1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
|
(** * Test the various specs of primitive floats for a sampling of inputs *)
(** We enumerate a list of float and int parameters, a list of
specs and a list of operators. Then two things are checked:
1. Test the specs:
Each spec is empirically checked against all
instantiations of arguments from the float/int lists.
This is done with vm_compute for the check to be fast.
2. Test the evaluation mechanisms:
Again on each float/int from the lists, each operator
is evaluated in multiple evaluation mechanisms to check
that their results agree with the one given by vm_compute. *)
From Coq Require Import String List ZArith Sint63 Uint63 Floats.
From Ltac2 Require Import Ltac2 Printf.
Import ListNotations.
Open Scope string_scope.
Open Scope list_scope.
Open Scope float_scope.
Section __WORK_AROUND_COQBUG_4790.
(** *************************************************************************)
(** * Specifying the arguments to test on *)
(** EDIT HERE TO ADD MORE TESTS *)
(** ** List of floats to instantiate spec and operator args *)
Definition tricky_floats : list float
:= Eval cbv in
[infinity; neg_infinity; nan; 0; -0
; 0x1.fffffffffffffp+1023 (* largest finite value *)
; -0x1.fffffffffffffp+1023 (* largest negative finite value *)
; 0x0.1p-1070 (* smallest positive value *)
; -0x0.1p-1070 (* non-zero negative value closest to zero *)
; 1; -1; 0.5; 2; -0.5; -2
(* numbers from fma tests 264-266 from testsuite/tests/fma/fma.ml,
cf
https://github.com/coq/coq/issues/17893#issuecomment-1654794043. These
tests trigger the broken implementations of Cygwin64, mingw-w64
(x86_64) and VS2013-2017. *)
; 0x3.bd5b7dde5fddap-496
; -0xd.fc352bc352bap-992
; 0x3.bd5b7dde5fddap-504
; -0xd.fc352bc352bap-1008
; 0x8p-540
; 0x4p-540
(* ; 0x4p-1076 *) (* same as 0x0.1p-1070 above *)
(* constants from [add.v] *)
; 3
(* ; Z.ldexp one 1023%Z *) (* same as largest finite (emax-prec) above *)
; Z.ldexp one (-1023)%Z; -Z.ldexp one (-1023)%Z
(* constants from [classify.v] *)
; Z.ldexp one (-1024)%Z; -Z.ldexp one (-1024)%Z
(* constants from [div.v] *)
; 6
(* constants from [double_rounding.v] *)
; Z.ldexp one 53; Z.ldexp one (-52)
; 1 + Z.ldexp 1 (-52)%Z
(* constants from [next_up_down.v] *)
; 42; -42
; Z.ldexp one (-1022); -Z.ldexp one (-1022)
; -0x1.ffffffffffffap+1023
; -0x1.fffffffffffff
; -0x0.fffffffffffffp-1022
; -0x0.01p-1022
; 0x0.01p-1022
; 0x0.fffffffffffffp-1022
; 0x1.fffffffffffff
; 0x1.ffffffffffffap+1023
(* constants from [normfr_mantissa.v] *)
; 0.75
(* constants from [sqrt.v] *)
; 9
].
Definition tricky_spec_floats :=
Eval cbv in List.map Prim2SF tricky_floats.
(** ** List of ints to instantiate spec and operator args *)
Definition tricky_ints : list int
:= Eval cbv in
[0; 1
; max_int; max_int - 1
; Uint63.of_Z prec
; Uint63.of_Z emax
; Uint63.of_Z emin
; 2; max_int / 2
; max_int / 2 - 1; max_int / 2 + 1
; Uint63.of_Z prec - 1; Uint63.of_Z prec + 1
; Uint63.of_Z prec / 2; Uint63.of_Z prec / 2 - 1; Uint63.of_Z prec / 2 + 1
; Uint63.of_Z emax - 1; Uint63.of_Z emax + 1
; Uint63.of_Z emax / 2; Uint63.of_Z emax / 2 - 1; Uint63.of_Z emax / 2 + 1
; Uint63.of_Z emin - 1; Uint63.of_Z emin + 1
; Uint63.of_Z emin / 2; Uint63.of_Z emin / 2 - 1; Uint63.of_Z emin / 2 + 1
(* constants from [ldexp.v] *)
(* ; 9223372036854775807 *) (* max_int *)
; (-2102)%sint63
; (-3)%sint63
; 3
]%uint63.
