1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
type constraint_type = Lt | Le | Eq
module type Point = sig
type t
module Set : CSig.USetS with type elt = t
module Map : CMap.UExtS with type key = t and module Set := Set
val equal : t -> t -> bool
val compare : t -> t -> int
val raw_pr : t -> Pp.t
end
module Make (Point:Point) = struct
(* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *)
(* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *)
(* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *)
(* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *)
(* Support for universe polymorphism by MS [2014] *)
(* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey, Matthieu
Sozeau, Pierre-Marie Pédrot, Jacques-Henri Jourdan *)
(* Points are stratified by a partial ordering $\le$.
Let $\~{}$ be the associated equivalence. We also have a strict ordering
$<$ between equivalence classes, and we maintain that $<$ is acyclic,
and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$.
At every moment, we have a finite number of points, and we
maintain the ordering in the presence of assertions $U<V$ and $U\le V$.
The equivalence $\~{}$ is represented by a tree structure, as in the
union-find algorithm. The assertions $<$ and $\le$ are represented by
adjacency lists.
We use the algorithm described in the paper:
Bender, M. A., Fineman, J. T., Gilbert, S., & Tarjan, R. E. (2011). A
new approach to incremental cycle detection and related
problems. arXiv preprint arXiv:1112.0784.
*)
module Index :
sig
type t
val equal : t -> t -> bool
module Set : CSig.SetS with type elt = t
module Map : CMap.ExtS with type key = t and module Set := Set
type table
val empty : table
val fresh : Point.t -> table -> t * table
val mem : Point.t -> table -> bool
val find : Point.t -> table -> t
val repr : t -> table -> Point.t
val hash : t -> int
end =
struct
type t = int
let equal = Int.equal
module Set = Int.Set
module Map = Int.Map
type table = {
tab_len : int;
tab_fwd : Point.t Int.Map.t;
tab_bwd : int Point.Map.t
}
let empty = {
tab_len = 0;
tab_fwd = Int.Map.empty;
tab_bwd = Point.Map.empty;
}
let mem x t = Point.Map.mem x t.tab_bwd
let find x t = Point.Map.find x t.tab_bwd
let repr n t = Int.Map.find n t.tab_fwd
let fresh x t =
let () = assert (not @@ mem x t) in
let n = t.tab_len in
n, {
tab_len = n + 1;
tab_fwd = Int.Map.add n x t.tab_fwd;
tab_bwd = Point.Map.add x n t.tab_bwd;
}
let hash x = x
end
module PMap = Index.Map
module PSet = Index.Set
(* Comparison on this type is pointer equality *)
type canonical_node =
{ canon: Index.t;
ltle: bool PMap.t; (* true: strict (lt) constraint.
false: weak (le) constraint. *)
gtge: PSet.t;
rank : int;
klvl: int;
ilvl: int;
}
(* A Point.t is either an alias for another one, or a canonical one,
for which we know the points that are above *)
type entry =
| Canonical of canonical_node
| Equiv of Index.t
type t =
{ entries : entry PMap.t;
index : int;
n_nodes : int; n_edges : int;
table : Index.table }
module CN = struct
type t = canonical_node
let equal x y = x.canon == y.canon
let hash x = Index.hash x.canon
end
module Status = struct
module Internal = Hashtbl.Make(CN)
(** we could experiment with creation size based on the size of [g] *)
let create (g:t) = Internal.create 17
let mem = Internal.mem
let find = Internal.find
let replace = Internal.replace
let fold = Internal.fold
end
(* Every Point.t has a unique canonical arc representative *)
(* Low-level function : makes u an alias for v.
Does not removes edges from n_edges, but decrements n_nodes.
u should be entered as canonical before. *)
let enter_equiv g u v =
{ entries =
PMap.modify u (fun _ a ->
match a with
| Canonical n ->
Equiv v
| _ -> assert false) g.entries;
index = g.index;
n_nodes = g.n_nodes - 1;
n_edges = g.n_edges;
table = g.table }
(* Low-level function : changes data associated with a canonical node.
