1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
|
(* File reduced by coq-bug-finder from original input, then from 2475 lines to 729 lines, then from 746 lines to 658 lines, then from 675 lines to 658 lines *)
(* coqc version 8.5beta3 (November 2015) compiled on Nov 11 2015 18:23:0 with OCaml 4.01.0
coqtop version 8.5beta3 (November 2015) *)
(* Variable P : forall n m : nat, n = m -> Prop. *)
(* Axiom Prefl : forall n : nat, P n n eq_refl. *)
Axiom proof_admitted : False.
Tactic Notation "admit" := case proof_admitted.
Require Coq.Program.Program.
Require Coq.Strings.String.
Require Coq.micromega.Lia.
Module Export Fiat_DOT_Common.
Module Export Fiat.
Module Common.
Import Coq.Lists.List.
Export Coq.Program.Program.
Global Set Implicit Arguments.
Global Coercion is_true : bool >-> Sortclass.
Coercion bool_of_sum {A B} (b : sum A B) : bool := if b then true else false.
Fixpoint ForallT {T} (P : T -> Type) (ls : list T) : Type
:= match ls return Type with
| nil => True
| x::xs => (P x * ForallT P xs)%type
end.
Fixpoint Forall_tails {T} (P : list T -> Type) (ls : list T) : Type
:= match ls with
| nil => P nil
| x::xs => (P (x::xs) * Forall_tails P xs)%type
end.
End Common.
End Fiat.
End Fiat_DOT_Common.
Module Export Fiat_DOT_Parsers_DOT_StringLike_DOT_Core.
Module Export Fiat.
Module Export Parsers.
Module Export StringLike.
Module Export Core.
Import Coq.Relations.Relation_Definitions.
Import Coq.Classes.Morphisms.
Local Coercion is_true : bool >-> Sortclass.
Module Export StringLike.
Class StringLike {Char : Type} :=
{
String :: Type;
is_char : String -> Char -> bool;
length : String -> nat;
take : nat -> String -> String;
drop : nat -> String -> String;
get : nat -> String -> option Char;
unsafe_get : nat -> String -> Char;
bool_eq : String -> String -> bool;
beq : relation String := fun x y => bool_eq x y
}.
Arguments StringLike : clear implicits.
Infix "=s" := (@beq _ _) (at level 70, no associativity) : type_scope.
Notation "s ~= [ ch ]" := (is_char s ch) (at level 70, no associativity) : string_like_scope.
Local Open Scope string_like_scope.
Class StringLikeProperties (Char : Type) `{StringLike Char} :=
{
singleton_unique : forall s ch ch', s ~= [ ch ] -> s ~= [ ch' ] -> ch = ch';
singleton_exists : forall s, length s = 1 -> exists ch, s ~= [ ch ];
get_0 : forall s ch, take 1 s ~= [ ch ] <-> get 0 s = Some ch;
get_S : forall n s, get (S n) s = get n (drop 1 s);
unsafe_get_correct : forall n s ch, get n s = Some ch -> unsafe_get n s = ch;
length_singleton : forall s ch, s ~= [ ch ] -> length s = 1;
bool_eq_char : forall s s' ch, s ~= [ ch ] -> s' ~= [ ch ] -> s =s s';
is_char_Proper :: Proper (beq ==> eq ==> eq) is_char;
length_Proper :: Proper (beq ==> eq) length;
take_Proper :: Proper (eq ==> beq ==> beq) take;
drop_Proper :: Proper (eq ==> beq ==> beq) drop;
bool_eq_Equivalence :: Equivalence beq;
bool_eq_empty : forall str str', length str = 0 -> length str' = 0 -> str =s str';
take_short_length : forall str n, n <= length str -> length (take n str) = n;
take_long : forall str n, length str <= n -> take n str =s str;
take_take : forall str n m, take n (take m str) =s take (min n m) str;
drop_length : forall str n, length (drop n str) = length str - n;
drop_0 : forall str, drop 0 str =s str;
drop_drop : forall str n m, drop n (drop m str) =s drop (n + m) str;
drop_take : forall str n m, drop n (take m str) =s take (m - n) (drop n str);
take_drop : forall str n m, take n (drop m str) =s drop m (take (n + m) str);
bool_eq_from_get : forall str str', (forall n, get n str = get n str') -> str =s str'
}.