(** *************************************************************************)
(** * Reflective machinery to instantiate specifications *)
(** ** Variables we know how to instantiate *)
Inductive SPEC_VAR_TYPE := INT | FLOAT | SPEC_FLOAT.
Coercion denote_SPEC_VAR_TYPE (x : SPEC_VAR_TYPE) : Set
:= match x with INT => int | FLOAT => float | SPEC_FLOAT => spec_float end.
(** ** Fully-instantiated ("bare") specifications *)
(** (Perhaps we want a better name than "bare" meaning "no binders"? *)
(** As we'll see later, we check for [EQ l r] that [l] and [r] are
[Constr.equal], and we'll check for [IFF (x = y) (x' = y')] that
[Constr.equal x y] and [Constr.equal x' y'] are the same. (We
don't currently support reporting results about [IFF A B] for [A]
and [B] not equalities. *)
Inductive BARE_SPEC :=
| EQ {T1 T2} (lhs : T1) (rhs : T2)
| IFF {T1 T2} (lhs : T1) (rhs : T2).
(** A [SPEC] is a [BARE_SPEC] prenex-quanified over known variable
types. We hold the original proposition here so that we can
pretty-print it easily *)
Inductive SPEC :=
| BARE
{U : Prop} (spec : U) (* for printing purposes *)
(s : BARE_SPEC)
| FORALL (T : SPEC_VAR_TYPE)
(s : T -> SPEC).
(** An [ANNOTATED_BARE_SPEC] holds the [BARE_SPEC] and also the
propositional spec for pretty-printing of results. *)
Definition ANNOTATED_BARE_SPEC : Type := BARE_SPEC * {P : Prop | P}.
(** ** Machinery for instantiating specifications with all examples *)
Fixpoint instantiate1_all_ways (s : SPEC) : list ANNOTATED_BARE_SPEC
:= match s with
| @BARE U spec s => [(s, exist _ U spec)]
| @FORALL T s
=> List.flat_map
(fun v => instantiate1_all_ways (s v))
match T with
| INT => tricky_ints
| FLOAT => tricky_floats
| SPEC_FLOAT => tricky_spec_floats
end
end.
Definition instantiate_all_ways_nored (ls : list SPEC) : list ANNOTATED_BARE_SPEC
:= List.flat_map instantiate1_all_ways ls.
Definition instantiate_all_ways (ls : list SPEC) : list ANNOTATED_BARE_SPEC
:= Eval cbv in instantiate_all_ways_nored ls.
(** ** Some General Ltac2 Machinery *)
Import Ltac2.Constr.
Import Constr.Unsafe.
Ltac2 Type exn ::= [ PrimFloat_Test_InternalError (message) | PrimFloat_SpecTest_Failed (message) ].
Ltac2 Type exn ::= [ Reification_error (message) | Reification_unhandled_kind (message, kind) ].
Ltac2 unify_bool (x : constr) (y : constr) : bool
:= match Control.case (fun () => Std.unify x y) with
| Val _ => true
| Err _ => false
end.
Ltac2 lf () := String.make 1 (Char.of_int 10).
Ltac2 rec count_prod (x : constr) : int :=
match kind x with
| Cast x _ _ => count_prod x
| Prod _ x => Int.add 1 (count_prod x)
| _ => 0
end.
Ltac2 mkApp f x := Unsafe.make (App f (Array.of_list x)).
Ltac2 mkRel i := Unsafe.make (Rel i).
Ltac2 mkLambda b body := Unsafe.make (Lambda b body).
