1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
{
open Pp
open Genarg
open Stdarg
open Tacarg
open Extraargs
open Mod_subst
open Names
open CErrors
open Util
open Equality
open Tactypes
open Proofview.Notations
open Attributes
open Vernacextend
open G_redexpr
}
DECLARE PLUGIN "coq-core.plugins.ltac"
TACTIC EXTEND assert_succeeds
| [ "assert_succeeds" tactic3(tac) ]
-> { Internals.assert_succeeds (Tacinterp.tactic_of_value ist tac) }
END
TACTIC EXTEND replace
| [ "replace" uconstr(c1) "with" constr(c2) clause(cl) by_arg_tac(tac) ]
-> { Internals.replace_in_clause_maybe_by ist None c1 c2 cl tac }
END
TACTIC EXTEND replace_term_left
| [ "replace" "->" uconstr(c) clause(cl) ]
-> { Internals.replace_term ist (Some true) c cl }
END
TACTIC EXTEND replace_left
| ["replace" "->" uconstr(c1) "with" constr(c2) clause(cl) by_arg_tac(tac) ]
-> { Internals.replace_in_clause_maybe_by ist (Some true) c1 c2 cl tac }
END
TACTIC EXTEND replace_term_right
| [ "replace" "<-" uconstr(c) clause(cl) ]
-> { Internals.replace_term ist (Some false) c cl }
END
TACTIC EXTEND replace_right
| [ "replace" "<-" uconstr(c1) "with" constr(c2) clause(cl) by_arg_tac(tac) ]
-> { Internals.replace_in_clause_maybe_by ist (Some false) c1 c2 cl tac }
END
TACTIC EXTEND replace_term
| [ "replace" uconstr(c) clause(cl) ]
-> { Internals.replace_term ist None c cl }
END
TACTIC EXTEND simplify_eq
| [ "simplify_eq" ] -> { dEq ~keep_proofs:None false None }
| [ "simplify_eq" destruction_arg(c) ] -> { Internals.mytclWithHoles (dEq ~keep_proofs:None) false c }
END
TACTIC EXTEND esimplify_eq
| [ "esimplify_eq" ] -> { dEq ~keep_proofs:None true None }
| [ "esimplify_eq" destruction_arg(c) ] -> { Internals.mytclWithHoles (dEq ~keep_proofs:None) true c }
END
TACTIC EXTEND discriminate
| [ "discriminate" ] -> { discr_tac false None }
| [ "discriminate" destruction_arg(c) ] ->
{ Internals.mytclWithHoles discr_tac false c }
END
TACTIC EXTEND ediscriminate
| [ "ediscriminate" ] -> { discr_tac true None }
| [ "ediscriminate" destruction_arg(c) ] ->
{ Internals.mytclWithHoles discr_tac true c }
END
{
let isInjPat pat = match pat.CAst.v with IntroAction (IntroInjection _) -> Some pat.CAst.loc | _ -> None
let decode_inj_ipat ?loc = function
(* For the "as [= pat1 ... patn ]" syntax *)
| [{ CAst.v = IntroAction (IntroInjection ipat) }] -> ipat
(* For the "as pat1 ... patn" syntax *)
| ([] | [_]) as ipat -> ipat
| pat1::pat2::_ as ipat ->
(* To be sure that there is no confusion of syntax, we check that no [= ...] occurs
in the non-singleton list of patterns *)
match isInjPat pat1 with
| Some _ -> user_err ?loc:pat2.CAst.loc (str "Unexpected pattern.")
| None ->
match List.map_filter isInjPat ipat with
| loc :: _ -> user_err ?loc (str "Unexpected injection pattern.")
