1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
Require Import OrderedRing.
Require Import RingMicromega.
Require Import ZCoeff.
Require Import Refl.
Require Import ZArith.
Require Import List.
Require Import Bool.
(*Declare ML Module "micromega_plugin".*)
Ltac flatten_bool :=
repeat match goal with
[ id : (_ && _)%bool = true |- _ ] => destruct (andb_prop _ _ id); clear id
| [ id : (_ || _)%bool = true |- _ ] => destruct (orb_prop _ _ id); clear id
end.
Ltac inv H := inversion H ; try subst ; clear H.
Require Import EnvRing.
Open Scope Z_scope.
Lemma Zsor : SOR 0 1 Zplus Zmult Zminus Zopp (@eq Z) Zle Zlt.
Proof.
constructor ; intros ; subst ; try (intuition (auto with zarith)).
apply Zsth.
apply Zth.
destruct (Ztrichotomy n m) ; intuition (auto with zarith).
apply Zmult_lt_0_compat ; auto.
Qed.
Lemma ZSORaddon :
SORaddon 0 1 Zplus Zmult Zminus Zopp (@eq Z) Zle (* ring elements *)
0%Z 1%Z Zplus Zmult Zminus Zopp (* coefficients *)
Zeq_bool Zle_bool
(fun x => x) (fun x => x) (pow_N 1 Zmult).
Proof.
constructor.
constructor ; intros ; try reflexivity.
apply Zeq_bool_eq ; auto.
constructor.
reflexivity.
intros x y.
apply Zeq_bool_neq ; auto.
apply Zle_bool_imp_le.
Qed.
Fixpoint Zeval_expr (env : PolEnv Z) (e: PExpr Z) : Z :=
match e with
| PEc c => c
| PEX x => env x
| PEadd e1 e2 => Zeval_expr env e1 + Zeval_expr env e2
| PEmul e1 e2 => Zeval_expr env e1 * Zeval_expr env e2
| PEpow e1 n => Zpower (Zeval_expr env e1) (Z_of_N n)
| PEsub e1 e2 => (Zeval_expr env e1) - (Zeval_expr env e2)
| PEopp e => Zopp (Zeval_expr env e)
end.
Definition eval_expr := eval_pexpr Zplus Zmult Zminus Zopp (fun x => x) (fun x => x) (pow_N 1 Zmult).
Lemma ZNpower : forall r n, r ^ Z_of_N n = pow_N 1 Zmult r n.
Proof.
destruct n.
reflexivity.
simpl.
unfold Zpower_pos.
replace (pow_pos Zmult r p) with (1 * (pow_pos Zmult r p)) by ring.
generalize 1.
induction p; simpl ; intros ; repeat rewrite IHp ; ring.
Qed.
Lemma Zeval_expr_compat : forall env e, Zeval_expr env e = eval_expr env e.
Proof.
induction e ; simpl ; try congruence.
reflexivity.
rewrite ZNpower. congruence.
Qed.
Definition Zeval_op2 (o : Op2) : Z -> Z -> Prop :=
match o with
| OpEq => @eq Z
| OpNEq => fun x y => ~ x = y
| OpLe => Zle
| OpGe => Zge
| OpLt => Zlt
| OpGt => Zgt
end.
Definition Zeval_formula (env : PolEnv Z) (f : Formula Z):=
let (lhs, op, rhs) := f in
(Zeval_op2 op) (Zeval_expr env lhs) (Zeval_expr env rhs).
Definition Zeval_formula' :=
eval_formula Zplus Zmult Zminus Zopp (@eq Z) Zle Zlt (fun x => x) (fun x => x) (pow_N 1 Zmult).
Lemma Zeval_formula_compat : forall env f, Zeval_formula env f <-> Zeval_formula' env f.
Proof.
destruct f ; simpl.
rewrite Zeval_expr_compat. rewrite Zeval_expr_compat.
unfold eval_expr.
generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Zmult) env Flhs).
generalize ((eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : N => x) (pow_N 1 Zmult) env Frhs)).
destruct Fop ; simpl; intros ; intuition (auto with zarith).
Qed.
Definition eval_nformula :=
eval_nformula 0 Zplus Zmult (@eq Z) Zle Zlt (fun x => x) .
Definition Zeval_op1 (o : Op1) : Z -> Prop :=
match o with
| Equal => fun x : Z => x = 0
| NonEqual => fun x : Z => x <> 0
| Strict => fun x : Z => 0 < x
| NonStrict => fun x : Z => 0 <= x
end.
Lemma Zeval_nformula_dec : forall env d, (eval_nformula env d) \/ ~ (eval_nformula env d).