(** ** Reification of known variable types *)
Ltac2 reify_var_type (t : constr) : constr
:= match List.assoc_opt Constr.equal t
[('spec_float, 'SPEC_FLOAT)
; ('float, 'FLOAT)
; ('int, 'INT)]
with
| Some v => v
| None => Control.throw (Reification_error (fprintf "Unhandled type %t" t))
end.
(** ** A kludgy hack we have to do to support some specifications that aren't equalities but have case statements out front *)
(** turns [let '(x, y) := z in w = q] into [(let '(x, y) := z in w) = (let '(x, y) := z in q)] *)
(** Does not run typechecking, and therefore works on open terms (with unbound rels) *)
Ltac2 rec push_case_eq (tag : constr) (mkCase : constr (* retty *) -> constr -> constr) (branch : constr) : constr
:= match kind branch with
| Lambda b body => push_case_eq tag (fun retty body => mkCase retty (mkLambda b body)) body
| App f args
=> if Constr.equal f '@eq
then let ty := Array.get args 0 in
let x := Array.get args 1 in
let y := Array.get args 2 in
mkApp f [ty; mkCase ty x; mkCase ty y]
else Control.throw (Reification_error (fprintf "Unrecognized under case %t (from %t from %t)" f branch tag))
| _ => Control.throw (Reification_error (fprintf "Unrecognized kind under case %t (from %t)" branch tag))
end.
Ltac2 swap_case_eq (x : constr) : constr
:= match kind x with
| Case c (retty, rel) ci discr branches
=> if Int.equal 1 (Array.length branches)
then match kind retty with
| Lambda retty_b rtProp
=> if Constr.equal rtProp 'Prop
then push_case_eq
x
(fun retty b => Unsafe.make (Case c (mkLambda retty_b (liftn 1 1 retty), rel) ci discr (Array.of_list [b])))
(Array.get branches 0)
else x
| _ => x
end
else x
| _ => x
end.
(** ** Reification of specifications after binders have been removed *)
(** Does not run typechecking, and therefore works on open terms (with unbound rels) *)
Ltac2 reify_bare_spec (ty : constr) : constr
:= let ty := swap_case_eq ty in
match kind ty with
| App f args
=> if Constr.equal f '@eq
then Unsafe.make (App (mkApp '@EQ [Array.get args 0]) args)
else if Constr.equal f '@iff
then Unsafe.make (App (mkApp '@IFF ['Prop; 'Prop]) args)
else Control.throw (Reification_error (fprintf "Unhandled base spec app %t" ty))
| k => Control.throw (Reification_unhandled_kind (fprintf "Unhandled base spec %t" ty) k)
end.
(** ** Reification of specs, including binders *)
(** [n] is how many binders are left to remove in [spec], and
therefore which [Rel] the [spec] should be eventually applied to
*)
Ltac2 rec reify_spec' (ty : constr) (spec : constr) (n : int) : constr
:= match kind ty with
| Cast ty _ _ => reify_spec' ty spec n
| Prod b body
=> let ty := reify_var_type (Binder.type b) in
let body := reify_spec' body (mkApp spec [mkRel n]) (Int.sub n 1) in
mkApp 'FORALL [ty; mkLambda b body]
| _ => let r := reify_bare_spec ty in
mkApp '@BARE [ty; spec; r]
end.
Ltac2 reify_spec (spec : constr) : constr
:= let ty := Constr.type spec in
reify_spec' ty spec (count_prod ty).
Notation "` x" := (ltac2:(let v := reify_spec (pretype x) in exact $v)) (only parsing, at level 10).
