File: decl_kinds.ml

package info (click to toggle)
coq-doc 8.2pl1-1
  • links: PTS, VCS
  • area: non-free
  • in suites: squeeze
  • size: 19,240 kB
  • ctags: 22,737
  • sloc: ml: 132,933; ansic: 1,960; sh: 1,366; lisp: 456; makefile: 327
file content (129 lines) | stat: -rw-r--r-- 3,466 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* $Id: decl_kinds.ml 11809 2009-01-20 11:39:55Z aspiwack $ *)

open Util
open Libnames

(* Informal mathematical status of declarations *)

type locality =
  | Local
  | Global

type boxed_flag = bool

type theorem_kind =
  | Theorem
  | Lemma
  | Fact
  | Remark
  | Property
  | Proposition
  | Corollary

type definition_object_kind =
  | Definition
  | Coercion
  | SubClass
  | CanonicalStructure
  | Example
  | Fixpoint
  | CoFixpoint
  | Scheme
  | StructureComponent
  | IdentityCoercion
  | Instance
  | Method

type assumption_object_kind = Definitional | Logical | Conjectural

(* [assumption_kind] 

                |  Local      | Global
   ------------------------------------
   Definitional |  Variable   | Parameter
   Logical      |  Hypothesis | Axiom

*)
type assumption_kind = locality * assumption_object_kind

type definition_kind = locality * boxed_flag * definition_object_kind

(* Kinds used in proofs *)

type goal_object_kind =
  | DefinitionBody of definition_object_kind
  | Proof of theorem_kind

type goal_kind = locality * goal_object_kind

(* Kinds used in library *)

type logical_kind =
  | IsAssumption of assumption_object_kind
  | IsDefinition of definition_object_kind
  | IsProof of theorem_kind

(* Utils *)

let logical_kind_of_goal_kind = function
  | DefinitionBody d -> IsDefinition d
  | Proof s -> IsProof s

let string_of_theorem_kind = function
  | Theorem -> "Theorem"
  | Lemma -> "Lemma"
  | Fact -> "Fact"
  | Remark -> "Remark"
  | Property -> "Property"
  | Proposition -> "Proposition"
  | Corollary -> "Corollary"

let string_of_definition_kind (l,boxed,d) =
  match (l,d) with
  | Local, Coercion -> "Coercion Local"
  | Global, Coercion -> "Coercion"
  | Local, Definition -> "Let"
  | Global, Definition -> if boxed then "Boxed Definition" else "Definition"
  | Local, SubClass -> "Local SubClass"
  | Global, SubClass -> "SubClass"
  | Global, CanonicalStructure -> "Canonical Structure"
  | Global, Example -> "Example"
  | Local, (CanonicalStructure|Example) ->
      anomaly "Unsupported local definition kind"
  | Local, Instance -> "Instance"
  | Global, Instance -> "Global Instance"
  | _, (StructureComponent|Scheme|CoFixpoint|Fixpoint|IdentityCoercion|Method)
      -> anomaly "Internal definition kind"

(* Strength *)

let strength_of_global = function
  | VarRef _ -> Local
  | IndRef _ | ConstructRef _ | ConstRef _ -> Global

let string_of_strength = function
  | Local -> "Local"
  | Global -> "Global"


(* Recursive power *)

(* spiwack: this definition might be of use in the kernel, for now I do not
                   push them deeper than needed, though. *)
type recursivity_kind =
  | Finite (* = inductive *)
  | CoFinite (* = coinductive *)
  | BiFinite (* = non-recursive, like in "Record" definitions *)

(* helper, converts to "finiteness flag" booleans *)
let recursivity_flag_of_kind = function
  | Finite | BiFinite -> true
  | CoFinite -> false