| [] -> ipat
}
TACTIC EXTEND injection
| [ "injection" ] -> { injClause None None false None }
| [ "injection" destruction_arg(c) ] -> { Internals.mytclWithHoles (injClause None None) false c }
END
TACTIC EXTEND einjection
| [ "einjection" ] -> { injClause None None true None }
| [ "einjection" destruction_arg(c) ] -> { Internals.mytclWithHoles (injClause None None) true c }
END
TACTIC EXTEND injection_as
| [ "injection" "as" simple_intropattern_list(ipat)] ->
{ injClause None (Some (decode_inj_ipat ipat)) false None }
| [ "injection" destruction_arg(c) "as" simple_intropattern_list(ipat)] ->
{ Internals.mytclWithHoles (injClause None (Some (decode_inj_ipat ipat))) false c }
END
TACTIC EXTEND einjection_as
| [ "einjection" "as" simple_intropattern_list(ipat)] ->
{ injClause None (Some (decode_inj_ipat ipat)) true None }
| [ "einjection" destruction_arg(c) "as" simple_intropattern_list(ipat)] ->
{ Internals.mytclWithHoles (injClause None (Some (decode_inj_ipat ipat))) true c }
END
TACTIC EXTEND simple_injection
| [ "simple" "injection" ] -> { simpleInjClause None false None }
| [ "simple" "injection" destruction_arg(c) ] -> { Internals.mytclWithHoles (simpleInjClause None) false c }
END
TACTIC EXTEND dependent_rewrite
| [ "dependent" "rewrite" orient(b) constr(c) ] -> { rewriteInConcl b c }
| [ "dependent" "rewrite" orient(b) constr(c) "in" hyp(id) ]
-> { rewriteInHyp b c id }
END
(**********************************************************************)
(* Decompose *)
TACTIC EXTEND decompose_sum
| [ "decompose" "sum" constr(c) ] -> { Elim.h_decompose_or c }
END
TACTIC EXTEND decompose_record
| [ "decompose" "record" constr(c) ] -> { Elim.h_decompose_and c }
END
(**********************************************************************)
(* Contradiction *)
{
open Contradiction
}
TACTIC EXTEND absurd
| [ "absurd" constr(c) ] -> { absurd c }
END
TACTIC EXTEND contradiction
| [ "contradiction" constr_with_bindings_opt(c) ] ->
{ Internals.onSomeWithHoles contradiction c }
END
(**********************************************************************)
(* AutoRewrite *)
{
open Autorewrite
}
TACTIC EXTEND autorewrite
| [ "autorewrite" "with" ne_preident_list(l) clause(cl) ] ->
{ auto_multi_rewrite l ( cl) }
| [ "autorewrite" "with" ne_preident_list(l) clause(cl) "using" tactic(t) ] ->
{
auto_multi_rewrite_with (Tacinterp.tactic_of_value ist t) l cl
}
END
TACTIC EXTEND autorewrite_star
| [ "autorewrite" "*" "with" ne_preident_list(l) clause(cl) ] ->
{ auto_multi_rewrite ~conds:AllMatches l cl }
| [ "autorewrite" "*" "with" ne_preident_list(l) clause(cl) "using" tactic(t) ] ->
{ auto_multi_rewrite_with ~conds:AllMatches (Tacinterp.tactic_of_value ist t) l cl }
END
(**********************************************************************)
(* Rewrite star *)
{
let rewrite_star ist clause orient occs c (tac : Geninterp.Val.t option) =
let tac' = Option.map (fun t -> Tacinterp.tactic_of_value ist t, FirstSolved) tac in
Internals.with_delayed_uconstr ist c
