1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
|
(* -*- mode: coq; coq-prog-args: ("-nois" "-indices-matter") -*- *)
(* File reduced by coq-bug-finder from original input, then from 2553 lines to 1932 lines, then from 1946 lines to 1932 lines, then from 2467 lines to 1002 lines, then from 1016 lines to 1002 lines *)
(* coqc version 8.5 (January 2016) compiled on Jan 23 2016 16:15:22 with OCaml 4.01.0
coqtop version 8.5 (January 2016) *)
Require Import Coq.Init.Ltac.
Inductive False := .
Axiom proof_admitted : False.
Tactic Notation "admit" := case proof_admitted.
Require Coq.Init.Datatypes.
Import Coq.Init.Notations.
Global Set Universe Polymorphism.
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Global Set Primitive Projections.
Inductive sum (A B : Type) : Type :=
| inl : A -> sum A B
| inr : B -> sum A B.
Notation nat := Coq.Init.Datatypes.nat.
Notation O := Coq.Init.Datatypes.O.
Notation S := Coq.Init.Datatypes.S.
Notation "x + y" := (sum x y) : type_scope.
Record prod (A B : Type) := pair { fst : A ; snd : B }.
Notation "x * y" := (prod x y) : type_scope.
Module Export Specif.
Set Implicit Arguments.
Record sig {A} (P : A -> Type) := exist { proj1_sig : A ; proj2_sig : P proj1_sig }.
Arguments proj1_sig {A P} _ / .
Notation sigT := sig (only parsing).
Notation existT := exist (only parsing).
Notation "{ x : A & P }" := (sigT (fun x:A => P)) : type_scope.
Notation projT1 := proj1_sig (only parsing).
Notation projT2 := proj2_sig (only parsing).
End Specif.
Module Export HoTT_DOT_Basics_DOT_Overture.
Module Export HoTT.
Module Export Basics.
Module Export Overture.
Global Set Keyed Unification.
Global Unset Strict Universe Declaration.
Notation Type0 := Set.
Definition Type1@{i} := Eval hnf in let gt := (Set : Type@{i}) in Type@{i}.
Definition Type2@{i j} := Eval hnf in let gt := (Type1@{j} : Type@{i}) in Type@{i}.
Definition Type2le@{i j} := Eval hnf in let gt := (Set : Type@{i}) in
let ge := ((fun x => x) : Type1@{j} -> Type@{i}) in Type@{i}.
Notation idmap := (fun x => x).
Delimit Scope function_scope with function.
Delimit Scope path_scope with path.
Delimit Scope fibration_scope with fibration.
Delimit Scope trunc_scope with trunc.
Open Scope trunc_scope.
Open Scope path_scope.
Open Scope fibration_scope.
Open Scope nat_scope.
Open Scope function_scope.
Notation "( x ; y )" := (existT _ x y) : fibration_scope.
Notation pr1 := projT1.
Notation pr2 := projT2.
Notation "x .1" := (pr1 x) : fibration_scope.
Notation "x .2" := (pr2 x) : fibration_scope.
Notation compose := (fun g f x => g (f x)).
Notation "g 'o' f" := (compose g%function f%function) (at level 40, left associativity) : function_scope.
Inductive paths {A : Type} (a : A) : A -> Type :=
idpath : paths a a.
Arguments idpath {A a} , [A] a.
Notation "x = y :> A" := (@paths A x y) : type_scope.
Notation "x = y" := (x = y :>_) : type_scope.
Definition inverse {A : Type} {x y : A} (p : x = y) : y = x
:= match p with idpath => idpath end.
Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z :=
match p, q with idpath, idpath => idpath end.
Notation "1" := idpath : path_scope.
Notation "p @ q" := (concat p%path q%path) (at level 20) : path_scope.
Notation "p ^" := (inverse p%path) (at level 3, format "p '^'") : path_scope.
Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y :=
match p with idpath => u end.
Notation "p # x" := (transport _ p x) (right associativity, at level 65, only parsing) : path_scope.
Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y
:= match p with idpath => idpath end.
Definition pointwise_paths {A} {P:A->Type} (f g:forall x:A, P x)
:= forall x:A, f x = g x.
Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) : type_scope.
Definition Sect {A B : Type} (s : A -> B) (r : B -> A) :=
forall x : A, r (s x) = x.
Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv {
equiv_inv : B -> A ;
eisretr : Sect equiv_inv f;
eissect : Sect f equiv_inv;
eisadj : forall x : A, eisretr (f x) = ap f (eissect x)
}.