Resets the mutable fields in the old record, in order to avoid breaking
invariants for other users of this record.
n.canon should already been inserted as a canonical node. *)
let change_node g n =
{ g with entries =
PMap.modify n.canon
(fun _ a ->
match a with
| Canonical _ ->
Canonical n
| _ -> assert false)
g.entries }
(* canonical representative : we follow the Equiv links *)
let rec repr g u =
match PMap.find u g.entries with
| Equiv v -> repr g v
| Canonical arc -> arc
let repr_node g u =
try repr g (Index.find u g.table)
with Not_found ->
CErrors.anomaly ~label:"Univ.repr"
Pp.(str"Universe " ++ Point.raw_pr u ++ str" undefined.")
exception AlreadyDeclared
(* Reindexes the given point, using the next available index. *)
let use_index g u =
let u = repr g u in
let g = change_node g { u with ilvl = g.index } in
assert (g.index > min_int);
{ g with index = g.index - 1 }
(* Returns 1 if u is higher than v in topological order.
-1 lower
0 if u = v *)
let topo_compare u v =
if u.klvl > v.klvl then 1
else if u.klvl < v.klvl then -1
else if u.ilvl > v.ilvl then 1
else if u.ilvl < v.ilvl then -1
else (assert (u==v); 0)
(* Checks most of the invariants of the graph. For debugging purposes. *)
let check_invariants ~required_canonical g =
let required_canonical u = required_canonical (Index.repr u g.table) in
let n_edges = ref 0 in
let n_nodes = ref 0 in
PMap.iter (fun l u ->
match u with
| Canonical u ->
PMap.iter (fun v _strict ->
incr n_edges;
let v = repr g v in
assert (topo_compare u v = -1);
if u.klvl = v.klvl then
assert (PSet.mem u.canon v.gtge ||
PSet.exists (fun l -> u == repr g l) v.gtge))
u.ltle;
PSet.iter (fun v ->
let v = repr g v in
assert (v.klvl = u.klvl &&
(PMap.mem u.canon v.ltle ||
PMap.exists (fun l _ -> u == repr g l) v.ltle))
) u.gtge;
assert (Index.equal l u.canon);
assert (u.ilvl > g.index);
assert (not (PMap.mem u.canon u.ltle));
incr n_nodes
| Equiv _ -> assert (not (required_canonical l)))
g.entries;
assert (!n_edges = g.n_edges);
assert (!n_nodes = g.n_nodes)
let clean_ltle g ltle =
PMap.fold (fun u strict acc ->
let uu = (repr g u).canon in
if Index.equal uu u then acc
else (
let acc = PMap.remove u (fst acc) in
if not strict && PMap.mem uu acc then (acc, true)
else (PMap.add uu strict acc, true)))
ltle (ltle, false)
let clean_gtge g gtge =
PSet.fold (fun u acc ->
let uu = (repr g u).canon in
if Index.equal uu u then acc
else PSet.add uu (PSet.remove u (fst acc)), true)
gtge (gtge, false)
(* [get_ltle] and [get_gtge] return ltle and gtge arcs.
Moreover, if one of these lists is dirty (e.g. points to a
non-canonical node), these functions clean this node in the
graph by removing some duplicate edges *)
let get_ltle g u =
let ltle, chgt_ltle = clean_ltle g u.ltle in
if not chgt_ltle then u.ltle, u, g
else
let sz = PMap.cardinal u.ltle in
let sz2 = PMap.cardinal ltle in
let u = { u with ltle } in
let g = change_node g u in
let g = { g with n_edges = g.n_edges + sz2 - sz } in
u.ltle, u, g
let get_gtge g u =
let gtge, chgt_gtge = clean_gtge g u.gtge in
if not chgt_gtge then u.gtge, u, g
else
let u = { u with gtge } in
let g = change_node g u in
u.gtge, u, g
exception AbortBackward of t
exception CycleDetected
(* Implementation of the algorithm described in § 5.1 of the following paper:
Bender, M. A., Fineman, J. T., Gilbert, S., & Tarjan, R. E. (2011). A
new approach to incremental cycle detection and related
problems. arXiv preprint arXiv:1112.0784.