(** * Machinery for reporting results *)
Ltac2 report_result (red : string) (result : constr) (specTy : constr) (spec : constr) : message option
:= let msg :=
lazy_match! result with
| EQ ?x ?y
=> if Constr.equal x y
then None
else (* if unify_bool x y (* commented out because of https://github.com/coq/coq/pull/17899 *)
then Some (fprintf "%s failed to fully reduce, leaving over %t (expected: %t), in %t %t" red x y spec specTy)
else *) Some (fprintf "%s failed!%sGot: %t%sExpected: %t%sIn %t %t" red (lf ()) x (lf ()) y (lf ()) spec specTy)
| IFF (?x = ?x') (?y = ?y')
=> let (lhs, rhs) := lazy_match! result with
| IFF ?lhs ?rhs => (lhs, rhs)
| _ => Control.throw (PrimFloat_Test_InternalError (fprintf "Impossible! Result branch mismatch %t" result))
end in
let descr := if unify_bool y y' then "should" else "should not" in
if Bool.and (Bool.equal (Constr.equal x x') (Constr.equal y y'))
(Bool.equal (unify_bool x x') (unify_bool y y'))
then None
else (* if Bool.equal (unify_bool x x') (unify_bool y y') (* commented out because of https://github.com/coq/coq/pull/17899 *)
then Some (fprintf "%s failed to fully reduce, leaving over %t (expected something equivalent to: %t), in %t %t" red lhs rhs spec specTy)
else *) Some (fprintf "%s failed!%sGot: %t%sExpected something equivalent to: %t%s(both sides %s unify)%sIn %t %t" red (lf ()) lhs (lf ()) rhs (lf ()) descr (lf ()) spec specTy)
| _ => Control.throw (PrimFloat_Test_InternalError (fprintf "Unhandled result %t (on %t : %t with %s)" result spec specTy red))
end in
match msg with
| Some msg => Message.print (Message.concat (Message.of_string "Test Error: ") msg)
| None => ()
end;
msg.
Ltac2 rec report_results_gen (error_early : bool) (red : string) (results : constr) : unit
:= lazy_match! results with
| nil => ()
| cons (?res, exist _ ?specTy ?spec) ?results
=> let err := report_result red res specTy spec in
let check_rest () := report_results_gen error_early red results in
let zero_err () := match err with
| Some err => Control.zero (PrimFloat_SpecTest_Failed err)
| None => ()
end in
if error_early
then (zero_err (); check_rest ())
else (check_rest (); zero_err ())
| cons ?v _
=> Control.throw (PrimFloat_Test_InternalError (fprintf "Invalid result format %t" v))
| _
=> let results' := Std.eval_hnf results in
if Constr.equal results results'
then Control.throw (PrimFloat_Test_InternalError (fprintf "Results must be a literal list, not %t" results))
else report_results_gen error_early red results'
end.
Ltac2 report_results red results := report_results_gen false red results.
Ltac2 report_results_fast red results := report_results_gen true red results.
(** *************************************************************************)
(** * List of (reified) specifications *)
(** EDIT HERE TO ADD MORE TESTS *)
(* [Prim2SF_SF2Prim] has an hypothesis not handled by the above machinery
so let's check something stronger in theory but equivalent in practice,
since all test cases satisfy the hypothesis by construction. *)
Axiom Prim2SF_SF2Prim' : forall x, (* valid_binary x = true -> *) Prim2SF (SF2Prim x) = x.
Definition spec_list : list SPEC :=
[ `Prim2SF_valid
; `SF2Prim_Prim2SF
; `Prim2SF_SF2Prim'
; `opp_spec
; `abs_spec
; `eqb_spec
; `ltb_spec
; `leb_spec
; `compare_spec
; `Leibniz.eqb_spec
; `classify_spec
; `mul_spec
; `add_spec
; `sub_spec
; `div_spec
; `sqrt_spec
; `of_uint63_spec
; `normfr_mantissa_spec
; `frshiftexp_spec
; `ldshiftexp_spec
; `next_up_spec
; `next_down_spec
].
(* Spec to check that evaluation mechanisms agree for each operator. *)
#[local] Notation reflspec1 f := (fun x => @eq_refl _ (f x)).
#[local] Notation reflspec2 f := (fun x y => @eq_refl _ (f x y)).
