v then orig
else
(let c = leq_expr u v in
match enforce_constraint0 c g with
| Some g -> Inl (Constraints.add c cstrs,g)
| None -> Inr (c, g))
in
(* max(us) <= max(vs) <-> forall u in us, exists v in vs, u <= v *)
let c = List.map (fun u -> List.map (fun v -> (u,v)) (Universe.repr v)) (Universe.repr u) in
let c = List.cartesians enforce_one (Inl (Constraints.empty,g)) c in
(* We pick a best constraint: smallest number of constraints, not an error if possible. *)
let order x y = match x, y with
| Inr _, Inr _ -> 0
| Inl _, Inr _ -> -1
| Inr _, Inl _ -> 1
| Inl (c,_), Inl (c',_) ->
Int.compare (Constraints.cardinal c) (Constraints.cardinal c')
in
match List.min order c with
| Inl x -> x
| Inr ((u, c, v), g) ->
let e = lazy (G.get_explanation (u, c, v) g.graph) in
let mk u = Sorts.sort_of_univ @@ Universe.make u in
let e = UniverseInconsistency (None, (c, mk u, mk v, Some (Path e))) in
raise e
module Bound =
struct
type t = Prop | Set
end
exception AlreadyDeclared = G.AlreadyDeclared
let add_universe u ~lbound ~strict g = match lbound with
| Bound.Set ->
let graph = G.add u g.graph in
let d = if strict then Lt else Le in
enforce_constraint (Level.set, d, u) { g with graph }
| Bound.Prop ->
(* Do not actually add any constraint. This is a hack for template. *)
{ g with graph = G.add u g.graph }
exception UndeclaredLevel = G.Undeclared
let check_declared_universes g l =
G.check_declared g.graph l
let constraints_of_universes g =
let add cst accu = Constraints.add cst accu in
G.constraints_of g.graph add Constraints.empty
let constraints_for ~kept g =
let add cst accu = Constraints.add cst accu in
G.constraints_for ~kept g.graph add Constraints.empty
(** Subtyping of polymorphic contexts *)
let check_subtype univs ctxT ctx =
(* NB: size check is the only constraint on qualities *)
if eq_sizes (AbstractContext.size ctxT) (AbstractContext.size ctx) then
let uctx = AbstractContext.repr ctx in
let inst = UContext.instance uctx in
let cst = UContext.constraints uctx in
let cstT = UContext.constraints (AbstractContext.repr ctxT) in
let push accu v = add_universe v ~lbound:Bound.Set ~strict:false accu in
let univs = Array.fold_left push univs (snd (Instance.to_array inst)) in
let univs = merge_constraints cstT univs in
check_constraints cst univs
else false
(** Instances *)
let check_eq_instances g t1 t2 =
let qt1, ut1 = Instance.to_array t1 in
let qt2, ut2 = Instance.to_array t2 in
CArray.equal Sorts.Quality.equal qt1 qt2
&& CArray.equal (check_eq_level g) ut1 ut2
let domain g = G.domain g.graph
let choose p g u = G.choose p g.graph u
let check_universes_invariants g = G.check_invariants ~required_canonical:Level.is_set g.graph
(** Sort comparison *)
(* The functions below rely on the invariant that no universe in the graph
can be unified with Prop / SProp. This is ensured by UGraph, which only
contains Set as a "small" level. *)
open Sorts
let get_algebraic = function
| Prop | SProp -> assert false
| Set -> Universe.type0
| Type u | QSort (_, u) -> u
let check_eq_sort ugraph s1 s2 = match s1, s2 with
| (SProp, SProp) | (Prop, Prop) | (Set, Set) -> true
| (SProp, _) | (_, SProp) | (Prop, _) | (_, Prop) ->
type_in_type ugraph
| (Type _ | Set), (Type _ | Set) ->
check_eq ugraph (get_algebraic s1) (get_algebraic s2)
| QSort (q1, u1), QSort (q2, u2) ->
QVar.equal q1 q2 && check_eq ugraph u1 u2
| (QSort _, (Type _ | Set)) | ((Type _ | Set), QSort _) -> false
let check_leq_sort ugraph s1 s2 = match s1, s2 with
| (SProp, SProp) | (Prop, Prop) | (Set, Set) -> true
| (SProp, _) -> type_in_type ugraph
| (Prop, SProp) -> type_in_type ugraph
| (Prop, (Set | Type _)) -> true
| (Prop, QSort _) -> false
| (_, (SProp | Prop)) -> type_in_type ugraph
| (Type _ | Set), (Type _ | Set) ->
check_leq ugraph (get_algebraic s1) (get_algebraic s2)
| QSort (q1, u1), QSort (q2, u2) ->
QVar.equal q1 q2 && check_leq ugraph u1 u2
| (QSort _, (Type _ | Set)) | ((Type _ | Set), QSort _) -> false
(** Pretty-printing *)
let pr_pmap sep pr map =
let cmp (u,_) (v,_) = Level.compare u v in
Pp.prlist_with_sep sep pr (List.sort cmp (Level.Map.bindings map))
let pr_arc prl = let open Pp in
function
| u, G.Node ltle ->
if Level.Map.is_empty ltle then mt ()
else
prl u ++ str " " ++
v 0
(pr_pmap spc (fun (v, strict) ->
(if strict then str "< " else str "<= ") ++ prl v)
ltle) ++
fnl ()
| u, G.Alias v ->
prl u ++ str " = " ++ prl v ++ fnl ()
type node = G.node =
| Alias of Level.t
| Node of bool Level.Map.t
let repr g = G.repr g.graph
let pr_universes prl g = pr_pmap Pp.mt (pr_arc prl) g
open Pp
let explain_universe_inconsistency default_prq default_prl (printers, (o,u,v,p) : univ_inconsistency) =
let prq, prl = match printers with
| Some (prq, prl) -> prq, prl
| None -> default_prq, default_prl
in
let pr_uni u = match u with
| Sorts.Set -> str "Set"
| Sorts.Prop -> str "Prop"
| Sorts.SProp -> str "SProp"
| Sorts.Type u -> Universe.pr prl u
| Sorts.QSort (q, u) -> str "Type@{" ++ prq q ++ str " | " ++ Universe.pr prl u ++ str"}"
in
let pr_rel = function
| Eq -> str"=" | Lt -> str"<" | Le -> str"<="
in
let reason = match p with
| None -> mt()
| Some (Other p) -> spc() ++ p
| Some (Path p) ->
let pstart, p = Lazy.force p in
if p = [] then mt ()
else
str " because" ++ spc() ++ prl pstart ++
prlist (fun (r,v) -> spc() ++ pr_rel r ++ str" " ++ prl v) p
in
str "Cannot enforce" ++ spc() ++ pr_uni u ++ spc() ++
pr_rel o ++ spc() ++ pr_uni v ++ reason
|