1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
(* We take as input a list of polynomials [p1...pn] and return an unfeasibility
certificate polynomial. *)
(*open Micromega.Polynomial*)
open Big_int
open Num
open Sos_lib
module Mc = Micromega
module Ml2C = Mutils.CamlToCoq
module C2Ml = Mutils.CoqToCaml
let (<+>) = add_num
let (<->) = minus_num
let (<*>) = mult_num
type var = Mc.positive
module Monomial :
sig
type t
val const : t
val var : var -> t
val find : var -> t -> int
val mult : var -> t -> t
val prod : t -> t -> t
val compare : t -> t -> int
val pp : out_channel -> t -> unit
val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a
end
=
struct
(* A monomial is represented by a multiset of variables *)
module Map = Map.Make(struct type t = var let compare = Pervasives.compare end)
open Map
type t = int Map.t
(* The monomial that corresponds to a constant *)
let const = Map.empty
(* The monomial 'x' *)
let var x = Map.add x 1 Map.empty
(* Get the degre of a variable in a monomial *)
let find x m = try find x m with Not_found -> 0
(* Multiply a monomial by a variable *)
let mult x m = add x ( (find x m) + 1) m
(* Product of monomials *)
let prod m1 m2 = Map.fold (fun k d m -> add k ((find k m) + d) m) m1 m2
(* Total ordering of monomials *)
let compare m1 m2 = Map.compare Pervasives.compare m1 m2
let pp o m = Map.iter (fun k v ->
if v = 1 then Printf.fprintf o "x%i." (C2Ml.index k)
else Printf.fprintf o "x%i^%i." (C2Ml.index k) v) m
let fold = fold
end
module Poly :
(* A polynomial is a map of monomials *)
(*
This is probably a naive implementation
(expected to be fast enough - Coq is probably the bottleneck)
*The new ring contribution is using a sparse Horner representation.
*)
sig
type t
val get : Monomial.t -> t -> num
val variable : var -> t
val add : Monomial.t -> num -> t -> t
val constant : num -> t
val mult : Monomial.t -> num -> t -> t
val product : t -> t -> t
val addition : t -> t -> t
val uminus : t -> t
val fold : (Monomial.t -> num -> 'a -> 'a) -> t -> 'a -> 'a
val pp : out_channel -> t -> unit
val compare : t -> t -> int
val is_null : t -> bool
end =
struct
(*normalisation bug : 0*x ... *)
module P = Map.Make(Monomial)
open P
type t = num P.t
let pp o p = P.iter (fun k v ->
if compare_num v (Int 0) <> 0
then
if Monomial.compare Monomial.const k = 0
then Printf.fprintf o "%s " (string_of_num v)
else Printf.fprintf o "%s*%a " (string_of_num v) Monomial.pp k) p
(* Get the coefficient of monomial mn *)
let get : Monomial.t -> t -> num =
fun mn p -> try find mn p with Not_found -> (Int 0)
(* The polynomial 1.x *)
let variable : var -> t =
fun x -> add (Monomial.var x) (Int 1) empty
(*The constant polynomial *)
let constant : num -> t =
fun c -> add (Monomial.const) c empty
(* The addition of a monomial *)
let add : Monomial.t -> num -> t -> t =
fun mn v p ->
let vl = (get mn p) <+> v in
add mn vl p
(** Design choice: empty is not a polynomial
I do not remember why ....