Global Arguments StringLikeProperties _ {_}.
End StringLike.
End Core.
End StringLike.
End Parsers.
End Fiat.
End Fiat_DOT_Parsers_DOT_StringLike_DOT_Core.
Module Export Fiat_DOT_Parsers_DOT_ContextFreeGrammar_DOT_Core.
Module Export Fiat.
Module Export Parsers.
Module Export ContextFreeGrammar.
Module Export Core.
Import Coq.Strings.String.
Import Coq.Lists.List.
Export Fiat.Parsers.StringLike.Core.
Section cfg.
Context {Char : Type}.
Section definitions.
Inductive item :=
| Terminal (_ : Char)
| NonTerminal (_ : string).
Definition production := list item.
Definition productions := list production.
Record grammar :=
{
Start_symbol :> string;
Lookup :> string -> productions;
Start_productions :> productions := Lookup Start_symbol;
Valid_nonterminals : list string;
Valid_productions : list productions := map Lookup Valid_nonterminals
}.
End definitions.
End cfg.
Arguments item _ : clear implicits.
Arguments production _ : clear implicits.
Arguments productions _ : clear implicits.
Arguments grammar _ : clear implicits.
End Core.
End ContextFreeGrammar.
End Parsers.
End Fiat.
End Fiat_DOT_Parsers_DOT_ContextFreeGrammar_DOT_Core.
Module Export Fiat_DOT_Parsers_DOT_BaseTypes.
Module Export Fiat.
Module Export Parsers.
Module Export BaseTypes.
Import Coq.Arith.Wf_nat.
Local Coercion is_true : bool >-> Sortclass.
Section recursive_descent_parser.
Context {Char} {HSL : StringLike Char} {G : grammar Char}.
Class parser_computational_predataT :=
{ nonterminals_listT : Type;
nonterminal_carrierT : Type;
of_nonterminal : String.string -> nonterminal_carrierT;
to_nonterminal : nonterminal_carrierT -> String.string;
initial_nonterminals_data : nonterminals_listT;
nonterminals_length : nonterminals_listT -> nat;
is_valid_nonterminal : nonterminals_listT -> nonterminal_carrierT -> bool;
remove_nonterminal : nonterminals_listT -> nonterminal_carrierT -> nonterminals_listT }.
Class parser_removal_dataT' `{predata : parser_computational_predataT} :=
{ nonterminals_listT_R : nonterminals_listT -> nonterminals_listT -> Prop
:= ltof _ nonterminals_length;
nonterminals_length_zero : forall ls,
nonterminals_length ls = 0
-> forall nt, is_valid_nonterminal ls nt = false;
remove_nonterminal_dec : forall ls nonterminal,
is_valid_nonterminal ls nonterminal
-> nonterminals_listT_R (remove_nonterminal ls nonterminal) ls;
remove_nonterminal_noninc : forall ls nonterminal,
~nonterminals_listT_R ls (remove_nonterminal ls nonterminal);
initial_nonterminals_correct : forall nonterminal,
is_valid_nonterminal initial_nonterminals_data (of_nonterminal nonterminal) <-> List.In nonterminal (Valid_nonterminals G);
initial_nonterminals_correct' : forall nonterminal,
is_valid_nonterminal initial_nonterminals_data nonterminal <-> List.In (to_nonterminal nonterminal) (Valid_nonterminals G);
to_of_nonterminal : forall nonterminal,
List.In nonterminal (Valid_nonterminals G)
-> to_nonterminal (of_nonterminal nonterminal) = nonterminal;
of_to_nonterminal : forall nonterminal,
is_valid_nonterminal initial_nonterminals_data nonterminal
-> of_nonterminal (to_nonterminal nonterminal) = nonterminal;
ntl_wf : well_founded nonterminals_listT_R
:= well_founded_ltof _ _;
remove_nonterminal_1
: forall ls ps ps',
is_valid_nonterminal (remove_nonterminal ls ps) ps'
-> is_valid_nonterminal ls ps';
remove_nonterminal_2
: forall ls ps ps',
is_valid_nonterminal (remove_nonterminal ls ps) ps' = false
<-> is_valid_nonterminal ls ps' = false \/ ps = ps' }.