Arguments eisretr {A B}%_type_scope f%_function_scope {_} _.
Record Equiv A B := BuildEquiv {
equiv_fun : A -> B ;
equiv_isequiv : IsEquiv equiv_fun
}.
Coercion equiv_fun : Equiv >-> Funclass.
Global Existing Instance equiv_isequiv.
Notation "A <~> B" := (Equiv A B) (at level 85) : type_scope.
Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3, format "f '^-1'") : function_scope.
Class Contr_internal (A : Type) := BuildContr {
center : A ;
contr : (forall y : A, center = y)
}.
Arguments center A {_}.
Inductive trunc_index : Type :=
| minus_two : trunc_index
| trunc_S : trunc_index -> trunc_index.
Notation "n .+1" := (trunc_S n) (at level 2, left associativity, format "n .+1") : trunc_scope.
Notation "-2" := minus_two (at level 0) : trunc_scope.
Notation "-1" := (-2.+1) (at level 0) : trunc_scope.
Notation "0" := (-1.+1) : trunc_scope.
Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type :=
match n with
| -2 => Contr_internal A
| n'.+1 => forall (x y : A), IsTrunc_internal n' (x = y)
end.
Class IsTrunc (n : trunc_index) (A : Type) : Type :=
Trunc_is_trunc : IsTrunc_internal n A.
Global Instance istrunc_paths (A : Type) n `{H : IsTrunc n.+1 A} (x y : A)
: IsTrunc n (x = y)
:= H x y.
Notation Contr := (IsTrunc -2).
Notation IsHProp := (IsTrunc -1).
#[global] Hint Extern 0 => progress change Contr_internal with Contr in * : typeclass_instances.
Monomorphic Axiom dummy_funext_type : Type0.
Monomorphic Class Funext := { dummy_funext_value : dummy_funext_type }.
Inductive Unit : Type1 :=
tt : Unit.
Class IsPointed (A : Type) := point : A.
Arguments point A {_}.
Record pType :=
{ pointed_type : Type ;
ispointed_type : IsPointed pointed_type }.
Coercion pointed_type : pType >-> Sortclass.
Global Existing Instance ispointed_type.
Definition hfiber {A B : Type} (f : A -> B) (y : B) := { x : A & f x = y }.
Ltac revert_opaque x :=
revert x;
match goal with
| [ |- forall _, _ ] => idtac
| _ => fail 1 "Reverted constant is not an opaque variable"
end.
End Overture.
End Basics.
End HoTT.
End HoTT_DOT_Basics_DOT_Overture.
Module Export HoTT_DOT_Basics_DOT_PathGroupoids.
Module Export HoTT.
Module Export Basics.
Module Export PathGroupoids.
Local Open Scope path_scope.
Definition concat_p1 {A : Type} {x y : A} (p : x = y) :
p @ 1 = p
:=
match p with idpath => 1 end.
Definition concat_1p {A : Type} {x y : A} (p : x = y) :
1 @ p = p
:=
match p with idpath => 1 end.
Definition concat_p_pp {A : Type} {x y z t : A} (p : x = y) (q : y = z) (r : z = t) :
p @ (q @ r) = (p @ q) @ r :=
match r with idpath =>
match q with idpath =>
match p with idpath => 1
end end end.
Definition concat_pp_p {A : Type} {x y z t : A} (p : x = y) (q : y = z) (r : z = t) :
(p @ q) @ r = p @ (q @ r) :=
match r with idpath =>
match q with idpath =>
match p with idpath => 1
end end end.
Definition concat_pV {A : Type} {x y : A} (p : x = y) :
p @ p^ = 1
:=
match p with idpath => 1 end.
Definition moveR_Vp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : x = y) :
p = r @ q -> r^ @ p = q.
admit.
Defined.
Definition moveL_Vp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : x = y) :
r @ q = p -> q = r^ @ p.
admit.
Defined.
Definition moveR_M1 {A : Type} {x y : A} (p q : x = y) :
1 = p^ @ q -> p = q.
admit.
Defined.
Definition ap_pp {A B : Type} (f : A -> B) {x y z : A} (p : x = y) (q : y = z) :
ap f (p @ q) = (ap f p) @ (ap f q)
:=
match q with
idpath =>
match p with idpath => 1 end
end.
Definition ap_V {A B : Type} (f : A -> B) {x y : A} (p : x = y) :
ap f (p^) = (ap f p)^
:=
match p with idpath => 1 end.