**)
(* The product by a monomial *)
let mult : Monomial.t -> num -> t -> t =
fun mn v p ->
fold (fun mn' v' res -> P.add (Monomial.prod mn mn') (v<*>v') res) p empty
let addition : t -> t -> t =
fun p1 p2 -> fold (fun mn v p -> add mn v p) p1 p2
let product : t -> t -> t =
fun p1 p2 ->
fold (fun mn v res -> addition (mult mn v p2) res ) p1 empty
let uminus : t -> t =
fun p -> map (fun v -> minus_num v) p
let fold = P.fold
let is_null p = fold (fun mn vl b -> b & sign_num vl = 0) p true
let compare = compare compare_num
end
open Mutils
type 'a number_spec = {
bigint_to_number : big_int -> 'a;
number_to_num : 'a -> num;
zero : 'a;
unit : 'a;
mult : 'a -> 'a -> 'a;
eqb : 'a -> 'a -> bool
}
let z_spec = {
bigint_to_number = Ml2C.bigint ;
number_to_num = (fun x -> Big_int (C2Ml.z_big_int x));
zero = Mc.Z0;
unit = Mc.Zpos Mc.XH;
mult = Mc.zmult;
eqb = Mc.zeq_bool
}
let q_spec = {
bigint_to_number = (fun x -> {Mc.qnum = Ml2C.bigint x; Mc.qden = Mc.XH});
number_to_num = C2Ml.q_to_num;
zero = {Mc.qnum = Mc.Z0;Mc.qden = Mc.XH};
unit = {Mc.qnum = (Mc.Zpos Mc.XH) ; Mc.qden = Mc.XH};
mult = Mc.qmult;
eqb = Mc.qeq_bool
}
let r_spec = z_spec
let dev_form n_spec p =
let rec dev_form p =
match p with
| Mc.PEc z -> Poly.constant (n_spec.number_to_num z)
| Mc.PEX v -> Poly.variable v
| Mc.PEmul(p1,p2) ->
let p1 = dev_form p1 in
let p2 = dev_form p2 in
Poly.product p1 p2
| Mc.PEadd(p1,p2) -> Poly.addition (dev_form p1) (dev_form p2)
| Mc.PEopp p -> Poly.uminus (dev_form p)
| Mc.PEsub(p1,p2) -> Poly.addition (dev_form p1) (Poly.uminus (dev_form p2))
| Mc.PEpow(p,n) ->
let p = dev_form p in
let n = C2Ml.n n in
let rec pow n =
if n = 0
then Poly.constant (n_spec.number_to_num n_spec.unit)
else Poly.product p (pow (n-1)) in
pow n in
dev_form p
let monomial_to_polynomial mn =
Monomial.fold
(fun v i acc ->
let mn = if i = 1 then Mc.PEX v else Mc.PEpow (Mc.PEX v ,Ml2C.n i) in
if acc = Mc.PEc (Mc.Zpos Mc.XH)
then mn
else Mc.PEmul(mn,acc))
mn
(Mc.PEc (Mc.Zpos Mc.XH))
let list_to_polynomial vars l =
assert (List.for_all (fun x -> ceiling_num x =/ x) l);
let var x = monomial_to_polynomial (List.nth vars x) in
let rec xtopoly p i = function
| [] -> p
| c::l -> if c =/ (Int 0) then xtopoly p (i+1) l
else let c = Mc.PEc (Ml2C.bigint (numerator c)) in
let mn =
if c = Mc.PEc (Mc.Zpos Mc.XH)
then var i
else Mc.PEmul (c,var i) in
let p' = if p = Mc.PEc Mc.Z0 then mn else
Mc.PEadd (mn, p) in
xtopoly p' (i+1) l in
xtopoly (Mc.PEc Mc.Z0) 0 l
let rec fixpoint f x =
let y' = f x in
if y' = x then y'
else fixpoint f y'
let rec_simpl_cone n_spec e =
let simpl_cone =
Mc.simpl_cone n_spec.zero n_spec.unit n_spec.mult n_spec.eqb in
let rec rec_simpl_cone = function
| Mc.PsatzMulE(t1, t2) ->
simpl_cone (Mc.PsatzMulE (rec_simpl_cone t1, rec_simpl_cone t2))
| Mc.PsatzAdd(t1,t2) ->
simpl_cone (Mc.PsatzAdd (rec_simpl_cone t1, rec_simpl_cone t2))
| x -> simpl_cone x in
rec_simpl_cone e
let simplify_cone n_spec c = fixpoint (rec_simpl_cone n_spec) c
type cone_prod =
Const of cone
| Ideal of cone *cone
| Mult of cone * cone
| Other of cone
and cone = Mc.zWitness
let factorise_linear_cone c =
let rec cone_list c l =
match c with
| Mc.PsatzAdd (x,r) -> cone_list r (x::l)
| _ -> c :: l in
let factorise c1 c2 =
match c1 , c2 with
| Mc.PsatzMulC(x,y) , Mc.PsatzMulC(x',y') ->
if x = x' then Some (Mc.PsatzMulC(x, Mc.PsatzAdd(y,y'))) else None
| Mc.PsatzMulE(x,y) , Mc.PsatzMulE(x',y') ->
if x = x' then Some (Mc.PsatzMulE(x, Mc.PsatzAdd(y,y'))) else None
| _ -> None in
let rec rebuild_cone l pending =
match l with
| [] -> (match pending with
| None -> Mc.PsatzZ
| Some p -> p
)
| e::l ->
(match pending with
| None -> rebuild_cone l (Some e)
| Some p -> (match factorise p e with
| None -> Mc.PsatzAdd(p, rebuild_cone l (Some e))
| Some f -> rebuild_cone l (Some f) )
) in
(rebuild_cone (List.sort Pervasives.compare (cone_list c [])) None)
(* The binding with Fourier might be a bit obsolete
-- how does it handle equalities ? *)
(* Certificates are elements of the cone such that P = 0 *)
(* To begin with, we search for certificates of the form:
a1.p1 + ... an.pn + b1.q1 +... + bn.qn + c = 0
where pi >= 0 qi > 0
ai >= 0
bi >= 0
Sum bi + c >= 1
This is a linear problem: each monomial is considered as a variable.
