1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
Require Import ZArith.
Require Import Coq.Arith.Max.
Require Import List.
Set Implicit Arguments.
(* I have addded a Leaf constructor to the varmap data structure (/plugins/ring/Quote.v)
-- this is harmless and spares a lot of Empty.
This means smaller proof-terms.
BTW, by dropping the polymorphism, I get small (yet noticeable) speed-up.
*)
Section MakeVarMap.
Variable A : Type.
Variable default : A.
Inductive t : Type :=
| Empty : t
| Leaf : A -> t
| Node : t -> A -> t -> t .
Fixpoint find (vm : t ) (p:positive) {struct vm} : A :=
match vm with
| Empty => default
| Leaf i => i
| Node l e r => match p with
| xH => e
| xO p => find l p
| xI p => find r p
end
end.
(* an off_map (a map with offset) offers the same functionalites as /plugins/setoid_ring/BinList.v - it is used in EnvRing.v *)
(*
Definition off_map := (option positive *t )%type.
Definition jump (j:positive) (l:off_map ) :=
let (o,m) := l in
match o with
| None => (Some j,m)
| Some j0 => (Some (j+j0)%positive,m)
end.
Definition nth (n:positive) (l: off_map ) :=
let (o,m) := l in
let idx := match o with
| None => n
| Some i => i + n
end%positive in
find idx m.
Definition hd (l:off_map) := nth xH l.
Definition tail (l:off_map ) := jump xH l.
Lemma psucc : forall p, (match p with
| xI y' => xO (Psucc y')
| xO y' => xI y'
| 1%positive => 2%positive
end) = (p+1)%positive.
Proof.
destruct p.
auto with zarith.
rewrite xI_succ_xO.
auto with zarith.
reflexivity.
Qed.
Lemma jump_Pplus : forall i j l,
(jump (i + j) l) = (jump i (jump j l)).
Proof.
unfold jump.
destruct l.
destruct o.
rewrite Pplus_assoc.
reflexivity.
reflexivity.
Qed.
Lemma jump_simpl : forall p l,
jump p l =
match p with
| xH => tail l
| xO p => jump p (jump p l)
| xI p => jump p (jump p (tail l))
end.
Proof.
destruct p ; unfold tail ; intros ; repeat rewrite <- jump_Pplus.
(* xI p = p + p + 1 *)
rewrite xI_succ_xO.
rewrite Pplus_diag.
rewrite <- Pplus_one_succ_r.
reflexivity.
(* xO p = p + p *)
rewrite Pplus_diag.
reflexivity.
reflexivity.
Qed.
Ltac jump_s :=
repeat
match goal with
| |- context [jump xH ?e] => rewrite (jump_simpl xH)
| |- context [jump (xO ?p) ?e] => rewrite (jump_simpl (xO p))
| |- context [jump (xI ?p) ?e] => rewrite (jump_simpl (xI p))
end.
Lemma jump_tl : forall j l, tail (jump j l) = jump j (tail l).
Proof.
unfold tail.
intros.
repeat rewrite <- jump_Pplus.
rewrite Pplus_comm.
reflexivity.
Qed.
Lemma jump_Psucc : forall j l,
(jump (Psucc j) l) = (jump 1 (jump j l)).
Proof.
intros.
rewrite <- jump_Pplus.
rewrite Pplus_one_succ_r.
rewrite Pplus_comm.
reflexivity.
Qed.
Lemma jump_Pdouble_minus_one : forall i l,
(jump (Pdouble_minus_one i) (tail l)) = (jump i (jump i l)).
Proof.
unfold tail.
intros.
repeat rewrite <- jump_Pplus.
rewrite <- Pplus_one_succ_r.
rewrite Psucc_o_double_minus_one_eq_xO.
rewrite Pplus_diag.
reflexivity.
Qed.
Lemma jump_x0_tail : forall p l, jump (xO p) (tail l) = jump (xI p) l.
Proof.
intros.
jump_s.
repeat rewrite <- jump_Pplus.
reflexivity.
Qed.
Lemma nth_spec : forall p l,
nth p l =
match p with
| xH => hd l
| xO p => nth p (jump p l)
| xI p => nth p (jump p (tail l))
end.
Proof.
unfold nth.
destruct l.
destruct o.
simpl.
rewrite psucc.
destruct p.
replace (p0 + xI p)%positive with ((p + (p0 + 1) + p))%positive.
reflexivity.
rewrite xI_succ_xO.
rewrite Pplus_one_succ_r.
rewrite <- Pplus_diag.
rewrite Pplus_comm.
symmetry.
rewrite (Pplus_comm p0).
rewrite <- Pplus_assoc.
rewrite (Pplus_comm 1)%positive.
rewrite <- Pplus_assoc.
reflexivity.
(**)
replace ((p0 + xO p))%positive with (p + p0 + p)%positive.
reflexivity.
rewrite <- Pplus_diag.
rewrite <- Pplus_assoc.
rewrite Pplus_comm.
rewrite Pplus_assoc.
reflexivity.
reflexivity.
simpl.
destruct p.
rewrite xI_succ_xO.
rewrite Pplus_one_succ_r.
rewrite <- Pplus_diag.
symmetry.
rewrite Pplus_comm.
rewrite Pplus_assoc.
reflexivity.
rewrite Pplus_diag.
reflexivity.
reflexivity.
Qed.
Lemma nth_jump : forall p l, nth p (tail l) = hd (jump p l).
Proof.
destruct l.
unfold tail.
unfold hd.
unfold jump.
unfold nth.
destruct o.
symmetry.
rewrite Pplus_comm.
rewrite <- Pplus_assoc.
rewrite (Pplus_comm p0).
reflexivity.
rewrite Pplus_comm.
reflexivity.
Qed.
Lemma nth_Pdouble_minus_one :
forall p l, nth (Pdouble_minus_one p) (tail l) = nth p (jump p l).
Proof.
destruct l.
unfold tail.
unfold nth, jump.
destruct o.
rewrite ((Pplus_comm p)).
rewrite <- (Pplus_assoc p0).
rewrite Pplus_diag.
rewrite <- Psucc_o_double_minus_one_eq_xO.
rewrite Pplus_one_succ_r.
rewrite (Pplus_comm (Pdouble_minus_one p)).
rewrite Pplus_assoc.
rewrite (Pplus_comm p0).
reflexivity.
rewrite <- Pplus_one_succ_l.
rewrite Psucc_o_double_minus_one_eq_xO.
rewrite Pplus_diag.
reflexivity.
Qed.
*)
End MakeVarMap.
|