Definition ap_compose {A B C : Type} (f : A -> B) (g : B -> C) {x y : A} (p : x = y) :
ap (g o f) p = ap g (ap f p)
:=
match p with idpath => 1 end.
Definition concat_pA1 {A : Type} {f : A -> A} (p : forall x, x = f x) {x y : A} (q : x = y) :
(p x) @ (ap f q) = q @ (p y)
:=
match q as i in (_ = y) return (p x @ ap f i = i @ p y) with
| idpath => concat_p1 _ @ (concat_1p _)^
end.
End PathGroupoids.
End Basics.
End HoTT.
End HoTT_DOT_Basics_DOT_PathGroupoids.
Module Export HoTT_DOT_Basics_DOT_Equivalences.
Module Export HoTT.
Module Export Basics.
Module Export Equivalences.
Definition isequiv_commsq {A B C D}
(f : A -> B) (g : C -> D) (h : A -> C) (k : B -> D)
(p : k o f == g o h)
`{IsEquiv _ _ f} `{IsEquiv _ _ h} `{IsEquiv _ _ k}
: IsEquiv g.
admit.
Defined.
Section Adjointify.
Context {A B : Type} (f : A -> B) (g : B -> A).
Context (isretr : Sect g f) (issect : Sect f g).
Let issect' := fun x =>
ap g (ap f (issect x)^) @ ap g (isretr (f x)) @ issect x.
Let is_adjoint' (a : A) : isretr (f a) = ap f (issect' a).
Proof.
unfold issect'.
apply moveR_M1.
repeat rewrite ap_pp, concat_p_pp; rewrite <- ap_compose.
rewrite (concat_pA1 (fun b => (isretr b)^) (ap f (issect a)^)).
repeat rewrite concat_pp_p; rewrite ap_V; apply moveL_Vp; rewrite concat_p1.
rewrite concat_p_pp, <- ap_compose.
rewrite (concat_pA1 (fun b => (isretr b)^) (isretr (f a))).
rewrite concat_pV, concat_1p; reflexivity.
Qed.
Definition isequiv_adjointify : IsEquiv f
:= BuildIsEquiv A B f g isretr issect' is_adjoint'.
End Adjointify.
End Equivalences.
End Basics.
End HoTT.
End HoTT_DOT_Basics_DOT_Equivalences.
Module Export HoTT_DOT_Basics_DOT_Trunc.
Module Export HoTT.
Module Export Basics.
Module Export Trunc.
Generalizable Variables A B m n f.
Definition trunc_equiv A {B} (f : A -> B)
`{IsTrunc n A} `{IsEquiv A B f}
: IsTrunc n B.
admit.
Defined.
Record TruncType (n : trunc_index) := BuildTruncType {
trunctype_type : Type ;
istrunc_trunctype_type : IsTrunc n trunctype_type
}.
Arguments BuildTruncType _ _ {_}.
Coercion trunctype_type : TruncType >-> Sortclass.
Notation "n -Type" := (TruncType n) (at level 1) : type_scope.
Notation hProp := (-1)-Type.
Notation BuildhProp := (BuildTruncType -1).
End Trunc.
End Basics.
End HoTT.
End HoTT_DOT_Basics_DOT_Trunc.
Module Export HoTT_DOT_Types_DOT_Unit.
Module Export HoTT.
Module Export Types.
Module Export Unit.
Notation unit_name x := (fun (_ : Unit) => x).
End Unit.
End Types.
End HoTT.
End HoTT_DOT_Types_DOT_Unit.
Module Export HoTT_DOT_Types_DOT_Sigma.
Module Export HoTT.
Module Export Types.
Module Export Sigma.
Local Open Scope path_scope.
Definition path_sigma_uncurried {A : Type} (P : A -> Type) (u v : sigT P)
(pq : {p : u.1 = v.1 & p # u.2 = v.2})
: u = v
:= match pq.2 in (_ = v2) return u = (v.1; v2) with
| 1 => match pq.1 as p in (_ = v1) return u = (v1; p # u.2) with
| 1 => 1
end
end.
Definition path_sigma {A : Type} (P : A -> Type) (u v : sigT P)
(p : u.1 = v.1) (q : p # u.2 = v.2)
: u = v
:= path_sigma_uncurried P u v (p;q).