(fun c -> general_rewrite ~where:clause ~l2r:orient occs ?tac:tac' ~freeze:true ~dep:true ~with_evars:true (c,NoBindings))
}
TACTIC EXTEND rewrite_star
| [ "rewrite" "*" orient(o) uconstr(c) "in" hyp(id) "at" occurrences(occ) by_arg_tac(tac) ] ->
{ rewrite_star ist (Some id) o (occurrences_of occ) c tac }
| [ "rewrite" "*" orient(o) uconstr(c) "at" occurrences(occ) "in" hyp(id) by_arg_tac(tac) ] ->
{ rewrite_star ist (Some id) o (occurrences_of occ) c tac }
| [ "rewrite" "*" orient(o) uconstr(c) "in" hyp(id) by_arg_tac(tac) ] ->
{ rewrite_star ist (Some id) o Locus.AllOccurrences c tac }
| [ "rewrite" "*" orient(o) uconstr(c) "at" occurrences(occ) by_arg_tac(tac) ] ->
{ rewrite_star ist None o (occurrences_of occ) c tac }
| [ "rewrite" "*" orient(o) uconstr(c) by_arg_tac(tac) ] ->
{ rewrite_star ist None o Locus.AllOccurrences c tac }
END
(**********************************************************************)
(* Hint Rewrite *)
{
let add_rewrite_hint ~locality ~poly bases ort t lcsr =
let env = Global.env() in
let sigma = Evd.from_env env in
let f ce =
let c, ctx = Constrintern.interp_constr env sigma ce in
let c = EConstr.to_constr sigma c in
let ctx =
let ctx = UState.context_set ctx in
if poly then ctx
else (* This is a global universe context that shouldn't be
refreshed at every use of the hint, declare it globally. *)
(Global.push_context_set ~strict:true ctx;
Univ.ContextSet.empty)
in
CAst.make ?loc:(Constrexpr_ops.constr_loc ce) ((c, ctx), ort, Option.map (in_gen (rawwit wit_ltac)) t) in
let eqs = List.map f lcsr in
let add_hints base = add_rew_rules ~locality base eqs in
List.iter add_hints bases
let classify_hint _ = VtSideff ([], VtLater)
}
VERNAC COMMAND EXTEND HintRewrite CLASSIFIED BY { classify_hint }
| #[ polymorphic; locality = hint_locality; ] [ "Hint" "Rewrite" orient(o) ne_constr_list(l) ":" preident_list(bl) ] ->
{ add_rewrite_hint ~locality ~poly:polymorphic bl o None l }
| #[ polymorphic; locality = hint_locality; ] [ "Hint" "Rewrite" orient(o) ne_constr_list(l) "using" tactic(t)
":" preident_list(bl) ] ->
{ add_rewrite_hint ~locality ~poly:polymorphic bl o (Some t) l }
| #[ polymorphic; locality = hint_locality; ] [ "Hint" "Rewrite" orient(o) ne_constr_list(l) ] ->
{ add_rewrite_hint ~locality ~poly:polymorphic ["core"] o None l }
| #[ polymorphic; locality = hint_locality; ] [ "Hint" "Rewrite" orient(o) ne_constr_list(l) "using" tactic(t) ] ->
{ add_rewrite_hint ~locality ~poly:polymorphic ["core"] o (Some t) l }
END
(**********************************************************************)
(* Refine *)
TACTIC EXTEND refine
| [ "refine" uconstr(c) ] ->
{ Internals.refine_tac ist ~simple:false ~with_classes:true c }
END
TACTIC EXTEND simple_refine
| [ "simple" "refine" uconstr(c) ] ->
{ Internals.refine_tac ist ~simple:true ~with_classes:true c }
END
TACTIC EXTEND notcs_refine
| [ "notypeclasses" "refine" uconstr(c) ] ->
{ Internals.refine_tac ist ~simple:false ~with_classes:false c }
END
TACTIC EXTEND notcs_simple_refine
| [ "simple" "notypeclasses" "refine" uconstr(c) ] ->
{ Internals.refine_tac ist ~simple:true ~with_classes:false c }