Definition op_spec_list : list SPEC :=
[ ` (reflspec1 PrimFloat.classify)
; ` (reflspec1 PrimFloat.abs)
; ` (reflspec1 PrimFloat.sqrt)
; ` (reflspec1 PrimFloat.opp)
; ` (reflspec2 PrimFloat.eqb)
; ` (reflspec2 PrimFloat.ltb)
; ` (reflspec2 PrimFloat.leb)
; ` (reflspec2 PrimFloat.compare)
; ` (reflspec2 PrimFloat.Leibniz.eqb)
; ` (reflspec2 PrimFloat.mul)
; ` (reflspec2 PrimFloat.add)
; ` (reflspec2 PrimFloat.sub)
; ` (reflspec2 PrimFloat.div)
; ` (reflspec1 PrimFloat.of_uint63)
; ` (reflspec1 PrimFloat.normfr_mantissa)
; ` (reflspec1 PrimFloat.frshiftexp)
; ` (reflspec2 PrimFloat.ldshiftexp)
; ` (reflspec1 PrimFloat.next_up)
; ` (reflspec1 PrimFloat.next_down)
].
(** *************************************************************************)
(** * Utility definitions for managing lists specifications *)
(** We unfold standard library constants early to guarantee that we
won't run afoul of constants that show up in the specs themselves *)
Definition map_fst : list ANNOTATED_BARE_SPEC -> list BARE_SPEC
:= Eval cbv in List.map (@fst _ _).
Definition combine_annotations (orig : list ANNOTATED_BARE_SPEC) (result : list BARE_SPEC) : list ANNOTATED_BARE_SPEC
:= Eval cbv in List.map (fun '((_, anno), v) => (v, anno)) (List.combine orig result).
(** The native compiler is much slower if we feed it the precomputed
instantiations of specs, whereas we want to make sure that [simpl]
and [cbn] have as few places to take the wrong path as possible.
Reductions like [cbv] and [lazy] and the [vm] are mostly
indifferent. So we maintain both [_red] versions for [simpl] and
[cbn] and non-[_red] versions for [native_compute]. *)
(** We make [_red] definitions [Let] statements, to work around
COQBUG(https://github.com/coq/coq/issues/4790) and avoid stack
overflows in COQNATIVE *)
(** * 1. Test the specs *)
Section TestSpecs.
Time Let specs_red : list ANNOTATED_BARE_SPEC
:= Eval cbv [spec_list instantiate_all_ways] in instantiate_all_ways spec_list. (* 0.911 secs *)
Let bare_specs_red : list BARE_SPEC
:= Eval cbv [map_fst specs_red] in map_fst specs_red.
Time Let bare_specs_vm : list BARE_SPEC
:= Eval vm_compute in bare_specs_red. (* 1.934 secs *)
(** ** Fuse in the annotations so that we can report errors nicely *)
Time Let results_vm : list ANNOTATED_BARE_SPEC
:= Eval cbv [combine_annotations bare_specs_vm specs_red] in combine_annotations specs_red bare_specs_vm. (* 1.374 secs *)
(** ** Report results *)
Time Ltac2 Eval report_results "vm" 'results_vm. (* 0.634 secs *)
End TestSpecs.
(** Check that the machinery indeed fail, providing useful error messages,
on some purposely-wrong spec. *)
Section NegativeTest.
Axiom wrong_spec : forall x, (- x)%float = PrimFloat.abs x.
Definition wrong_spec_list : list SPEC := [ `wrong_spec ].
Let wrong_specs : list ANNOTATED_BARE_SPEC
:= Eval cbv [wrong_spec_list instantiate_all_ways] in instantiate_all_ways wrong_spec_list.
Let wrong_bare_specs : list BARE_SPEC
:= Eval cbv [map_fst wrong_specs] in map_fst wrong_specs.
Let wrong_bare_specs_vm : list BARE_SPEC
:= Eval vm_compute in wrong_bare_specs.