Definition path_sigma' {A : Type} (P : A -> Type) {x x' : A} {y : P x} {y' : P x'}
(p : x = x') (q : p # y = y')
: (x;y) = (x';y')
:= path_sigma P (x;y) (x';y') p q.
Global Instance isequiv_pr1_contr {A} {P : A -> Type}
`{forall a, Contr (P a)}
: IsEquiv (@pr1 A P) | 100.
Proof.
refine (isequiv_adjointify (@pr1 A P)
(fun a => (a ; center (P a))) _ _).
-
intros a; reflexivity.
-
intros [a p].
refine (path_sigma' P 1 (contr _)).
Defined.
Definition path_sigma_hprop {A : Type} {P : A -> Type}
`{forall x, IsHProp (P x)}
(u v : sigT P)
: u.1 = v.1 -> u = v
:= path_sigma_uncurried P u v o pr1^-1.
End Sigma.
End Types.
End HoTT.
End HoTT_DOT_Types_DOT_Sigma.
Module Export HoTT_DOT_Extensions.
Module Export HoTT.
Module Export Extensions.
Section Extensions.
Definition ExtensionAlong {A B : Type} (f : A -> B)
(P : B -> Type) (d : forall x:A, P (f x))
:= { s : forall y:B, P y & forall x:A, s (f x) = d x }.
Fixpoint ExtendableAlong@{i j k l}
(n : nat) {A : Type@{i}} {B : Type@{j}}
(f : A -> B) (C : B -> Type@{k}) : Type@{l}
:= match n with
| O => Unit@{l}
| S n => (forall (g : forall a, C (f a)),
ExtensionAlong@{i j k l l} f C g) *
forall (h k : forall b, C b),
ExtendableAlong n f (fun b => h b = k b)
end.
Definition ooExtendableAlong@{i j k l}
{A : Type@{i}} {B : Type@{j}}
(f : A -> B) (C : B -> Type@{k}) : Type@{l}
:= forall n, ExtendableAlong@{i j k l} n f C.
End Extensions.
End Extensions.
End HoTT.
End HoTT_DOT_Extensions.
Module Export HoTT.
Module Export Modalities.
Module Export ReflectiveSubuniverse.
Module Type ReflectiveSubuniverses.
Parameter ReflectiveSubuniverse@{u a} : Type2@{u a}.
Parameter O_reflector@{u a i} : forall (O : ReflectiveSubuniverse@{u a}),
Type2le@{i a} -> Type2le@{i a}.
Parameter In@{u a i} : forall (O : ReflectiveSubuniverse@{u a}),
Type2le@{i a} -> Type2le@{i a}.
Parameter O_inO@{u a i} : forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
In@{u a i} O (O_reflector@{u a i} O T).
Parameter to@{u a i} : forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
T -> O_reflector@{u a i} O T.
Parameter inO_equiv_inO@{u a i j k} :
forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}) (U : Type@{j})
(T_inO : In@{u a i} O T) (f : T -> U) (feq : IsEquiv f),
let gei := ((fun x => x) : Type@{i} -> Type@{k}) in
let gej := ((fun x => x) : Type@{j} -> Type@{k}) in
In@{u a j} O U.
Parameter hprop_inO@{u a i}
: Funext -> forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
IsHProp (In@{u a i} O T).
Parameter extendable_to_O@{u a i j k}
: forall (O : ReflectiveSubuniverse@{u a}) {P : Type2le@{i a}} {Q : Type2le@{j a}} {Q_inO : In@{u a j} O Q},
ooExtendableAlong@{i i j k} (to O P) (fun _ => Q).
End ReflectiveSubuniverses.
Module ReflectiveSubuniverses_Theory (Os : ReflectiveSubuniverses).
Export Os.
Module Export Coercions.
Coercion O_reflector : ReflectiveSubuniverse >-> Funclass.
End Coercions.
End ReflectiveSubuniverses_Theory.
Module Type ReflectiveSubuniverses_Restriction_Data (Os : ReflectiveSubuniverses).
Parameter New_ReflectiveSubuniverse@{u a} : Type2@{u a}.
Parameter ReflectiveSubuniverses_restriction@{u a}
: New_ReflectiveSubuniverse@{u a} -> Os.ReflectiveSubuniverse@{u a}.
End ReflectiveSubuniverses_Restriction_Data.
Module ReflectiveSubuniverses_Restriction
(Os : ReflectiveSubuniverses)
(Res : ReflectiveSubuniverses_Restriction_Data Os)
<: ReflectiveSubuniverses.