Proof.
intros.
apply (eval_nformula_dec Zsor).
Qed.
Definition ZWitness := Psatz Z.
Definition ZWeakChecker := check_normalised_formulas 0 1 Zplus Zmult Zeq_bool Zle_bool.
Lemma ZWeakChecker_sound : forall (l : list (NFormula Z)) (cm : ZWitness),
ZWeakChecker l cm = true ->
forall env, make_impl (eval_nformula env) l False.
Proof.
intros l cm H.
intro.
unfold eval_nformula.
apply (checker_nf_sound Zsor ZSORaddon l cm).
unfold ZWeakChecker in H.
exact H.
Qed.
Definition psub := psub Z0 Zplus Zminus Zopp Zeq_bool.
Definition padd := padd Z0 Zplus Zeq_bool.
Definition norm := norm 0 1 Zplus Zmult Zminus Zopp Zeq_bool.
Definition eval_pol := eval_pol 0 Zplus Zmult (fun x => x).
Lemma eval_pol_sub : forall env lhs rhs, eval_pol env (psub lhs rhs) = eval_pol env lhs - eval_pol env rhs.
Proof.
intros.
apply (eval_pol_sub Zsor ZSORaddon).
Qed.
Lemma eval_pol_add : forall env lhs rhs, eval_pol env (padd lhs rhs) = eval_pol env lhs + eval_pol env rhs.
Proof.
intros.
apply (eval_pol_add Zsor ZSORaddon).
Qed.
Lemma eval_pol_norm : forall env e, eval_expr env e = eval_pol env (norm e) .
Proof.
intros.
apply (eval_pol_norm Zsor ZSORaddon).
Qed.
Definition xnormalise (t:Formula Z) : list (NFormula Z) :=
let (lhs,o,rhs) := t in
let lhs := norm lhs in
let rhs := norm rhs in
match o with
| OpEq =>
((psub lhs (padd rhs (Pc 1))),NonStrict)::((psub rhs (padd lhs (Pc 1))),NonStrict)::nil
| OpNEq => (psub lhs rhs,Equal) :: nil
| OpGt => (psub rhs lhs,NonStrict) :: nil
| OpLt => (psub lhs rhs,NonStrict) :: nil
| OpGe => (psub rhs (padd lhs (Pc 1)),NonStrict) :: nil
| OpLe => (psub lhs (padd rhs (Pc 1)),NonStrict) :: nil
end.
Require Import Tauto.
Definition normalise (t:Formula Z) : cnf (NFormula Z) :=
List.map (fun x => x::nil) (xnormalise t).
Lemma normalise_correct : forall env t, eval_cnf (eval_nformula env) (normalise t) <-> Zeval_formula env t.
Proof.
Opaque padd.
unfold normalise, xnormalise ; simpl; intros env t.
rewrite Zeval_formula_compat.
unfold eval_cnf.
destruct t as [lhs o rhs]; case_eq o; simpl;
repeat rewrite eval_pol_sub;
repeat rewrite eval_pol_add;
repeat rewrite <- eval_pol_norm ; simpl in *;
unfold eval_expr;
generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : BinNat.N => x) (pow_N 1 Zmult) env lhs);
generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : BinNat.N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
intuition (auto with zarith).
Transparent padd.
Qed.
Definition xnegate (t:RingMicromega.Formula Z) : list (NFormula Z) :=
let (lhs,o,rhs) := t in
let lhs := norm lhs in
let rhs := norm rhs in
match o with
| OpEq => (psub lhs rhs,Equal) :: nil
| OpNEq => ((psub lhs (padd rhs (Pc 1))),NonStrict)::((psub rhs (padd lhs (Pc 1))),NonStrict)::nil
| OpGt => (psub lhs (padd rhs (Pc 1)),NonStrict) :: nil
| OpLt => (psub rhs (padd lhs (Pc 1)),NonStrict) :: nil
| OpGe => (psub lhs rhs,NonStrict) :: nil
| OpLe => (psub rhs lhs,NonStrict) :: nil
end.
Definition negate (t:RingMicromega.Formula Z) : cnf (NFormula Z) :=
List.map (fun x => x::nil) (xnegate t).
Lemma negate_correct : forall env t, eval_cnf (eval_nformula env) (negate t) <-> ~ Zeval_formula env t.
Proof.
Proof.
Opaque padd.
intros env t.
rewrite Zeval_formula_compat.
unfold negate, xnegate ; simpl.
unfold eval_cnf.
destruct t as [lhs o rhs]; case_eq o; simpl;
repeat rewrite eval_pol_sub;
repeat rewrite eval_pol_add;
repeat rewrite <- eval_pol_norm ; simpl in *;
unfold eval_expr;
generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : BinNat.N => x) (pow_N 1 Zmult) env lhs);
generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : BinNat.N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
intuition (auto with zarith).