Class split_dataT :=
{ split_string_for_production
: item Char -> production Char -> String -> list nat }.
Class boolean_parser_dataT :=
{ predata :: parser_computational_predataT;
split_data :: split_dataT }.
End recursive_descent_parser.
End BaseTypes.
End Parsers.
End Fiat.
End Fiat_DOT_Parsers_DOT_BaseTypes.
Module Export Fiat_DOT_Common_DOT_List_DOT_Operations.
Module Export Fiat.
Module Export Common.
Module Export List.
Module Export Operations.
Import Coq.Lists.List.
Module Export List.
Section InT.
Context {A : Type} (a : A).
Fixpoint InT (ls : list A) : Set
:= match ls return Set with
| nil => False
| b :: m => (b = a) + InT m
end%type.
End InT.
End List.
End Operations.
End List.
End Common.
End Fiat.
End Fiat_DOT_Common_DOT_List_DOT_Operations.
Module Export Fiat_DOT_Parsers_DOT_StringLike_DOT_Properties.
Module Export Fiat.
Module Export Parsers.
Module Export StringLike.
Module Export Properties.
Section String.
Context {Char} {HSL : StringLike Char} {HSLP : StringLikeProperties Char}.
Lemma take_length {str n}
: length (take n str) = min n (length str).
admit.
Defined.
End String.
End Properties.
End StringLike.
End Parsers.
End Fiat.
End Fiat_DOT_Parsers_DOT_StringLike_DOT_Properties.
Module Export Fiat_DOT_Parsers_DOT_ContextFreeGrammar_DOT_Properties.
Module Export Fiat.
Module Export Parsers.
Module Export ContextFreeGrammar.
Module Export Properties.
Local Open Scope list_scope.
Definition production_is_reachableT {Char} (G : grammar Char) (p : production Char)
:= { nt : _
& { prefix : _
& List.In nt (Valid_nonterminals G)
* List.InT
(prefix ++ p)
(Lookup G nt) } }%type.
End Properties.
End ContextFreeGrammar.
End Parsers.
End Fiat.
End Fiat_DOT_Parsers_DOT_ContextFreeGrammar_DOT_Properties.
Module Export Fiat_DOT_Parsers_DOT_MinimalParse.
Module Export Fiat.
Module Export Parsers.
Module Export MinimalParse.
Import Coq.Lists.List.
Import Fiat.Parsers.ContextFreeGrammar.Core.
Local Coercion is_true : bool >-> Sortclass.
Local Open Scope string_like_scope.
Section cfg.
Context {Char} {HSL : StringLike Char} {G : grammar Char}.
Context {predata : @parser_computational_predataT}
{rdata' : @parser_removal_dataT' _ G predata}.