Definition ReflectiveSubuniverse := Res.New_ReflectiveSubuniverse.
Definition O_reflector@{u a i} (O : ReflectiveSubuniverse@{u a})
:= Os.O_reflector@{u a i} (Res.ReflectiveSubuniverses_restriction O).
Definition In@{u a i} (O : ReflectiveSubuniverse@{u a})
:= Os.In@{u a i} (Res.ReflectiveSubuniverses_restriction O).
Definition O_inO@{u a i} (O : ReflectiveSubuniverse@{u a})
:= Os.O_inO@{u a i} (Res.ReflectiveSubuniverses_restriction O).
Definition to@{u a i} (O : ReflectiveSubuniverse@{u a})
:= Os.to@{u a i} (Res.ReflectiveSubuniverses_restriction O).
Definition inO_equiv_inO@{u a i j k} (O : ReflectiveSubuniverse@{u a})
:= Os.inO_equiv_inO@{u a i j k} (Res.ReflectiveSubuniverses_restriction O).
Definition hprop_inO@{u a i} (H : Funext) (O : ReflectiveSubuniverse@{u a})
:= Os.hprop_inO@{u a i} H (Res.ReflectiveSubuniverses_restriction O).
Definition extendable_to_O@{u a i j k} (O : ReflectiveSubuniverse@{u a})
:= @Os.extendable_to_O@{u a i j k} (Res.ReflectiveSubuniverses_restriction@{u a} O).
End ReflectiveSubuniverses_Restriction.
Module ReflectiveSubuniverses_FamUnion
(Os1 Os2 : ReflectiveSubuniverses)
<: ReflectiveSubuniverses.
Definition ReflectiveSubuniverse@{u a} : Type2@{u a}
:= Os1.ReflectiveSubuniverse@{u a} + Os2.ReflectiveSubuniverse@{u a}.
Definition O_reflector@{u a i} : forall (O : ReflectiveSubuniverse@{u a}),
Type2le@{i a} -> Type2le@{i a}.
admit.
Defined.
Definition In@{u a i} : forall (O : ReflectiveSubuniverse@{u a}),
Type2le@{i a} -> Type2le@{i a}.
Proof.
intros [O|O]; [ exact (Os1.In@{u a i} O)
| exact (Os2.In@{u a i} O) ].
Defined.
Definition O_inO@{u a i}
: forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
In@{u a i} O (O_reflector@{u a i} O T).
admit.
Defined.
Definition to@{u a i} : forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
T -> O_reflector@{u a i} O T.
admit.
Defined.
Definition inO_equiv_inO@{u a i j k} :
forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}) (U : Type@{j})
(T_inO : In@{u a i} O T) (f : T -> U) (feq : IsEquiv f),
In@{u a j} O U.
Proof.
intros [O|O]; [ exact (Os1.inO_equiv_inO@{u a i j k} O)
| exact (Os2.inO_equiv_inO@{u a i j k} O) ].
Defined.
Definition hprop_inO@{u a i}
: Funext -> forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
IsHProp (In@{u a i} O T).
admit.
Defined.
Definition extendable_to_O@{u a i j k}
: forall (O : ReflectiveSubuniverse@{u a}) {P : Type2le@{i a}} {Q : Type2le@{j a}} {Q_inO : In@{u a j} O Q},
ooExtendableAlong@{i i j k} (to O P) (fun _ => Q).
admit.
Defined.
End ReflectiveSubuniverses_FamUnion.
End ReflectiveSubuniverse.
End Modalities.
End HoTT.
Module Type Modalities.
Parameter Modality@{u a} : Type2@{u a}.
Parameter O_reflector@{u a i} : forall (O : Modality@{u a}),
Type2le@{i a} -> Type2le@{i a}.
Parameter In@{u a i} : forall (O : Modality@{u a}),
Type2le@{i a} -> Type2le@{i a}.
Parameter O_inO@{u a i} : forall (O : Modality@{u a}) (T : Type@{i}),
In@{u a i} O (O_reflector@{u a i} O T).
Parameter to@{u a i} : forall (O : Modality@{u a}) (T : Type@{i}),
T -> O_reflector@{u a i} O T.
Parameter inO_equiv_inO@{u a i j k} :
forall (O : Modality@{u a}) (T : Type@{i}) (U : Type@{j})
(T_inO : In@{u a i} O T) (f : T -> U) (feq : IsEquiv f),
let gei := ((fun x => x) : Type@{i} -> Type@{k}) in
let gej := ((fun x => x) : Type@{j} -> Type@{k}) in
In@{u a j} O U.