(** ** Fuse in the annotations so that we can report errors nicely *)
Let wrong_results_vm : list ANNOTATED_BARE_SPEC
:= Eval cbv [combine_annotations wrong_bare_specs_vm wrong_specs] in combine_annotations wrong_specs wrong_bare_specs_vm.
(** ** Report results *)
Fail Ltac2 Eval report_results "vm" 'wrong_results_vm.
(*
Test Error: vm failed!
Got: neg_infinity
Expected: infinity
In (wrong_spec infinity) (- infinity = abs infinity)
...
*)
End NegativeTest.
(** * 2. Test the evaluation mechanisms *)
Definition op_specs : list ANNOTATED_BARE_SPEC
:= instantiate_all_ways_nored op_spec_list.
Time Let op_specs_red : list ANNOTATED_BARE_SPEC
:= Eval cbv [instantiate_all_ways op_spec_list] in instantiate_all_ways op_spec_list. (* 0.883 secs *)
Definition op_bare_specs : list BARE_SPEC
:= map fst op_specs.
Let op_bare_specs_red : list BARE_SPEC
:= Eval cbv [map_fst op_specs_red] in map_fst op_specs_red.
(** Machinery for evaluating independently the LHS of specs *)
(** To check that all evaluation mechanism agree, we will then
0. evaluate [op_specs] with [vm_compute]
1. [extract_lhs] of [op_specs]
2. evaluate LHS with each mechanism
3. [merge_lhs] with results of 2. and 0. *)
Inductive hlist := hnil | hcons {T} (x : T) (_ : hlist).
Fixpoint extract_lhs (ls : list BARE_SPEC) : hlist
:= match ls with
| [] => hnil
| x :: xs
=> let rest := extract_lhs xs in
match x with EQ v _ | IFF v _ => hcons v rest end
end.
Fixpoint merge_lhs (ls : list BARE_SPEC) (result : hlist) : list BARE_SPEC
:= match ls, result with
| [], _ | _, hnil => []
| x :: xs, hcons v vs
=> match x with
| EQ _ x' => EQ v x'
| IFF _ x' => IFF v x'
end :: merge_lhs xs vs
end.
(** 0. evaluate [op_specs] with [vm_compute] *)
Let op_bare_specs_vm : list BARE_SPEC
:= Eval vm_compute in op_bare_specs_red.
(** 1. [extract_lhs] of [op_specs] *)
Definition LHS_op : hlist
:= extract_lhs op_bare_specs.
Let LHS_op_red : hlist
:= Eval cbv [op_bare_specs_red extract_lhs] in extract_lhs op_bare_specs_red.
(** 2. evaluate LHS with each mechanism *)
(** *************************************************************************)
(** * Computing reduced expressions *)
(** EDIT HERE TO ADD MORE REDUCTION STRATEGIES *)
(** ** [vm_compute] is ommited as it is the reference *)
(** ** [native_compute] *)
(** Native is slow at compiling big code, so we start from smaller code *)
Let LHS_op_native := Eval native_compute in extract_lhs op_bare_specs.
(** ** [hnf] *)
(** recursively applies hnf to all elements of the list *)
Ltac2 rec eval_hnf_hlist (c : constr) : constr
:= lazy_match! c with
| hcons ?h ?t =>
let h := Std.eval_hnf h in
let t := eval_hnf_hlist t in
'(hcons $h $t)
| hnil => 'hnil
end.
