1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
(* Bug #5481 *)
Set Universe Polymorphism.
Parameter P : Type -> Type -> Prop.
Parameter A : Type.
Lemma foo (B : Type) (H : P A B) : P A B.
Proof.
congruence.
Qed.
(* An example with types hidden behind "match" *)
Parameter b : unit.
Lemma foo2 (B : Type) (H : (let () := b in P) A B) : (let () := b in P) A B.
Proof.
congruence.
Qed.
(* Bug #9979, with f_equal *)
Record Map(K V: Type) := {
rep: Type;
put: rep -> K -> V -> rep;
}.
Section Test.
Universes u1 u2 u3 u4 u5 u6.
Goal forall K V (M: Map K V) (k: K) (v: V) (m: rep K V M),
put@{u1 u2 u3} K V M m k v = put@{u4 u5 u6} K V M m k v.
Proof.
intros.
f_equal.
Qed.
End Test.
(* An example with unification of monomorphic universe levels *)
Unset Universe Polymorphism.
Lemma foo3 (B : Type) : Type.
Proof.
congruence.
Qed.
|