File: inductive_functor_squash.v

package info (click to toggle)
coq-doc 8.20.0-2
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid, trixie
  • size: 46,708 kB
  • sloc: ml: 234,429; sh: 4,686; python: 3,359; ansic: 2,644; makefile: 842; lisp: 172; javascript: 87; xml: 24; sed: 2
file content (15 lines) | stat: -rw-r--r-- 256 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15


Module Type T.
  Parameter f : nat -> Type.
End T.

Module F(A:T).
  Inductive ind : Prop :=
    C : A.f 0 -> ind.
End F.

Module A. Definition f (x:nat) := True. End A.

Module M := F A.
(* M.ind could eliminate into Set/Type even though F.ind can't *)