Time Let LHS_op_hnf := ltac2:(let l := Std.eval_hnf 'LHS_op_red in let x := eval_hnf_hlist l in exact $x). (* 16.309 secs *)
(** ** [cbn] *)
Time Let LHS_op_cbn := Eval cbn in ltac2:(let l := Std.eval_hnf 'LHS_op_red in exact $l). (* 0.25 secs *)
(** ** [simpl] *)
Time Let LHS_op_simpl := Eval simpl in ltac2:(let l := Std.eval_hnf 'LHS_op_red in exact $l). (* 0.296 secs *)
(** ** [cbv] *)
Time Let LHS_op_cbv := Eval cbv in ltac2:(let l := Std.eval_hnf 'LHS_op_red in exact $l). (* 0.292 secs *)
(** ** [lazy] *)
Time Let LHS_op_lazy := Eval lazy in ltac2:(let l := Std.eval_hnf 'LHS_op_red in exact $l). (* 0.259 secs *)
(** 3. [merge_lhs] with results of 2. and 0. *)
(** ** fuse the results of vm RHS (vm because it's fast) back into cbn/hnf/simpl LHS for comparison *)
Let op_bare_specs_native : list BARE_SPEC
:= Eval cbv [merge_lhs op_bare_specs_vm LHS_op_native] in merge_lhs op_bare_specs_vm LHS_op_native.
Let op_bare_specs_hnf : list BARE_SPEC
:= Eval cbv [merge_lhs op_bare_specs_vm LHS_op_hnf] in merge_lhs op_bare_specs_vm LHS_op_hnf.
Let op_bare_specs_cbn : list BARE_SPEC
:= Eval cbv [merge_lhs op_bare_specs_vm LHS_op_cbn] in merge_lhs op_bare_specs_vm LHS_op_cbn.
Let op_bare_specs_simpl : list BARE_SPEC
:= Eval cbv [merge_lhs op_bare_specs_vm LHS_op_simpl] in merge_lhs op_bare_specs_vm LHS_op_simpl.
Let op_bare_specs_cbv : list BARE_SPEC
:= Eval cbv [merge_lhs op_bare_specs_vm LHS_op_cbv] in merge_lhs op_bare_specs_vm LHS_op_cbv.
Let op_bare_specs_lazy : list BARE_SPEC
:= Eval cbv [merge_lhs op_bare_specs_vm LHS_op_lazy] in merge_lhs op_bare_specs_vm LHS_op_lazy.
(** ** Fuse in the annotations so that we can report errors nicely *)
Time Let op_results_native : list ANNOTATED_BARE_SPEC
:= Eval cbv [combine_annotations op_specs_red op_bare_specs_native] in combine_annotations op_specs_red op_bare_specs_native. (* 0.826 secs *)
Time Let op_results_hnf : list ANNOTATED_BARE_SPEC
:= Eval cbv [combine_annotations op_specs_red op_bare_specs_hnf] in combine_annotations op_specs_red op_bare_specs_hnf. (* 0.83 secs *)
Time Let op_results_cbn : list ANNOTATED_BARE_SPEC
:= Eval cbv [combine_annotations op_specs_red op_bare_specs_cbn] in combine_annotations op_specs_red op_bare_specs_cbn. (* 0.83 secs *)
Time Let op_results_simpl : list ANNOTATED_BARE_SPEC
:= Eval cbv [combine_annotations op_specs_red op_bare_specs_simpl] in combine_annotations op_specs_red op_bare_specs_simpl. (* 0.865 secs *)
Time Let op_results_cbv : list ANNOTATED_BARE_SPEC
:= Eval cbv [combine_annotations op_specs_red op_bare_specs_cbv] in combine_annotations op_specs_red op_bare_specs_cbv. (* 0.845 secs *)
Time Let op_results_lazy : list ANNOTATED_BARE_SPEC
:= Eval cbv [combine_annotations op_specs_red op_bare_specs_lazy] in combine_annotations op_specs_red op_bare_specs_lazy. (* 0.812 secs *)
(** ** Report results *)
Set Printing Depth 100000000.
Ltac2 Eval report_results "native" 'op_results_native.
Ltac2 Eval report_results "hnf" 'op_results_hnf.
Ltac2 Eval report_results "cbn" 'op_results_cbn.
Ltac2 Eval report_results "simpl" 'op_results_simpl.
Ltac2 Eval report_results "cbv" 'op_results_cbv.
Ltac2 Eval report_results "lazy" 'op_results_lazy.
End __WORK_AROUND_COQBUG_4790.
|