The "STEP X" comments contained in this file refers to the
corresponding step numbers of the algorithm described in Section
5.1 of this paper. *)
let rec backward_traverse status b_traversed count g x =
let count = count - 1 in
if count < 0 then begin
raise_notrace (AbortBackward g)
end;
if Status.mem status x then b_traversed, count, g
else begin
Status.replace status x ();
let gtge, x, g = get_gtge g x in
let b_traversed, count, g =
PSet.fold (fun y (b_traversed, count, g) ->
let y = repr g y in
backward_traverse status b_traversed count g y)
gtge (b_traversed, count, g)
in
x.canon::b_traversed, count, g
end
let backward_traverse count g x = backward_traverse (Status.create g) [] count g x
let rec forward_traverse f_traversed g v_klvl x y =
let y = repr g y in
if y.klvl < v_klvl then begin
let y = { y with klvl = v_klvl;
gtge = if x == y then PSet.empty
else PSet.singleton x.canon }
in
let g = change_node g y in
let ltle, y, g = get_ltle g y in
let f_traversed, g =
PMap.fold (fun z _ (f_traversed, g) ->
forward_traverse f_traversed g v_klvl y z)
ltle (f_traversed, g)
in
y.canon::f_traversed, g
end else if y.klvl = v_klvl && x != y then
let g = change_node g
{ y with gtge = PSet.add x.canon y.gtge } in
f_traversed, g
else f_traversed, g
let rec find_to_merge status g x v =
let x = repr g x in
match Status.find status x with
| merge -> merge
| exception Not_found ->
if Index.equal x.canon v then begin
Status.replace status x true;
true
end
else
begin
let merge = PSet.fold
(fun y merge ->
let merge' = find_to_merge status g y v in
merge' || merge) x.gtge false
in
Status.replace status x merge;
merge
end
let find_to_merge g x v =
let status = Status.create g in
status, find_to_merge status g x v
let get_new_edges g to_merge =
(* Computing edge sets. *)
let ltle =
let fold acc n =
let fold u strict acc =
match PMap.find u acc with
| true -> acc
| false -> if strict then PMap.add u true acc else acc
| exception Not_found -> PMap.add u strict acc
in
PMap.fold fold n.ltle acc
in
match to_merge with
| [] -> assert false
| hd :: tl -> List.fold_left fold hd.ltle tl
in
let ltle, _ = clean_ltle g ltle in
let fold accu a =
match PMap.find a.canon ltle with
| true ->
(* There is a lt edge inside the new component. This is a
"bad cycle". *)
raise_notrace CycleDetected
| false -> PMap.remove a.canon accu
| exception Not_found -> accu
in
let ltle = List.fold_left fold ltle to_merge in
let gtge =
List.fold_left (fun acc n -> PSet.union acc n.gtge)
PSet.empty to_merge
in
let gtge, _ = clean_gtge g gtge in
let gtge = List.fold_left (fun acc n -> PSet.remove n.canon acc) gtge to_merge in
(ltle, gtge)
let reorder g u v =
(* STEP 2: backward search in the k-level of u. *)
(* [v_klvl] is the chosen future level for u, v and all
traversed nodes. *)
let b_traversed, v_klvl, g =
let u = repr g u in
try
let b_traversed, _, g = backward_traverse (u.klvl + 1) g u in
let v_klvl = u.klvl in
b_traversed, v_klvl, g
with AbortBackward g ->
(* Backward search was too long, use the next k-level. *)
let v_klvl = u.klvl + 1 in
[], v_klvl, g
in
let f_traversed, g =
(* STEP 3: forward search. Contrary to what is described in
the paper, we do not test whether v_klvl = u.klvl nor we assign
v_klvl to v.klvl. Indeed, the first call to forward_traverse
will do all that. *)
forward_traverse [] g v_klvl (repr g v) v
in
(* STEP 4: merge nodes if needed. *)
let to_merge, b_reindex, f_reindex =
if (repr g u).klvl = v_klvl then
begin
let status, merge = find_to_merge g u v in
if merge then
let not_merged u = try not (Status.find status (repr g u)) with Not_found -> true in
Status.fold (fun u merged acc -> if merged then u::acc else acc) status [],
List.filter not_merged b_traversed,
List.filter not_merged f_traversed