END
(* Solve unification constraints using heuristics or fail if any remain *)
TACTIC EXTEND solve_constraints
| [ "solve_constraints" ] -> { Refine.solve_constraints }
END
(**********************************************************************)
(* Inversion lemmas (Leminv) *)
{
open Inv
open Leminv
let seff id = VtSideff ([id], VtLater)
}
(*VERNAC ARGUMENT EXTEND sort_family
| [ "Set" ] -> { InSet }
| [ "Prop" ] -> { InProp }
| [ "Type" ] -> { InType }
END*)
VERNAC COMMAND EXTEND DeriveInversionClear
| #[ polymorphic; ] [ "Derive" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort_family(s) ]
=> { seff na }
-> {
add_inversion_lemma_exn ~poly:polymorphic na c s false inv_clear_tac }
| #[ polymorphic; ] [ "Derive" "Inversion_clear" ident(na) "with" constr(c) ] => { seff na }
-> {
add_inversion_lemma_exn ~poly:polymorphic na c Sorts.InProp false inv_clear_tac }
END
VERNAC COMMAND EXTEND DeriveInversion
| #[ polymorphic; ] [ "Derive" "Inversion" ident(na) "with" constr(c) "Sort" sort_family(s) ]
=> { seff na }
-> {
add_inversion_lemma_exn ~poly:polymorphic na c s false inv_tac }
| #[ polymorphic; ] [ "Derive" "Inversion" ident(na) "with" constr(c) ] => { seff na }
-> {
add_inversion_lemma_exn ~poly:polymorphic na c Sorts.InProp false inv_tac }
END
VERNAC COMMAND EXTEND DeriveDependentInversion
| #[ polymorphic; ] [ "Derive" "Dependent" "Inversion" ident(na) "with" constr(c) "Sort" sort_family(s) ]
=> { seff na }
-> {
add_inversion_lemma_exn ~poly:polymorphic na c s true dinv_tac }
END
VERNAC COMMAND EXTEND DeriveDependentInversionClear
| #[ polymorphic; ] [ "Derive" "Dependent" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort_family(s) ]
=> { seff na }
-> {
add_inversion_lemma_exn ~poly:polymorphic na c s true dinv_clear_tac }
END
(**********************************************************************)
(* Subst *)
TACTIC EXTEND subst
| [ "subst" ne_hyp_list(l) ] -> { subst l }
| [ "subst" ] -> { subst_all () }
END
{
let simple_subst_tactic_flags =
{ only_leibniz = true; rewrite_dependent_proof = false }
}
TACTIC EXTEND simple_subst
| [ "simple" "subst" ] -> { subst_all ~flags:simple_subst_tactic_flags () }
END
{
open Evar_tactics
}
(**********************************************************************)
(* Evar creation *)
(* TODO: add support for some test similar to g_constr.name_colon so that
expressions like "evar (list A)" do not raise a syntax error *)
TACTIC EXTEND evar
| [ "evar" test_lpar_id_colon "(" ident(id) ":" lconstr(typ) ")" ] -> { let_evar (Name.Name id) typ }
| [ "evar" constr(typ) ] -> { let_evar Name.Anonymous typ }
END
TACTIC EXTEND instantiate
| [ "instantiate" "(" ident(id) ":=" lglob(c) ")" ] ->
{ instantiate_tac_by_name id c }
| [ "instantiate" "(" natural(i) ":=" lglob(c) ")" hloc(hl) ] ->
{ instantiate_tac i c hl }
END
(**********************************************************************)
(** Nijmegen "step" tactic for setoid rewriting *)
{
open Tactics
open Libobject
(* Registered lemmas are expected to be of the form