Transparent padd.
Qed.
Definition ZweakTautoChecker (w: list ZWitness) (f : BFormula (Formula Z)) : bool :=
@tauto_checker (Formula Z) (NFormula Z) normalise negate ZWitness ZWeakChecker f w.
(* To get a complete checker, the proof format has to be enriched *)
Require Import Zdiv.
Open Scope Z_scope.
Definition ceiling (a b:Z) : Z :=
let (q,r) := Zdiv_eucl a b in
match r with
| Z0 => q
| _ => q + 1
end.
Lemma narrow_interval_lower_bound : forall a b x, a > 0 -> a * x >= b -> x >= ceiling b a.
Proof.
unfold ceiling.
intros.
generalize (Z_div_mod b a H).
destruct (Zdiv_eucl b a).
intros.
destruct H1.
destruct H2.
subst.
destruct (Ztrichotomy z0 0) as [ HH1 | [HH2 | HH3]]; destruct z0 ; try auto with zarith ; try discriminate.
assert (HH :x >= z \/ x < z) by (destruct (Ztrichotomy x z) ; auto with zarith).
destruct HH ;auto.
generalize (Zmult_lt_compat_l _ _ _ H3 H1).
auto with zarith.
clear H2.
assert (HH :x >= z +1 \/ x <= z) by (destruct (Ztrichotomy x z) ; intuition (auto with zarith)).
destruct HH ;auto.
assert (0 < a) by auto with zarith.
generalize (Zmult_lt_0_le_compat_r _ _ _ H2 H1).
intros.
rewrite Zmult_comm in H4.
rewrite (Zmult_comm z) in H4.
auto with zarith.
Qed.
(** NB: narrow_interval_upper_bound is Zdiv.Zdiv_le_lower_bound *)
Require Import QArith.
Inductive ZArithProof : Type :=
| DoneProof
| RatProof : ZWitness -> ZArithProof -> ZArithProof
| CutProof : ZWitness -> ZArithProof -> ZArithProof
| EnumProof : ZWitness -> ZWitness -> list ZArithProof -> ZArithProof.
(* n/d <= x -> d*x - n >= 0 *)
(*
Definition makeLb (v:PExpr Z) (q:Q) : NFormula Z :=
let (n,d) := q in (PEsub (PEmul (PEc (Zpos d)) v) (PEc n),NonStrict).
(* x <= n/d -> d * x <= d *)
Definition makeUb (v:PExpr Z) (q:Q) : NFormula Z :=
let (n,d) := q in
(PEsub (PEc n) (PEmul (PEc (Zpos d)) v), NonStrict).
Definition qceiling (q:Q) : Z :=
let (n,d) := q in ceiling n (Zpos d).
Definition qfloor (q:Q) : Z :=
let (n,d) := q in Zdiv n (Zpos d).
Definition makeLbCut (v:PExprC Z) (q:Q) : NFormula Z :=
(PEsub v (PEc (qceiling q)), NonStrict).
Definition neg_nformula (f : NFormula Z) :=
let (e,o) := f in
(PEopp (PEadd e (PEc 1%Z)), o).
Lemma neg_nformula_sound : forall env f, snd f = NonStrict ->( ~ (Zeval_nformula env (neg_nformula f)) <-> Zeval_nformula env f).
Proof.
unfold neg_nformula.
destruct f.
simpl.
intros ; subst ; simpl in *.
split; auto with zarith.
Qed.
*)
(* In order to compute the 'cut', we need to express a polynomial P as a * Q + b.
- b is the constant
- a is the gcd of the other coefficient.
*)
Require Import Znumtheory.
Definition isZ0 (x:Z) :=
match x with
| Z0 => true
| _ => false
end.
Lemma isZ0_0 : forall x, isZ0 x = true <-> x = 0.
Proof.
destruct x ; simpl ; intuition congruence.
Qed.
Lemma isZ0_n0 : forall x, isZ0 x = false <-> x <> 0.
Proof.
destruct x ; simpl ; intuition congruence.
Qed.
Definition ZgcdM (x y : Z) := Zmax (Zgcd x y) 1.
Fixpoint Zgcd_pol (p : PolC Z) : (Z * Z) :=
match p with
| Pc c => (0,c)
| Pinj _ p => Zgcd_pol p
| PX p _ q =>
let (g1,c1) := Zgcd_pol p in
let (g2,c2) := Zgcd_pol q in
(ZgcdM (ZgcdM g1 c1) g2 , c2)
end.