else [], b_traversed, f_traversed
end
else [], b_traversed, f_traversed
in
let to_reindex, g =
match to_merge with
| [] -> List.rev_append f_reindex b_reindex, g
| n0::q0 ->
(* Computing new root. *)
let root, rank_rest =
List.fold_left (fun ((best, _rank_rest) as acc) n ->
if n.rank >= best.rank then n, best.rank else acc)
(n0, min_int) q0
in
let ltle, gtge = get_new_edges g to_merge in
(* Inserting the new root. *)
let g = change_node g
{ root with ltle; gtge;
rank = max root.rank (rank_rest + 1); }
in
(* Inserting shortcuts for old nodes. *)
let g = List.fold_left (fun g n ->
if Index.equal n.canon root.canon then g else enter_equiv g n.canon root.canon)
g to_merge
in
(* Updating g.n_edges *)
let oldsz =
List.fold_left (fun sz u -> sz+PMap.cardinal u.ltle)
0 to_merge
in
let sz = PMap.cardinal ltle in
let g = { g with n_edges = g.n_edges + sz - oldsz } in
(* Not clear in the paper: we have to put the newly
created component just between B and F. *)
List.rev_append f_reindex (root.canon::b_reindex), g
in
(* STEP 5: reindex traversed nodes. *)
List.fold_left use_index g to_reindex
(* Assumes [u] and [v] are already in the graph. *)
(* Does NOT assume that ucan != vcan. *)
let insert_edge strict ucan vcan g =
try
let u = ucan.canon and v = vcan.canon in
(* STEP 1: do we need to reorder nodes ? *)
let g = if topo_compare ucan vcan <= 0 then g else reorder g u v in
(* STEP 6: insert the new edge in the graph. *)
let u = repr g u in
let v = repr g v in
if u == v then
if strict then raise_notrace CycleDetected else g
else
let g =
try let oldstrict = PMap.find v.canon u.ltle in
if strict && not oldstrict then
change_node g { u with ltle = PMap.add v.canon true u.ltle }
else g
with Not_found ->
{ (change_node g { u with ltle = PMap.add v.canon strict u.ltle })
with n_edges = g.n_edges + 1 }
in
if u.klvl <> v.klvl || PSet.mem u.canon v.gtge then g
else
let v = { v with gtge = PSet.add u.canon v.gtge } in
change_node g v
with
| CycleDetected as e -> raise_notrace e
let add ?(rank=0) v g =
if Index.mem v g.table then raise AlreadyDeclared
else
let () = assert (g.index > min_int) in
let v, table = Index.fresh v g.table in
let node = {
canon = v;
ltle = PMap.empty;
gtge = PSet.empty;
rank;
klvl = 0;
ilvl = g.index;
}
in
let entries = PMap.add v (Canonical node) g.entries in
{ entries; index = g.index - 1; n_nodes = g.n_nodes + 1; n_edges = g.n_edges; table }
exception Undeclared of Point.t
let check_declared g us =
let check l = if not (Index.mem l g.table) then raise (Undeclared l) in
Point.Set.iter check us
exception Found_explanation of (constraint_type * Point.t) list
type explanation = Point.t * (constraint_type * Point.t) list
let get_explanation strict pu pv g =
let v = repr_node g pv in
let visited_strict = ref PMap.empty in
let rec traverse strict u =
if u == v then
if strict then None else Some []
else if topo_compare u v = 1 then None
else
let visited =
try not (PMap.find u.canon !visited_strict) || strict
with Not_found -> false
in
if visited then None
else begin
visited_strict := PMap.add u.canon strict !visited_strict;
try
PMap.iter (fun u' strictu' ->
match traverse (strict && not strictu') (repr g u') with
| None -> ()
| Some exp ->
let typ = if strictu' then Lt else Le in
let exp = if CList.is_empty exp then [typ, pv] else
let u' = Index.repr u' g.table in
(typ, u') :: exp
in
raise_notrace (Found_explanation exp))
u.ltle;
None
with Found_explanation exp -> Some exp
end
in
let u = repr_node g pu in
if u == v then begin assert (not strict); [(Eq, pv)] end
else match traverse strict u with Some exp -> exp | None -> assert false
let get_explanation strict u v g = u, get_explanation strict u v g
(* To compare two nodes, we simply do a forward search.