x R y -> y == z -> x R z (in the right table)
x R y -> x == z -> z R y (in the left table)
*)
let transitivity_right_table = Summary.ref [] ~name:"transitivity-steps-r"
let transitivity_left_table = Summary.ref [] ~name:"transitivity-steps-l"
(* [step] tries to apply a rewriting lemma; then apply [tac] intended to
complete to proof of the last hypothesis (assumed to state an equality) *)
let step left x tac =
let l =
List.map (fun lem ->
let lem = EConstr.of_constr lem in
Tacticals.tclTHENLAST
(apply_with_bindings (lem, ImplicitBindings [x]))
tac)
!(if left then transitivity_left_table else transitivity_right_table)
in
Tacticals.tclFIRST l
(* Main function to push lemmas in persistent environment *)
let cache_transitivity_lemma (left,lem) =
if left then
transitivity_left_table := lem :: !transitivity_left_table
else
transitivity_right_table := lem :: !transitivity_right_table
let subst_transitivity_lemma (subst,(b,ref)) = (b,subst_mps subst ref)
let inTransitivity : bool * Constr.t -> obj =
declare_object @@ global_object_nodischarge "TRANSITIVITY-STEPS"
~cache:cache_transitivity_lemma
~subst:(Some subst_transitivity_lemma)
(* Main entry points *)
let add_transitivity_lemma left lem =
let env = Global.env () in
let sigma = Evd.from_env env in
let lem',ctx (*FIXME*) = Constrintern.interp_constr env sigma lem in
let lem' = EConstr.to_constr sigma lem' in
Lib.add_leaf (inTransitivity (left,lem'))
}
(* Vernacular syntax *)
TACTIC EXTEND stepl
| ["stepl" constr(c) "by" tactic(tac) ] -> { step true c (Tacinterp.tactic_of_value ist tac) }
| ["stepl" constr(c) ] -> { step true c (Proofview.tclUNIT ()) }
END
TACTIC EXTEND stepr
| ["stepr" constr(c) "by" tactic(tac) ] -> { step false c (Tacinterp.tactic_of_value ist tac) }
| ["stepr" constr(c) ] -> { step false c (Proofview.tclUNIT ()) }
END
VERNAC COMMAND EXTEND AddStepl CLASSIFIED AS SIDEFF
| [ "Declare" "Left" "Step" constr(t) ] ->
{ add_transitivity_lemma true t }
END
VERNAC COMMAND EXTEND AddStepr CLASSIFIED AS SIDEFF
| [ "Declare" "Right" "Step" constr(t) ] ->
{ add_transitivity_lemma false t }
END
(**********************************************************************)
(* sozeau: abs/gen for induction on instantiated dependent inductives, using "Ford" induction as
defined by Conor McBride *)
TACTIC EXTEND generalize_eqs
| ["generalize_eqs" hyp(id) ] -> { Generalize.abstract_generalize ~generalize_vars:false id }
END
TACTIC EXTEND dep_generalize_eqs
| ["dependent" "generalize_eqs" hyp(id) ] -> { Generalize.abstract_generalize ~generalize_vars:false ~force_dep:true id }
END
TACTIC EXTEND generalize_eqs_vars
| ["generalize_eqs_vars" hyp(id) ] -> { Generalize.abstract_generalize ~generalize_vars:true id }
END
TACTIC EXTEND dep_generalize_eqs_vars
| ["dependent" "generalize_eqs_vars" hyp(id) ] -> { Generalize.abstract_generalize ~force_dep:true ~generalize_vars:true id }
END
(** Tactic to automatically simplify hypotheses of the form [Π Δ, x_i = t_i -> T]
where [t_i] is closed w.r.t. Δ. Such hypotheses are automatically generated
during dependent induction. For internal use. *)