(*Eval compute in (Zgcd_pol ((PX (Pc (-2)) 1 (Pc 4)))).*)
Fixpoint Zdiv_pol (p:PolC Z) (x:Z) : PolC Z :=
match p with
| Pc c => Pc (Zdiv c x)
| Pinj j p => Pinj j (Zdiv_pol p x)
| PX p j q => PX (Zdiv_pol p x) j (Zdiv_pol q x)
end.
Inductive Zdivide_pol (x:Z): PolC Z -> Prop :=
| Zdiv_Pc : forall c, (x | c) -> Zdivide_pol x (Pc c)
| Zdiv_Pinj : forall p, Zdivide_pol x p -> forall j, Zdivide_pol x (Pinj j p)
| Zdiv_PX : forall p q, Zdivide_pol x p -> Zdivide_pol x q -> forall j, Zdivide_pol x (PX p j q).
Lemma Zdiv_pol_correct : forall a p, 0 < a -> Zdivide_pol a p ->
forall env, eval_pol env p = a * eval_pol env (Zdiv_pol p a).
Proof.
intros until 2.
induction H0.
(* Pc *)
simpl.
intros.
apply Zdivide_Zdiv_eq ; auto.
(* Pinj *)
simpl.
intros.
apply IHZdivide_pol.
(* PX *)
simpl.
intros.
rewrite IHZdivide_pol1.
rewrite IHZdivide_pol2.
ring.
Qed.
Lemma Zgcd_pol_ge : forall p, fst (Zgcd_pol p) >= 0.
Proof.
induction p.
simpl. auto with zarith.
simpl. auto.
simpl.
case_eq (Zgcd_pol p1).
case_eq (Zgcd_pol p3).
intros.
simpl.
unfold ZgcdM.
generalize (Zgcd_is_pos z1 z2).
generalize (Zmax_spec (Zgcd z1 z2) 1).
generalize (Zgcd_is_pos (Zmax (Zgcd z1 z2) 1) z).
generalize (Zmax_spec (Zgcd (Zmax (Zgcd z1 z2) 1) z) 1).
auto with zarith.
Qed.
Lemma Zdivide_pol_Zdivide : forall p x y, Zdivide_pol x p -> (y | x) -> Zdivide_pol y p.
Proof.
intros.
induction H.
constructor.
apply Zdivide_trans with (1:= H0) ; assumption.
constructor. auto.
constructor ; auto.
Qed.
Lemma Zdivide_pol_one : forall p, Zdivide_pol 1 p.
Proof.
induction p ; constructor ; auto.
exists c. ring.
Qed.
Lemma Zgcd_minus : forall a b c, (a | c - b ) -> (Zgcd a b | c).
Proof.
intros a b c (q,Hq).
destruct (Zgcd_is_gcd a b) as [(a',Ha) (b',Hb) _].
set (g:=Zgcd a b) in *; clearbody g.
exists (q * a' + b').
symmetry in Hq. rewrite <- Zeq_plus_swap in Hq.
rewrite <- Hq, Hb, Ha. ring.
Qed.
Lemma Zdivide_pol_sub : forall p a b,
0 < Zgcd a b ->
Zdivide_pol a (PsubC Zminus p b) ->
Zdivide_pol (Zgcd a b) p.
Proof.
induction p.
simpl.
intros. inversion H0.
constructor.
apply Zgcd_minus ; auto.
intros.
constructor.
simpl in H0. inversion H0 ; subst; clear H0.
apply IHp ; auto.
simpl. intros.
inv H0.
constructor.
apply Zdivide_pol_Zdivide with (1:= H3).
destruct (Zgcd_is_gcd a b) ; assumption.
apply IHp2 ; assumption.
Qed.
Lemma Zdivide_pol_sub_0 : forall p a,
Zdivide_pol a (PsubC Zminus p 0) ->
Zdivide_pol a p.
Proof.
induction p.
simpl.
intros. inversion H.
constructor. replace (c - 0) with c in H1 ; auto with zarith.
intros.
constructor.
simpl in H. inversion H ; subst; clear H.
apply IHp ; auto.
simpl. intros.
inv H.
constructor. auto.
apply IHp2 ; assumption.
Qed.
Lemma Zgcd_pol_div : forall p g c,
Zgcd_pol p = (g, c) -> Zdivide_pol g (PsubC Zminus p c).
Proof.
induction p ; simpl.
(* Pc *)
intros. inv H.
constructor.
exists 0. now ring.
(* Pinj *)
intros.
constructor. apply IHp ; auto.