Parameter hprop_inO@{u a i}
: Funext -> forall (O : Modality@{u a}) (T : Type@{i}),
IsHProp (In@{u a i} O T).
End Modalities.
Module Modalities_to_ReflectiveSubuniverses
(Os : Modalities) <: ReflectiveSubuniverses.
Import Os.
Fixpoint O_extendable@{u a i j k} (O : Modality@{u a})
(A : Type@{i}) (B : O_reflector O A -> Type@{j})
(B_inO : forall a, In@{u a j} O (B a)) (n : nat)
: ExtendableAlong@{i i j k} n (to O A) B.
admit.
Defined.
Definition ReflectiveSubuniverse := Modality.
Definition O_reflector@{u a i} := O_reflector@{u a i}.
Definition In@{u a i} : forall (O : ReflectiveSubuniverse@{u a}),
Type2le@{i a} -> Type2le@{i a}
:= In@{u a i}.
Definition O_inO@{u a i} : forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
In@{u a i} O (O_reflector@{u a i} O T)
:= O_inO@{u a i}.
Definition to@{u a i} := to@{u a i}.
Definition inO_equiv_inO@{u a i j k} :
forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}) (U : Type@{j})
(T_inO : In@{u a i} O T) (f : T -> U) (feq : IsEquiv f),
In@{u a j} O U
:= inO_equiv_inO@{u a i j k}.
Definition hprop_inO@{u a i}
: Funext -> forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
IsHProp (In@{u a i} O T)
:= hprop_inO@{u a i}.
Definition extendable_to_O@{u a i j k} (O : ReflectiveSubuniverse@{u a})
{P : Type2le@{i a}} {Q : Type2le@{j a}} {Q_inO : In@{u a j} O Q}
: ooExtendableAlong@{i i j k} (to O P) (fun _ => Q)
:= fun n => O_extendable O P (fun _ => Q) (fun _ => Q_inO) n.
End Modalities_to_ReflectiveSubuniverses.
Module Type EasyModalities.
Parameter Modality@{u a} : Type2@{u a}.
Parameter O_reflector@{u a i} : forall (O : Modality@{u a}),
Type2le@{i a} -> Type2le@{i a}.
Parameter to@{u a i} : forall (O : Modality@{u a}) (T : Type@{i}),
T -> O_reflector@{u a i} O T.
Parameter minO_pathsO@{u a i}
: forall (O : Modality@{u a}) (A : Type@{i})
(z z' : O_reflector@{u a i} O A),
IsEquiv (to@{u a i} O (z = z')).
End EasyModalities.
Module EasyModalities_to_Modalities (Os : EasyModalities)
<: Modalities.
Import Os.
Definition Modality := Modality.
Definition O_reflector@{u a i} := O_reflector@{u a i}.
Definition to@{u a i} := to@{u a i}.
Definition In@{u a i}
: forall (O : Modality@{u a}), Type@{i} -> Type@{i}
:= fun O A => IsEquiv@{i i} (to O A).
Definition hprop_inO@{u a i} `{Funext} (O : Modality@{u a})
(T : Type@{i})
: IsHProp (In@{u a i} O T).
admit.
Defined.
Definition O_ind_internal@{u a i j k} (O : Modality@{u a})
(A : Type@{i}) (B : O_reflector@{u a i} O A -> Type@{j})
(B_inO : forall oa, In@{u a j} O (B oa))
: let gei := ((fun x => x) : Type@{i} -> Type@{k}) in
let gej := ((fun x => x) : Type@{j} -> Type@{k}) in
(forall a, B (to O A a)) -> forall oa, B oa.
admit.
Defined.
Definition O_ind_beta_internal@{u a i j k} (O : Modality@{u a})
(A : Type@{i}) (B : O_reflector@{u a i} O A -> Type@{j})
(B_inO : forall oa, In@{u a j} O (B oa))
(f : forall a : A, B (to O A a)) (a:A)
: O_ind_internal@{u a i j k} O A B B_inO f (to O A a) = f a.
admit.
Defined.
Definition O_inO@{u a i} (O : Modality@{u a}) (A : Type@{i})
: In@{u a i} O (O_reflector@{u a i} O A).
admit.
Defined.
