1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
Require Import ZArith Lia ZifyNat.
(* regression observed in PR 14037 *)
Goal forall (n:nat), n mod 2 < 2 -> n mod 2 = 0 \/ n mod 2 = 1.
Proof. lia. Qed.
(* regression observed in PR 14037 *)
Goal forall (n:nat), n / 2 < 2 -> n / 2 = 0 \/ n / 2 = 1.
Proof. lia. Qed.
Goal forall (n:nat), n mod 2 = 0 \/ n mod 2 = 1.
Proof. lia. Qed.
Goal forall (n:nat), n / 2 < 2 -> n / 2 = 0 \/ n / 2 = 1.
Proof. lia. Qed.
Goal forall (n:nat), (n * 3) mod 3 = 0.
Proof. lia. Qed.
Goal forall (n:nat), (n * 3) / 3 = n.
Proof. lia. Qed.
Goal forall (m n:nat), m > 0 -> (n * m) / m = n.
Proof. nia. Qed.
Goal forall (m n:nat), m > 0 -> (n * m) mod m = 0.
Proof. nia. Qed.
Goal forall (n m:nat), 1 <= (1+n)^m.
Proof. lia. Qed.
|