(* PX *)
intros g c.
case_eq (Zgcd_pol p1) ; case_eq (Zgcd_pol p3) ; intros.
inv H1.
unfold ZgcdM at 1.
destruct (Zmax_spec (Zgcd (ZgcdM z1 z2) z) 1) as [HH1 | HH1];
destruct HH1 as [HH1 HH1'] ; rewrite HH1'.
constructor.
apply Zdivide_pol_Zdivide with (x:= ZgcdM z1 z2).
unfold ZgcdM.
destruct (Zmax_spec (Zgcd z1 z2) 1) as [HH2 | HH2].
destruct HH2.
rewrite H2.
apply Zdivide_pol_sub ; auto.
auto with zarith.
destruct HH2. rewrite H2.
apply Zdivide_pol_one.
unfold ZgcdM in HH1. unfold ZgcdM.
destruct (Zmax_spec (Zgcd z1 z2) 1) as [HH2 | HH2].
destruct HH2. rewrite H2 in *.
destruct (Zgcd_is_gcd (Zgcd z1 z2) z); auto.
destruct HH2. rewrite H2.
destruct (Zgcd_is_gcd 1 z); auto.
apply Zdivide_pol_Zdivide with (x:= z).
apply (IHp2 _ _ H); auto.
destruct (Zgcd_is_gcd (ZgcdM z1 z2) z); auto.
constructor. apply Zdivide_pol_one.
apply Zdivide_pol_one.
Qed.
Lemma Zgcd_pol_correct_lt : forall p env g c, Zgcd_pol p = (g,c) -> 0 < g -> eval_pol env p = g * (eval_pol env (Zdiv_pol (PsubC Zminus p c) g)) + c.
Proof.
intros.
rewrite <- Zdiv_pol_correct ; auto.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
unfold eval_pol. ring.
(**)
apply Zgcd_pol_div ; auto.
Qed.
Definition makeCuttingPlane (p : PolC Z) : PolC Z * Z :=
let (g,c) := Zgcd_pol p in
if Zgt_bool g Z0
then (Zdiv_pol (PsubC Zminus p c) g , Zopp (ceiling (Zopp c) g))
else (p,Z0).
Definition genCuttingPlane (f : NFormula Z) : option (PolC Z * Z * Op1) :=
let (e,op) := f in
match op with
| Equal => let (g,c) := Zgcd_pol e in
if andb (Zgt_bool g Z0) (andb (Zgt_bool c Z0) (negb (Zeq_bool (Zgcd g c) g)))
then None (* inconsistent *)
else Some (e, Z0,op) (* It could still be inconsistent -- but not a cut *)
| NonEqual => Some (e,Z0,op)
| Strict => let (p,c) := makeCuttingPlane (PsubC Zminus e 1) in
Some (p,c,NonStrict)
| NonStrict => let (p,c) := makeCuttingPlane e in
Some (p,c,NonStrict)
end.
Definition nformula_of_cutting_plane (t : PolC Z * Z * Op1) : NFormula Z :=
let (e_z, o) := t in
let (e,z) := e_z in
(padd e (Pc z) , o).
Definition is_pol_Z0 (p : PolC Z) : bool :=
match p with
| Pc Z0 => true
| _ => false
end.
Lemma is_pol_Z0_eval_pol : forall p, is_pol_Z0 p = true -> forall env, eval_pol env p = 0.
Proof.
unfold is_pol_Z0.
destruct p ; try discriminate.
destruct z ; try discriminate.
reflexivity.
Qed.
Definition eval_Psatz : list (NFormula Z) -> ZWitness -> option (NFormula Z) :=
eval_Psatz 0 1 Zplus Zmult Zeq_bool Zle_bool.
Definition check_inconsistent := check_inconsistent 0 Zeq_bool Zle_bool.
Fixpoint ZChecker (l:list (NFormula Z)) (pf : ZArithProof) {struct pf} : bool :=
match pf with
| DoneProof => false
| RatProof w pf =>
match eval_Psatz l w with
| None => false
| Some f =>
if check_inconsistent f then true
else ZChecker (f::l) pf
end
| CutProof w pf =>
match eval_Psatz l w with
| None => false
| Some f =>
match genCuttingPlane f with
| None => true
| Some cp => ZChecker (nformula_of_cutting_plane cp::l) pf
end
end
| EnumProof w1 w2 pf =>
match eval_Psatz l w1 , eval_Psatz l w2 with
| Some f1 , Some f2 =>
match genCuttingPlane f1 , genCuttingPlane f2 with
|Some (e1,z1,op1) , Some (e2,z2,op2) =>
match op1 , op2 with
| NonStrict , NonStrict =>
if is_pol_Z0 (padd e1 e2)
then
(fix label (pfs:list ZArithProof) :=
fun lb ub =>
match pfs with
| nil => if Zgt_bool lb ub then true else false
| pf::rsr => andb (ZChecker ((psub e1 (Pc lb), Equal) :: l) pf) (label rsr (Zplus lb 1%Z) ub)
end)
pf (Zopp z1) z2
else false
| _ , _ => false
end
| _ , _ => false
end
| _ , _ => false
end
end.