We implement two improvements:
- we ignore nodes that are higher than the destination;
- we do a BFS rather than a DFS because we expect to have a short
path (typically, the shortest path has length 1)
*)
exception Found
type visited = WeakVisited | Visited
let search_path strict u v g =
let rec loop status todo next_todo =
match todo, next_todo with
| [], [] -> () (* No path found *)
| [], _ -> loop status next_todo []
| (u, strict)::todo, _ ->
let is_visited = match Status.find status u with
| Visited -> true
| WeakVisited -> strict
| exception Not_found -> false
in
if is_visited
then loop status todo next_todo
else begin
Status.replace status u (if strict then WeakVisited else Visited);
if try PMap.find v.canon u.ltle || not strict
with Not_found -> false
then raise_notrace Found
else
begin
let next_todo =
PMap.fold (fun u strictu next_todo ->
let strict = not strictu && strict in
let u = repr g u in
if u == v && not strict then raise_notrace Found
else if topo_compare u v = 1 then next_todo
else (u, strict)::next_todo)
u.ltle next_todo
in
loop status todo next_todo
end
end
in
if u == v then not strict
else
try loop (Status.create g) [u, strict] []; false
with Found -> true
(** Uncomment to debug the cycle detection algorithm. *)
(*let insert_edge strict ucan vcan g =
let check_invariants = check_invariants ~required_canonical:(fun _ -> false) in
check_invariants g;
let g = insert_edge strict ucan vcan g in
check_invariants g;
let ucan = repr g ucan.canon in
let vcan = repr g vcan.canon in
assert (search_path strict ucan vcan g);
g*)
(** User interface *)
type 'a check_function = t -> 'a -> 'a -> bool
let check_eq g u v =
u == v ||
let arcu = repr_node g u and arcv = repr_node g v in
arcu == arcv
let check_smaller g strict u v =
search_path strict (repr_node g u) (repr_node g v) g
let check_leq g u v = check_smaller g false u v
let check_lt g u v = check_smaller g true u v
let get_explanation (u, c, v) g = match c with
| Eq ->
(* Redo the search, not important because this is only used for display. *)
if check_lt g u v then get_explanation true u v g else get_explanation true v u g
| Le -> get_explanation true v u g
| Lt -> get_explanation false v u g
(* enforce_eq g u v will force u=v if possible, will fail otherwise *)
let enforce_eq u v g =
let ucan = repr_node g u in
let vcan = repr_node g v in
if ucan == vcan then Some g
else if topo_compare ucan vcan = 1 then
let ucan = vcan and vcan = ucan in
let g = insert_edge false ucan vcan g in (* Cannot fail *)
try Some (insert_edge false vcan ucan g)
with CycleDetected -> None
else
let g = insert_edge false ucan vcan g in (* Cannot fail *)
try Some (insert_edge false vcan ucan g)
with CycleDetected -> None
(* enforce_leq g u v will force u<=v if possible, will fail otherwise *)
let enforce_leq u v g =
let ucan = repr_node g u in
let vcan = repr_node g v in
try Some (insert_edge false ucan vcan g)
with CycleDetected -> None
(* enforce_lt u v will force u<v if possible, will fail otherwise *)
let enforce_lt u v g =
let ucan = repr_node g u in
let vcan = repr_node g v in