Definition inO_equiv_inO@{u a i j k} (O : Modality@{u a}) (A : Type@{i}) (B : Type@{j})
(A_inO : In@{u a i} O A) (f : A -> B) (feq : IsEquiv f)
: In@{u a j} O B.
Proof.
simple refine (isequiv_commsq (to O A) (to O B) f
(O_ind_internal O A (fun _ => O_reflector O B) _ (fun a => to O B (f a))) _).
-
intros; apply O_inO.
-
intros a; refine (O_ind_beta_internal@{u a i j k} O A (fun _ => O_reflector O B) _ _ a).
-
apply A_inO.
-
simple refine (isequiv_adjointify _
(O_ind_internal O B (fun _ => O_reflector O A) _ (fun b => to O A (f^-1 b))) _ _);
intros x.
+
apply O_inO.
+
pattern x; refine (O_ind_internal O B _ _ _ x); intros.
*
apply minO_pathsO.
*
simpl; admit.
+
pattern x; refine (O_ind_internal O A _ _ _ x); intros.
*
apply minO_pathsO.
*
simpl; admit.
Defined.
End EasyModalities_to_Modalities.
Module Modalities_Theory (Os : Modalities).
Export Os.
Module Export Os_ReflectiveSubuniverses
:= Modalities_to_ReflectiveSubuniverses Os.
Module Export RSU
:= ReflectiveSubuniverses_Theory Os_ReflectiveSubuniverses.
Module Export Coercions.
Coercion modality_to_reflective_subuniverse
:= idmap : Modality -> ReflectiveSubuniverse.
End Coercions.
Class IsConnected (O : Modality@{u a}) (A : Type@{i})
:= isconnected_contr_O : IsTrunc@{i} -2 (O A).
Class IsConnMap (O : Modality@{u a})
{A : Type@{i}} {B : Type@{j}} (f : A -> B)
:= isconnected_hfiber_conn_map
: forall b:B, IsConnected@{u a k} O (hfiber@{i j} f b).
End Modalities_Theory.
Private Inductive Trunc (n : trunc_index) (A :Type) : Type :=
tr : A -> Trunc n A.
Arguments tr {n A} a.
Global Instance istrunc_truncation (n : trunc_index) (A : Type@{i})
: IsTrunc@{j} n (Trunc@{i} n A).
Admitted.
Definition Trunc_ind {n A}
(P : Trunc n A -> Type) {Pt : forall aa, IsTrunc n (P aa)}
: (forall a, P (tr a)) -> (forall aa, P aa)
:= (fun f aa => match aa with tr a => fun _ => f a end Pt).
Definition Truncation_Modality := trunc_index.
Module Truncation_Modalities <: Modalities.
Definition Modality : Type2@{u a} := Truncation_Modality.
Definition O_reflector (n : Modality@{u u'}) A := Trunc n A.
Definition In (n : Modality@{u u'}) A := IsTrunc n A.
Definition O_inO (n : Modality@{u u'}) A : In n (O_reflector n A).
admit.
Defined.
Definition to (n : Modality@{u u'}) A := @tr n A.
Definition inO_equiv_inO (n : Modality@{u u'})
(A : Type@{i}) (B : Type@{j}) Atr f feq
: let gei := ((fun x => x) : Type@{i} -> Type@{k}) in
let gej := ((fun x => x) : Type@{j} -> Type@{k}) in
In n B
:= @trunc_equiv A B f n Atr feq.
Definition hprop_inO `{Funext} (n : Modality@{u u'}) A
: IsHProp (In n A).
admit.
Defined.
End Truncation_Modalities.
Module Import TrM := Modalities_Theory Truncation_Modalities.
Definition merely (A : Type@{i}) : hProp := BuildhProp (Trunc -1 A).
Notation IsSurjection := (IsConnMap -1).
Definition BuildIsSurjection {A B} (f : A -> B) :
(forall b, merely (hfiber f b)) -> IsSurjection f.
admit.
Defined.
Ltac strip_truncations :=
progress repeat match goal with
| [ T : _ |- _ ]
=> revert_opaque T;
refine (@Trunc_ind _ _ _ _ _);
[];
intro T
end.
Local Open Scope trunc_scope.
Global Instance conn_pointed_type {n : trunc_index} {A : Type} (a0:A)
`{IsConnMap n _ _ (unit_name a0)} : IsConnected n.+1 A | 1000.
admit.
Defined.
Definition loops (A : pType) : pType :=
Build_pType (point A = point A) idpath.