Fixpoint bdepth (pf : ZArithProof) : nat :=
match pf with
| DoneProof => O
| RatProof _ p => S (bdepth p)
| CutProof _ p => S (bdepth p)
| EnumProof _ _ l => S (List.fold_right (fun pf x => Max.max (bdepth pf) x) O l)
end.
Require Import Wf_nat.
Lemma in_bdepth : forall l a b y, In y l -> ltof ZArithProof bdepth y (EnumProof a b l).
Proof.
induction l.
(* nil *)
simpl.
tauto.
(* cons *)
simpl.
intros.
destruct H.
subst.
unfold ltof.
simpl.
generalize ( (fold_right
(fun (pf : ZArithProof) (x : nat) => Max.max (bdepth pf) x) 0%nat l)).
intros.
generalize (bdepth y) ; intros.
generalize (Max.max_l n0 n) (Max.max_r n0 n).
auto with zarith.
generalize (IHl a0 b y H).
unfold ltof.
simpl.
generalize ( (fold_right (fun (pf : ZArithProof) (x : nat) => Max.max (bdepth pf) x) 0%nat
l)).
intros.
generalize (Max.max_l (bdepth a) n) (Max.max_r (bdepth a) n).
auto with zarith.
Qed.
Lemma eval_Psatz_sound : forall env w l f',
make_conj (eval_nformula env) l ->
eval_Psatz l w = Some f' -> eval_nformula env f'.
Proof.
intros.
apply (eval_Psatz_Sound Zsor ZSORaddon) with (l:=l) (e:= w) ; auto.
apply make_conj_in ; auto.
Qed.
Lemma makeCuttingPlane_sound : forall env e e' c,
eval_nformula env (e, NonStrict) ->
makeCuttingPlane e = (e',c) ->
eval_nformula env (nformula_of_cutting_plane (e', c, NonStrict)).
Proof.
unfold nformula_of_cutting_plane.
unfold eval_nformula. unfold RingMicromega.eval_nformula.
unfold eval_op1.
intros.
rewrite (RingMicromega.eval_pol_add Zsor ZSORaddon).
simpl.
(**)
unfold makeCuttingPlane in H0.
revert H0.
case_eq (Zgcd_pol e) ; intros g c0.
generalize (Zgt_cases g 0) ; destruct (Zgt_bool g 0).
intros.
inv H2.
change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in *.
apply Zgcd_pol_correct_lt with (env:=env) in H1.
generalize (narrow_interval_lower_bound g (- c0) (eval_pol env (Zdiv_pol (PsubC Zminus e c0) g)) H0).
auto with zarith.
auto with zarith.
(* g <= 0 *)
intros. inv H2. auto with zarith.
Qed.
Lemma cutting_plane_sound : forall env f p,
eval_nformula env f ->
genCuttingPlane f = Some p ->
eval_nformula env (nformula_of_cutting_plane p).
Proof.
unfold genCuttingPlane.
destruct f as [e op].
destruct op.
(* Equal *)
destruct p as [[e' z] op].
case_eq (Zgcd_pol e) ; intros g c.
destruct (Zgt_bool g 0 && (Zgt_bool c 0 && negb (Zeq_bool (Zgcd g c) g))) ; [discriminate|].
intros. inv H1. unfold nformula_of_cutting_plane.
unfold eval_nformula in *.
unfold RingMicromega.eval_nformula in *.
unfold eval_op1 in *.
rewrite (RingMicromega.eval_pol_add Zsor ZSORaddon).
simpl. rewrite H0. reflexivity.
(* NonEqual *)
intros.
inv H0.
unfold eval_nformula in *.
unfold RingMicromega.eval_nformula in *.
unfold nformula_of_cutting_plane.
unfold eval_op1 in *.
rewrite (RingMicromega.eval_pol_add Zsor ZSORaddon).
simpl. auto with zarith.
(* Strict *)
destruct p as [[e' z] op].
case_eq (makeCuttingPlane (PsubC Zminus e 1)).
intros.
inv H1.
apply makeCuttingPlane_sound with (env:=env) (2:= H).
simpl in *.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
auto with zarith.