Inductive minimal_parse_of
: forall (len0 : nat) (valid : nonterminals_listT)
(str : String),
productions Char -> Type :=
| MinParseHead : forall len0 valid str pat pats,
@minimal_parse_of_production len0 valid str pat
-> @minimal_parse_of len0 valid str (pat::pats)
| MinParseTail : forall len0 valid str pat pats,
@minimal_parse_of len0 valid str pats
-> @minimal_parse_of len0 valid str (pat::pats)
with minimal_parse_of_production
: forall (len0 : nat) (valid : nonterminals_listT)
(str : String),
production Char -> Type :=
| MinParseProductionNil : forall len0 valid str,
length str = 0
-> @minimal_parse_of_production len0 valid str nil
| MinParseProductionCons : forall len0 valid str n pat pats,
length str <= len0
-> @minimal_parse_of_item len0 valid (take n str) pat
-> @minimal_parse_of_production len0 valid (drop n str) pats
-> @minimal_parse_of_production len0 valid str (pat::pats)
with minimal_parse_of_item
: forall (len0 : nat) (valid : nonterminals_listT)
(str : String),
item Char -> Type :=
| MinParseTerminal : forall len0 valid str ch,
str ~= [ ch ]
-> @minimal_parse_of_item len0 valid str (Terminal ch)
| MinParseNonTerminal
: forall len0 valid str (nt : String.string),
@minimal_parse_of_nonterminal len0 valid str nt
-> @minimal_parse_of_item len0 valid str (NonTerminal nt)
with minimal_parse_of_nonterminal
: forall (len0 : nat) (valid : nonterminals_listT)
(str : String),
String.string -> Type :=
| MinParseNonTerminalStrLt
: forall len0 valid (nt : String.string) str,
length str < len0
-> is_valid_nonterminal initial_nonterminals_data (of_nonterminal nt)
-> @minimal_parse_of (length str) initial_nonterminals_data str (Lookup G nt)
-> @minimal_parse_of_nonterminal len0 valid str nt
| MinParseNonTerminalStrEq
: forall len0 str valid nonterminal,
length str = len0
-> is_valid_nonterminal initial_nonterminals_data (of_nonterminal nonterminal)
-> is_valid_nonterminal valid (of_nonterminal nonterminal)
-> @minimal_parse_of len0 (remove_nonterminal valid (of_nonterminal nonterminal)) str (Lookup G nonterminal)
-> @minimal_parse_of_nonterminal len0 valid str nonterminal.
End cfg.
End MinimalParse.
End Parsers.
End Fiat.
End Fiat_DOT_Parsers_DOT_MinimalParse.
Module Export Fiat_DOT_Parsers_DOT_CorrectnessBaseTypes.
Module Export Fiat.
Module Export Parsers.
Module Export CorrectnessBaseTypes.
Import Coq.Lists.List.
Import Fiat.Parsers.ContextFreeGrammar.Core.
Import Fiat_DOT_Common.Fiat.Common.
Section general.
Context {Char} {HSL : StringLike Char} {G : grammar Char}.
Definition split_list_completeT_for {data : @parser_computational_predataT}
{len0 valid}
(it : item Char) (its : production Char)
(str : String)
(pf : length str <= len0)
(split_list : list nat)
:= ({ n : nat
& (minimal_parse_of_item (G := G) (predata := data) len0 valid (take n str) it)
* (minimal_parse_of_production (G := G) len0 valid (drop n str) its) }%type)
-> ({ n : nat
& (In (min (length str) n) (map (min (length str)) split_list))
* (minimal_parse_of_item (G := G) len0 valid (take n str) it)
* (minimal_parse_of_production (G := G) len0 valid (drop n str) its) }%type).
Definition split_list_completeT {data : @parser_computational_predataT}
(splits : item Char -> production Char -> String -> list nat)
:= forall len0 valid str (pf : length str <= len0) nt,
is_valid_nonterminal initial_nonterminals_data (of_nonterminal nt)
-> ForallT
(Forall_tails
(fun prod
=> match prod return Type with
| nil => True
| it::its
=> @split_list_completeT_for data len0 valid it its str pf (splits it its str)
end))
(Lookup G nt).
Class boolean_parser_completeness_dataT' {data : boolean_parser_dataT} :=
{ split_string_for_production_complete
: split_list_completeT split_string_for_production }.
End general.
End CorrectnessBaseTypes.
End Parsers.
End Fiat.
End Fiat_DOT_Parsers_DOT_CorrectnessBaseTypes.
Module Export Fiat.
Module Export Parsers.
Module Export ContextFreeGrammar.
Module Export Valid.
Export Fiat.Parsers.StringLike.Core.
Section cfg.
Context {Char : Type} {HSL : StringLike Char} (G : grammar Char)
{predata : parser_computational_predataT}.