Record pMap (A B : pType) :=
{ pointed_fun : A -> B ;
point_eq : pointed_fun (point A) = point B }.
Arguments point_eq {A B} f : rename.
Coercion pointed_fun : pMap >-> Funclass.
Infix "->*" := pMap (at level 99) : pointed_scope.
Local Open Scope pointed_scope.
Definition pmap_compose {A B C : pType}
(g : B ->* C) (f : A ->* B)
: A ->* C
:= Build_pMap A C (g o f)
(ap g (point_eq f) @ point_eq g).
Record pHomotopy {A B : pType} (f g : pMap A B) :=
{ pointed_htpy : f == g ;
point_htpy : pointed_htpy (point A) @ point_eq g = point_eq f }.
Arguments pointed_htpy {A B f g} p x.
Infix "==*" := pHomotopy (at level 70, no associativity) : pointed_scope.
Definition loops_functor {A B : pType} (f : A ->* B)
: (loops A) ->* (loops B).
Proof.
refine (Build_pMap (loops A) (loops B)
(fun p => (point_eq f)^ @ (ap f p @ point_eq f)) _).
apply moveR_Vp; simpl.
refine (concat_1p _ @ (concat_p1 _)^).
Defined.
Definition loops_functor_compose {A B C : pType}
(g : B ->* C) (f : A ->* B)
: (loops_functor (pmap_compose g f))
==* (pmap_compose (loops_functor g) (loops_functor f)).
admit.
Defined.
Local Open Scope path_scope.
Record ooGroup :=
{ classifying_space : pType@{i} ;
isconn_classifying_space : IsConnected@{u a i} 0 classifying_space
}.
Local Notation B := classifying_space.
Definition group_type (G : ooGroup) : Type
:= point (B G) = point (B G).
Coercion group_type : ooGroup >-> Sortclass.
Definition group_loops (X : pType)
: ooGroup.
Proof.
pose (x0 := point X);
pose (BG := (Build_pType
{ x:X & merely (x = point X) }
(existT (fun x:X => merely (x = point X)) x0 (tr 1)))).
cut (IsConnected 0 BG).
{
exact (Build_ooGroup BG).
}
cut (IsSurjection (unit_name (point BG))).
{
intros; refine (conn_pointed_type (point _)).
}
apply BuildIsSurjection; simpl; intros [x p].
strip_truncations; apply tr; exists tt.
apply path_sigma_hprop; simpl.
exact (p^).
Defined.
Definition loops_group (X : pType)
: loops X <~> group_loops X.
admit.
Defined.
Definition ooGroupHom (G H : ooGroup)
:= pMap (B G) (B H).
Definition grouphom_fun {G H} (phi : ooGroupHom G H) : G -> H
:= loops_functor phi.
Coercion grouphom_fun : ooGroupHom >-> Funclass.
Definition group_loops_functor
{X Y : pType} (f : pMap X Y)
: ooGroupHom (group_loops X) (group_loops Y).
Proof.
simple refine (Build_pMap _ _ _ _); simpl.
-
intros [x p].
exists (f x).
strip_truncations; apply tr.
exact (ap f p @ point_eq f).
-
apply path_sigma_hprop; simpl.
apply point_eq.
Defined.
Definition loops_functor_group
{X Y : pType} (f : pMap X Y)
: loops_functor (group_loops_functor f) o loops_group X
== loops_group Y o loops_functor f.
admit.
Defined.
Definition grouphom_compose {G H K : ooGroup}
(psi : ooGroupHom H K) (phi : ooGroupHom G H)
: ooGroupHom G K
:= pmap_compose psi phi.
Definition group_loops_functor_compose
{X Y Z : pType}
(psi : pMap Y Z) (phi : pMap X Y)
: grouphom_compose (group_loops_functor psi) (group_loops_functor phi)
== group_loops_functor (pmap_compose psi phi).
Proof.
intros g.
unfold grouphom_fun, grouphom_compose.
refine (pointed_htpy (loops_functor_compose _ _) g @ _).
pose (p := eisretr (loops_group X) g).
change (loops_functor (group_loops_functor psi)
(loops_functor (group_loops_functor phi) g)
= loops_functor (group_loops_functor
(pmap_compose psi phi)) g).
rewrite <- p.
Timeout 1 Time rewrite !loops_functor_group.
Undo.
(* 0.004 s in 8.5rc1, 8.677 s in 8.5 *)
Timeout 1 do 3 rewrite loops_functor_group.
Abort.
|