(* NonStrict *)
destruct p as [[e' z] op].
case_eq (makeCuttingPlane e).
intros.
inv H1.
apply makeCuttingPlane_sound with (env:=env) (2:= H).
assumption.
Qed.
Lemma genCuttingPlaneNone : forall env f,
genCuttingPlane f = None ->
eval_nformula env f -> False.
Proof.
unfold genCuttingPlane.
destruct f.
destruct o.
case_eq (Zgcd_pol p) ; intros g c.
case_eq (Zgt_bool g 0 && (Zgt_bool c 0 && negb (Zeq_bool (Zgcd g c) g))).
intros.
flatten_bool.
rewrite negb_true_iff in H5.
apply Zeq_bool_neq in H5.
contradict H5.
rewrite <- Zgt_is_gt_bool in H3.
rewrite <- Zgt_is_gt_bool in H.
apply Zis_gcd_gcd; auto with zarith.
constructor; auto with zarith.
change (eval_pol env p = 0) in H2.
rewrite Zgcd_pol_correct_lt with (1:= H0) in H2; auto with zarith.
set (x:=eval_pol env (Zdiv_pol (PsubC Zminus p c) g)) in *; clearbody x.
exists (-x).
rewrite <- Zopp_mult_distr_l, Zmult_comm; auto with zarith.
(**)
discriminate.
discriminate.
destruct (makeCuttingPlane (PsubC Zminus p 1)) ; discriminate.
destruct (makeCuttingPlane p) ; discriminate.
Qed.
Lemma ZChecker_sound : forall w l, ZChecker l w = true -> forall env, make_impl (eval_nformula env) l False.
Proof.
induction w using (well_founded_ind (well_founded_ltof _ bdepth)).
destruct w as [ | w pf | w pf | w1 w2 pf].
(* DoneProof *)
simpl. discriminate.
(* RatProof *)
simpl.
intro l. case_eq (eval_Psatz l w) ; [| discriminate].
intros f Hf.
case_eq (check_inconsistent f).
intros.
apply (checker_nf_sound Zsor ZSORaddon l w).
unfold check_normalised_formulas. unfold eval_Psatz in Hf. rewrite Hf.
unfold check_inconsistent in H0. assumption.
intros.
assert (make_impl (eval_nformula env) (f::l) False).
apply H with (2:= H1).
unfold ltof.
simpl.
auto with arith.
destruct f.
rewrite <- make_conj_impl in H2.
rewrite make_conj_cons in H2.
rewrite <- make_conj_impl.
intro.
apply H2.
split ; auto.
apply eval_Psatz_sound with (2:= Hf) ; assumption.
(* CutProof *)
simpl.
intro l.
case_eq (eval_Psatz l w) ; [ | discriminate].
intros f' Hlc.
case_eq (genCuttingPlane f').
intros.
assert (make_impl (eval_nformula env) (nformula_of_cutting_plane p::l) False).
eapply (H pf) ; auto.
unfold ltof.
simpl.
auto with arith.
rewrite <- make_conj_impl in H2.
rewrite make_conj_cons in H2.
rewrite <- make_conj_impl.
intro.
apply H2.
split ; auto.
apply eval_Psatz_sound with (env:=env) in Hlc.
apply cutting_plane_sound with (1:= Hlc) (2:= H0).
auto.
(* genCuttingPlane = None *)
intros.
rewrite <- make_conj_impl.
intros.
apply eval_Psatz_sound with (2:= Hlc) in H2.
apply genCuttingPlaneNone with (2:= H2) ; auto.
(* EnumProof *)
intro.
simpl.
case_eq (eval_Psatz l w1) ; [ | discriminate].
case_eq (eval_Psatz l w2) ; [ | discriminate].
intros f1 Hf1 f2 Hf2.
case_eq (genCuttingPlane f2) ; [ | discriminate].
destruct p as [ [p1 z1] op1].
case_eq (genCuttingPlane f1) ; [ | discriminate].
destruct p as [ [p2 z2] op2].
case_eq op1 ; case_eq op2 ; try discriminate.
case_eq (is_pol_Z0 (padd p1 p2)) ; try discriminate.
intros.
(* get the bounds of the enum *)
rewrite <- make_conj_impl.
intro.
assert (-z1 <= eval_pol env p1 <= z2).
split.
apply eval_Psatz_sound with (env:=env) in Hf2 ; auto.
apply cutting_plane_sound with (1:= Hf2) in H4.
unfold nformula_of_cutting_plane in H4.
unfold eval_nformula in H4.
unfold RingMicromega.eval_nformula in H4.
change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in H4.
unfold eval_op1 in H4.
rewrite eval_pol_add in H4. simpl in H4.
auto with zarith.
