File: div_mod.v

package info (click to toggle)
coq-doc 8.20.0-2
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid, trixie
  • size: 46,708 kB
  • sloc: ml: 234,429; sh: 4,686; python: 3,359; ansic: 2,644; makefile: 842; lisp: 172; javascript: 87; xml: 24; sed: 2
file content (30 lines) | stat: -rw-r--r-- 717 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Require Import ZArith Lia ZifyNat.

(* regression observed in PR 14037 *)
Goal forall (n:nat), n mod 2 < 2 -> n mod 2 = 0 \/ n mod 2 = 1.
Proof. lia. Qed.

(* regression observed in PR 14037 *)
Goal forall (n:nat), n / 2 < 2 -> n / 2 = 0 \/ n / 2 = 1.
Proof. lia. Qed.

Goal forall (n:nat), n mod 2 = 0 \/ n mod 2 = 1.
Proof. lia. Qed.

Goal forall (n:nat), n / 2 < 2 -> n / 2 = 0 \/ n / 2 = 1.
Proof. lia. Qed.

Goal forall (n:nat), (n * 3) mod 3 = 0.
Proof. lia. Qed.

Goal forall (n:nat), (n * 3) / 3 = n.
Proof. lia. Qed.

Goal forall (m n:nat), m > 0 -> (n * m) / m = n.
Proof. nia. Qed.

Goal forall (m n:nat), m > 0 -> (n * m) mod m = 0.
Proof. nia. Qed.

Goal forall (n m:nat), 1 <= (1+n)^m.
Proof. lia. Qed.