TACTIC EXTEND specialize_eqs
| [ "specialize_eqs" hyp(id) ] -> { specialize_eqs id }
END
TACTIC EXTEND destauto DEPRECATED { Deprecation.make ~since:"8.20" () }
| [ "destauto" ] -> { Internals.destauto }
| [ "destauto" "in" hyp(id) ] -> { Internals.destauto_in id }
END
(**********************************************************************)
(**********************************************************************)
(* A version of abstract constructing transparent terms *)
(* Introduced by Jason Gross and Benjamin Delaware in June 2016 *)
(**********************************************************************)
TACTIC EXTEND transparent_abstract
| [ "transparent_abstract" tactic3(t) ] -> { Proofview.Goal.enter begin fun gl ->
Abstract.tclABSTRACT ~opaque:false None (Tacinterp.tactic_of_value ist t) end; }
| [ "transparent_abstract" tactic3(t) "using" ident(id) ] -> { Proofview.Goal.enter begin fun gl ->
Abstract.tclABSTRACT ~opaque:false (Some id) (Tacinterp.tactic_of_value ist t) end; }
END
(* ********************************************************************* *)
TACTIC EXTEND constr_eq
| [ "constr_eq" constr(x) constr(y) ] -> { Tactics.constr_eq ~strict:false x y }
END
TACTIC EXTEND constr_eq_strict
| [ "constr_eq_strict" constr(x) constr(y) ] -> { Tactics.constr_eq ~strict:true x y }
END
TACTIC EXTEND constr_eq_nounivs
| [ "constr_eq_nounivs" constr(x) constr(y) ] -> {
Proofview.tclEVARMAP >>= fun sigma ->
if EConstr.eq_constr_nounivs sigma x y then Proofview.tclUNIT () else Tacticals.tclFAIL (str "Not equal") }
END
TACTIC EXTEND is_evar
| [ "is_evar" constr(x) ] -> { Internals.is_evar x }
END
TACTIC EXTEND has_evar
| [ "has_evar" constr(x) ] -> { Internals.has_evar x }
END
TACTIC EXTEND is_hyp
| [ "is_var" constr(x) ] -> { Internals.is_var x }
END
TACTIC EXTEND is_fix
| [ "is_fix" constr(x) ] -> { Internals.is_fix x }
END
TACTIC EXTEND is_cofix
| [ "is_cofix" constr(x) ] -> { Internals.is_cofix x }
END
TACTIC EXTEND is_ind
| [ "is_ind" constr(x) ] -> { Internals.is_ind x }
END
TACTIC EXTEND is_constructor
| [ "is_constructor" constr(x) ] -> { Internals.is_constructor x }
END
TACTIC EXTEND is_proj
| [ "is_proj" constr(x) ] -> { Internals.is_proj x }
END
TACTIC EXTEND is_const
| [ "is_const" constr(x) ] -> { Internals.is_const x }
END
(* Shelves all the goals under focus. *)
TACTIC EXTEND shelve
| [ "shelve" ] -> { Proofview.shelve }
END
(* Shelves the unifiable goals under focus, i.e. the goals which
appear in other goals under focus (the unfocused goals are not
considered). *)
TACTIC EXTEND shelve_unifiable
| [ "shelve_unifiable" ] -> { Proofview.shelve_unifiable }
END
(* Unshelves the goal shelved by the tactic. *)
TACTIC EXTEND unshelve
| [ "unshelve" tactic1(t) ] -> { Internals.unshelve ist t }
END
(* Command to add every unshelved variables to the focus *)
VERNAC COMMAND EXTEND Unshelve STATE proof
| [ "Unshelve" ]
=> { classify_as_proofstep }
-> { fun ~pstate -> Declare.Proof.map ~f:(fun p -> Proof.unshelve p) pstate }
END
(* Gives up on the goals under focus: the goals are considered solved,