try Some (insert_edge true ucan vcan g)
with CycleDetected -> None
let empty =
{ entries = PMap.empty; index = 0; n_nodes = 0; n_edges = 0; table = Index.empty }
(* Normalization *)
type 'a constraint_fold = Point.t * constraint_type * Point.t -> 'a -> 'a
let constraints_of g fold accu =
let module UF = Unionfind.Make (Point.Set) (Point.Map) in
let uf = UF.create () in
let constraints_of u v acc =
match v with
| Canonical {canon=u; ltle; _} ->
PMap.fold (fun v strict acc->
let typ = if strict then Lt else Le in
let u = Index.repr u g.table in
let v = Index.repr v g.table in
fold (u,typ,v) acc) ltle acc
| Equiv v ->
let u = Index.repr u g.table in
let v = Index.repr v g.table in
UF.union u v uf; acc
in
let csts = PMap.fold constraints_of g.entries accu in
csts, UF.partition uf
(* domain g.entries = kept + removed *)
let constraints_for ~kept g fold accu =
(* rmap: partial map from canonical points to kept points *)
let add_cst u knd v cst =
fold (Index.repr u g.table, knd, Index.repr v g.table) cst
in
let kept = Point.Set.fold (fun u accu -> PSet.add (Index.find u g.table) accu) kept PSet.empty in
let rmap, csts = PSet.fold (fun u (rmap,csts) ->
let arcu = repr g u in
if PSet.mem arcu.canon kept then
let csts = if Index.equal u arcu.canon then csts
else add_cst u Eq arcu.canon csts
in
PMap.add arcu.canon arcu.canon rmap, csts
else
match PMap.find arcu.canon rmap with
| v -> rmap, add_cst u Eq v csts
| exception Not_found -> PMap.add arcu.canon u rmap, csts)
kept (PMap.empty, accu)
in
let rec add_from u csts todo = match todo with
| [] -> csts
| (v,strict)::todo ->
let v = repr g v in
(match PMap.find v.canon rmap with
| v ->
let d = if strict then Lt else Le in
let csts = add_cst u d v csts in
add_from u csts todo
| exception Not_found ->
(* v is not equal to any kept point *)
let todo = PMap.fold (fun v' strict' todo ->
(v',strict || strict') :: todo)
v.ltle todo
in
add_from u csts todo)
in
PSet.fold (fun u csts ->
let arc = repr g u in
PMap.fold (fun v strict csts -> add_from u csts [v,strict])
arc.ltle csts)
kept csts
let domain g =
let fold u _ accu = Point.Set.add (Index.repr u g.table) accu in
PMap.fold fold g.entries Point.Set.empty
let choose p g u =
let exception Found of Point.t in
let ru = (repr_node g u).canon in
let ruv = Index.repr ru g.table in
if p ruv then Some ruv
else
try PMap.iter (fun v -> function
| Canonical _ -> () (* we already tried [p ru] *)
| Equiv v' ->
let rv = (repr g v').canon in
if rv == ru then
let v = Index.repr v g.table in
if p v then raise_notrace (Found v)
(* NB: we could also try [p v'] but it will come up in the
rest of the iteration regardless. *)
) g.entries; None
with Found v -> Some v
type node = Alias of Point.t | Node of bool Point.Map.t
type repr = node Point.Map.t
let repr g =
let fold u n accu =
let n = match n with
| Canonical n ->
let fold u lt accu = Point.Map.add (Index.repr u g.table) lt accu in
let ltle = PMap.fold fold n.ltle Point.Map.empty in
Node ltle
| Equiv u -> Alias (Index.repr u g.table)
in
Point.Map.add (Index.repr u g.table) n accu
in
PMap.fold fold g.entries Point.Map.empty
end
|