Definition item_valid (it : item Char)
:= match it with
| Terminal _ => True
| NonTerminal nt' => is_true (is_valid_nonterminal initial_nonterminals_data (of_nonterminal nt'))
end.
Definition production_valid pat
:= List.Forall item_valid pat.
Definition productions_valid pats
:= List.Forall production_valid pats.
Definition grammar_valid
:= forall nt,
List.In nt (Valid_nonterminals G)
-> productions_valid (Lookup G nt).
End cfg.
End Valid.
End ContextFreeGrammar.
End Parsers.
End Fiat.
Section app.
Context {Char : Type} {HSL : StringLike Char} (G : grammar Char)
{predata : parser_computational_predataT}.
Lemma hd_production_valid
(it : item Char)
(its : production Char)
(H : production_valid (it :: its))
: item_valid it.
admit.
Defined.
Lemma production_valid_cons
(it : item Char)
(its : production Char)
(H : production_valid (it :: its))
: production_valid its.
admit.
Defined.
End app.
Import Coq.Lists.List.
Import Coq.Arith.Arith.
Import Coq.micromega.Lia.
Import Fiat_DOT_Common.Fiat.Common.
Import Fiat.Parsers.ContextFreeGrammar.Valid.
Local Open Scope string_like_scope.
Section recursive_descent_parser.
Context {Char} {HSL : StringLike Char} {HSLP : StringLikeProperties Char} (G : grammar Char).
Context {data : @boolean_parser_dataT Char _}
{cdata : @boolean_parser_completeness_dataT' Char _ G data}
{rdata : @parser_removal_dataT' _ G _}
{gvalid : grammar_valid G}.
Local Notation dec T := (T + (T -> False))%type (only parsing).
Local Notation iffT x y := ((x -> y) * (y -> x))%type (only parsing).
Lemma dec_prod {A B} (HA : dec A) (HB : dec B) : dec (A * B).
admit.
Defined.
Lemma dec_In {A} {P : A -> Type} (HA : forall a, dec (P a)) ls
: dec { a : _ & (In a ls * P a) }.
admit.
Defined.
Section item.
Context {len0 valid}
(str : String)
(str_matches_nonterminal'
: nonterminal_carrierT -> bool)
(str_matches_nonterminal
: forall nt : nonterminal_carrierT,
dec (minimal_parse_of_nonterminal (G := G) len0 valid str (to_nonterminal nt))).
Section valid.
Context (Hmatches
: forall nt,
is_valid_nonterminal initial_nonterminals_data nt
-> str_matches_nonterminal nt = str_matches_nonterminal' nt :> bool)
(it : item Char)
(Hvalid : item_valid it).
Definition parse_item'
: dec (minimal_parse_of_item (G := G) len0 valid str it).
Proof.
clear Hvalid.
refine (match it return dec (minimal_parse_of_item len0 valid str it) with
| Terminal ch => if Sumbool.sumbool_of_bool (str ~= [ ch ])
then inl (MinParseTerminal _ _ _ _ _)
else inr (fun _ => !)
| NonTerminal nt => if str_matches_nonterminal (of_nonterminal nt)
then inl (MinParseNonTerminal _)
else inr (fun _ => !)
end);
clear str_matches_nonterminal Hmatches;
admit.
Defined.
End valid.
End item.
Context {len0 valid}
(parse_nonterminal
: forall (str : String) (len : nat) (Hlen : length str = len) (pf : len <= len0) (nt : nonterminal_carrierT),
dec (minimal_parse_of_nonterminal (G := G) len0 valid str (to_nonterminal nt))).
Lemma dec_in_helper {ls it its str}
: iffT {n0 : nat &
(In (min (length str) n0) (map (min (length str)) ls) *
minimal_parse_of_item (G := G) len0 valid (take n0 str) it *
minimal_parse_of_production (G := G) len0 valid (drop n0 str) its)%type}
{n0 : nat &
(In n0 ls *
(minimal_parse_of_item (G := G) len0 valid (take n0 str) it *
minimal_parse_of_production (G := G) len0 valid (drop n0 str) its))%type}.
admit.
Defined.