(**)
apply is_pol_Z0_eval_pol with (env := env) in H0.
rewrite eval_pol_add in H0.
replace (eval_pol env p1) with (- eval_pol env p2) by omega.
apply eval_Psatz_sound with (env:=env) in Hf1 ; auto.
apply cutting_plane_sound with (1:= Hf1) in H3.
unfold nformula_of_cutting_plane in H3.
unfold eval_nformula in H3.
unfold RingMicromega.eval_nformula in H3.
change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in H3.
unfold eval_op1 in H3.
rewrite eval_pol_add in H3. simpl in H3.
omega.
revert H5.
set (FF := (fix label (pfs : list ZArithProof) (lb ub : Z) {struct pfs} : bool :=
match pfs with
| nil => if Z_gt_dec lb ub then true else false
| pf :: rsr =>
(ZChecker ((PsubC Zminus p1 lb, Equal) :: l) pf &&
label rsr (lb + 1)%Z ub)%bool
end)).
intros.
assert (HH :forall x, -z1 <= x <= z2 -> exists pr,
(In pr pf /\
ZChecker ((PsubC Zminus p1 x,Equal) :: l) pr = true)%Z).
clear H.
clear H0 H1 H2 H3 H4 H7.
revert H5.
generalize (-z1). clear z1. intro z1.
revert z1 z2.
induction pf;simpl ;intros.
generalize (Zgt_cases z1 z2).
destruct (Zgt_bool z1 z2).
intros.
apply False_ind ; omega.
discriminate.
flatten_bool.
assert (HH:(x = z1 \/ z1 +1 <=x)%Z) by omega.
destruct HH.
subst.
exists a ; auto.
assert (z1 + 1 <= x <= z2)%Z by omega.
destruct (IHpf _ _ H1 _ H3).
destruct H4.
exists x0 ; split;auto.
(*/asser *)
destruct (HH _ H7) as [pr [Hin Hcheker]].
assert (make_impl (eval_nformula env) ((PsubC Zminus p1 (eval_pol env p1),Equal) :: l) False).
apply (H pr);auto.
apply in_bdepth ; auto.
rewrite <- make_conj_impl in H8.
apply H8.
rewrite make_conj_cons.
split ;auto.
unfold eval_nformula.
unfold RingMicromega.eval_nformula.
simpl.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
unfold eval_pol. ring.
Qed.
Definition ZTautoChecker (f : BFormula (Formula Z)) (w: list ZArithProof): bool :=
@tauto_checker (Formula Z) (NFormula Z) normalise negate ZArithProof ZChecker f w.
Lemma ZTautoChecker_sound : forall f w, ZTautoChecker f w = true -> forall env, eval_f (Zeval_formula env) f.
Proof.
intros f w.
unfold ZTautoChecker.
apply (tauto_checker_sound Zeval_formula eval_nformula).
apply Zeval_nformula_dec.
intros env t.
rewrite normalise_correct ; auto.
intros env t.
rewrite negate_correct ; auto.
intros t w0.
apply ZChecker_sound.
Qed.
Fixpoint xhyps_of_pt (base:nat) (acc : list nat) (pt:ZArithProof) : list nat :=
match pt with
| DoneProof => acc
| RatProof c pt => xhyps_of_pt (S base ) (xhyps_of_psatz base acc c) pt
| CutProof c pt => xhyps_of_pt (S base ) (xhyps_of_psatz base acc c) pt
| EnumProof c1 c2 l =>
let acc := xhyps_of_psatz base (xhyps_of_psatz base acc c2) c1 in
List.fold_left (xhyps_of_pt (S base)) l acc
end.
Definition hyps_of_pt (pt : ZArithProof) : list nat := xhyps_of_pt 0 nil pt.
(*Lemma hyps_of_pt_correct : forall pt l, *)
Open Scope Z_scope.
(** To ease bindings from ml code **)
(*Definition varmap := Quote.varmap.*)
Definition make_impl := Refl.make_impl.
Definition make_conj := Refl.make_conj.
Require VarMap.
(*Definition varmap_type := VarMap.t Z. *)
Definition env := PolEnv Z.
Definition node := @VarMap.Node Z.
Definition empty := @VarMap.Empty Z.
Definition leaf := @VarMap.Leaf Z.
Definition coneMember := ZWitness.
Definition eval := eval_formula.
Definition prod_pos_nat := prod positive nat.
Definition n_of_Z (z:Z) : BinNat.N :=
match z with
| Z0 => N0
| Zpos p => Npos p
| Zneg p => N0
end.
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
|