but the proof cannot be closed until the user goes back and solve
these goals. *)
TACTIC EXTEND give_up
| [ "give_up" ] ->
{ Proofview.give_up }
END
(* cycles [n] goals *)
TACTIC EXTEND cycle
| [ "cycle" int_or_var(n) ] -> { Proofview.cycle n }
END
(* swaps goals number [i] and [j] *)
TACTIC EXTEND swap
| [ "swap" int_or_var(i) int_or_var(j) ] -> { Proofview.swap i j }
END
(* reverses the list of focused goals *)
TACTIC EXTEND revgoals
| [ "revgoals" ] -> { Proofview.revgoals }
END
{
type cmp =
| Eq
| Lt | Le
| Gt | Ge
type 'i test =
| Test of cmp * 'i * 'i
let pr_cmp = function
| Eq -> Pp.str"="
| Lt -> Pp.str"<"
| Le -> Pp.str"<="
| Gt -> Pp.str">"
| Ge -> Pp.str">="
let pr_cmp' _prc _prlc _prt = pr_cmp
let pr_test_gen f (Test(c,x,y)) =
Pp.(f x ++ pr_cmp c ++ f y)
let pr_test = pr_test_gen (Pputils.pr_or_var Pp.int)
let pr_test' _prc _prlc _prt = pr_test
let pr_itest = pr_test_gen Pp.int
let pr_itest' _prc _prlc _prt = pr_itest
}
ARGUMENT EXTEND comparison PRINTED BY { pr_cmp' }
| [ "=" ] -> { Eq }
| [ "<" ] -> { Lt }
| [ "<=" ] -> { Le }
| [ ">" ] -> { Gt }
| [ ">=" ] -> { Ge }
END
{
let interp_test ist env sigma = function
| Test (c,x,y) ->
Test(c,Tacinterp.interp_int_or_var ist x,Tacinterp.interp_int_or_var ist y)
}
ARGUMENT EXTEND test
PRINTED BY { pr_itest' }
INTERPRETED BY { interp_test }
RAW_PRINTED BY { pr_test' }
GLOB_PRINTED BY { pr_test' }
| [ int_or_var(x) comparison(c) int_or_var(y) ] -> { Test(c,x,y) }
END
{
let interp_cmp = function
| Eq -> Int.equal
| Lt -> ((<):int->int->bool)
| Le -> ((<=):int->int->bool)
| Gt -> ((>):int->int->bool)
| Ge -> ((>=):int->int->bool)
let run_test = function
| Test(c,x,y) -> interp_cmp c x y
let guard tst =
if run_test tst then
Proofview.tclUNIT ()
else
let msg = Pp.(str"Condition not satisfied:"++ws 1++(pr_itest tst)) in
Tacticals.tclZEROMSG msg
}
TACTIC EXTEND guard
| [ "guard" test(tst) ] -> { guard tst }
END
TACTIC EXTEND decompose
| [ "decompose" "[" ne_constr_list(l) "]" constr(c) ] -> { Internals.decompose l c }
END
(** library/keys *)
VERNAC COMMAND EXTEND Declare_keys CLASSIFIED AS SIDEFF
| [ "Declare" "Equivalent" "Keys" constr(c) constr(c') ] -> { Internals.declare_equivalent_keys c c' }
END
VERNAC COMMAND EXTEND Print_keys CLASSIFIED AS QUERY
| [ "Print" "Equivalent" "Keys" ] -> { Feedback.msg_notice (Keys.pr_keys Printer.pr_global) }
END
VERNAC COMMAND EXTEND OptimizeProof
| ![ proof ] [ "Optimize" "Proof" ] => { classify_as_proofstep } ->
{ fun ~pstate -> Declare.Proof.compact pstate }
| [ "Optimize" "Heap" ] => { classify_as_proofstep } ->
{ Gc.compact () }
END
TACTIC EXTEND optimize_heap
| [ "optimize_heap" ] -> { Internals.tclOPTIMIZE_HEAP }
END
VERNAC COMMAND EXTEND infoH CLASSIFIED AS QUERY
| ![ proof_query ] [ "infoH" tactic(tac) ] -> { Internals.infoH tac }
END
(** Tactic analogous to [Strategy] vernacular *)
TACTIC EXTEND with_strategy
| [ "with_strategy" strategy_level_or_var(v) "[" ne_smart_global_list(q) "]" tactic3(tac) ] -> {
with_set_strategy [(v, q)] (Tacinterp.tactic_of_value ist tac)
}
END
|