Lemma parse_production'_helper {str it its} (pf : length str <= len0)
: dec {n0 : nat &
(minimal_parse_of_item (G := G) len0 valid (take n0 str) it *
minimal_parse_of_production (G := G) len0 valid (drop n0 str) its)%type}
-> dec (minimal_parse_of_production (G := G) len0 valid str (it :: its)).
admit.
Defined.
Local Ltac t_parse_production_for := repeat
match goal with
| [ H : (Nat.eqb _ _) = true |- _ ] => apply ->Nat.eqb_eq in H
| _ => progress subst
| _ => solve [ constructor; assumption ]
| [ H : minimal_parse_of_production _ _ _ nil |- _ ] => (inversion H; clear H)
| [ H : minimal_parse_of_production _ _ _ (_::_) |- _ ] => (inversion H; clear H)
| [ H : ?x = 0, H' : context[?x] |- _ ] => rewrite H in H'
| _ => progress simpl in *
| _ => discriminate
| [ H : forall x, (_ * _)%type -> _ |- _ ] => specialize (fun x y z => H x (y, z))
| _ => solve [ eauto with nocore ]
| _ => solve [ apply Nat.min_case_strong; lia ]
| _ => lia
| [ H : production_valid (_::_) |- _ ]
=> let H' := fresh in
pose proof H as H';
apply production_valid_cons in H;
apply hd_production_valid in H'
end.
Definition parse_production'_for
(splits : item Char -> production Char -> String -> list nat)
(Hsplits : forall str it its (Hreachable : production_is_reachableT G (it::its)) pf', split_list_completeT_for (len0 := len0) (G := G) (valid := valid) it its str pf' (splits it its str))
(str : String)
(len : nat)
(Hlen : length str = len)
(pf : len <= len0)
(prod : production Char)
(Hreachable : production_is_reachableT G prod)
: dec (minimal_parse_of_production (G := G) len0 valid str prod).
Proof.
revert prod Hreachable str len Hlen pf.
refine
((fun pf_helper =>
list_rect
(fun prod =>
forall (Hreachable : production_is_reachableT G prod)
(str : String)
(len : nat)
(Hlen : length str = len)
(pf : len <= len0),
dec (minimal_parse_of_production (G := G) len0 valid str prod))
(
fun Hreachable str len Hlen pf
=> match Utils.dec (Nat.eqb len 0) with
| left H => inl _
| right H => inr (fun p => _)
end)
(fun it its parse_production' Hreachable str len Hlen pf
=> parse_production'_helper
_
(let parse_item := (fun n pf => parse_item' (parse_nonterminal (take n str) (len := min n len) (eq_trans take_length (f_equal (min _) Hlen)) pf) it) in
let parse_item := (fun n => parse_item n (Nat.min_case_strong n len (fun k => k <= len0) (fun Hlen => (Nat.le_trans _ _ _ Hlen pf)) (fun Hlen => pf))) in
let parse_production := (fun n => parse_production' (pf_helper it its Hreachable) (drop n str) (len - n) (eq_trans (drop_length _ _) (f_equal (fun x => x - _) Hlen)) (Nat.le_trans _ _ _ (Nat.le_sub_l _ _) pf)) in
match dec_In
(fun n => dec_prod (parse_item n) (parse_production n))
(splits it its str)
with
| inl p => inl (existT _ (projT1 p) (snd (projT2 p)))
| inr p
=> let pf' := (Nat.le_trans _ _ _ (Nat.eq_le_incl _ _ Hlen) pf) in
let H := (_ : split_list_completeT_for (G := G) (len0 := len0) (valid := valid) it its str pf' (splits it its str)) in
inr (fun p' => p (fst dec_in_helper (H p')))
end)
)) _);
[ clear parse_nonterminal Hsplits splits rdata cdata
| clear parse_nonterminal Hsplits splits rdata cdata
| ..
| admit ].
abstract t_parse_production_for.
abstract t_parse_production_for.
abstract t_parse_production_for.
abstract t_parse_production_for.
Defined.
End recursive_descent_parser.
|