Hence, we can use fourier.
The variable c is at index 0
*)
open Mfourier
(*module Fourier = Fourier(Vector.VList)(SysSet(Vector.VList))*)
(*module Fourier = Fourier(Vector.VSparse)(SysSetAlt(Vector.VSparse))*)
(*module Fourier = Mfourier.Fourier(Vector.VSparse)(*(SysSetAlt(Vector.VMap))*)*)
(*module Vect = Fourier.Vect*)
(*open Fourier.Cstr*)
(* fold_left followed by a rev ! *)
let constrain_monomial mn l =
let coeffs = List.fold_left (fun acc p -> (Poly.get mn p)::acc) [] l in
if mn = Monomial.const
then
{ coeffs = Vect.from_list ((Big_int unit_big_int):: (List.rev coeffs)) ;
op = Eq ;
cst = Big_int zero_big_int }
else
{ coeffs = Vect.from_list ((Big_int zero_big_int):: (List.rev coeffs)) ;
op = Eq ;
cst = Big_int zero_big_int }
let positivity l =
let rec xpositivity i l =
match l with
| [] -> []
| (_,Mc.Equal)::l -> xpositivity (i+1) l
| (_,_)::l ->
{coeffs = Vect.update (i+1) (fun _ -> Int 1) Vect.null ;
op = Ge ;
cst = Int 0 } :: (xpositivity (i+1) l)
in
xpositivity 0 l
let string_of_op = function
| Mc.Strict -> "> 0"
| Mc.NonStrict -> ">= 0"
| Mc.Equal -> "= 0"
| Mc.NonEqual -> "<> 0"
(* If the certificate includes at least one strict inequality,
the obtained polynomial can also be 0 *)
let build_linear_system l =
(* Gather the monomials: HINT add up of the polynomials *)
let l' = List.map fst l in
let monomials =
List.fold_left (fun acc p -> Poly.addition p acc) (Poly.constant (Int 0)) l'
in (* For each monomial, compute a constraint *)
let s0 =
Poly.fold (fun mn _ res -> (constrain_monomial mn l')::res) monomials [] in
(* I need at least something strictly positive *)
let strict = {
coeffs = Vect.from_list ((Big_int unit_big_int)::
(List.map (fun (x,y) ->
match y with Mc.Strict ->
Big_int unit_big_int
| _ -> Big_int zero_big_int) l));
op = Ge ; cst = Big_int unit_big_int } in
(* Add the positivity constraint *)
{coeffs = Vect.from_list ([Big_int unit_big_int]) ;
op = Ge ;
cst = Big_int zero_big_int}::(strict::(positivity l)@s0)
let big_int_to_z = Ml2C.bigint
(* For Q, this is a pity that the certificate has been scaled
-- at a lower layer, certificates are using nums... *)
let make_certificate n_spec (cert,li) =
let bint_to_cst = n_spec.bigint_to_number in
match cert with
| [] -> failwith "empty_certificate"
| e::cert' ->
let cst = match compare_big_int e zero_big_int with
| 0 -> Mc.PsatzZ
| 1 -> Mc.PsatzC (bint_to_cst e)
| _ -> failwith "positivity error"
in
let rec scalar_product cert l =
match cert with
| [] -> Mc.PsatzZ
| c::cert -> match l with
| [] -> failwith "make_certificate(1)"
| i::l ->
let r = scalar_product cert l in
match compare_big_int c zero_big_int with
| -1 -> Mc.PsatzAdd (
Mc.PsatzMulC (Mc.Pc ( bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
r)
| 0 -> r
| _ -> Mc.PsatzAdd (
Mc.PsatzMulE (Mc.PsatzC (bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
r) in
((factorise_linear_cone
(simplify_cone n_spec (Mc.PsatzAdd (cst, scalar_product cert' li)))))
exception Found of Monomial.t
exception Strict
let primal l =
let vr = ref 0 in
let module Mmn = Map.Make(Monomial) in
let vect_of_poly map p =
Poly.fold (fun mn vl (map,vect) ->
if mn = Monomial.const
then (map,vect)
else
let (mn,m) = try (Mmn.find mn map,map) with Not_found -> let res = (!vr, Mmn.add mn !vr map) in incr vr ; res in
(m,if sign_num vl = 0 then vect else (mn,vl)::vect)) p (map,[]) in
let op_op = function Mc.NonStrict -> Ge |Mc.Equal -> Eq | _ -> raise Strict in
let cmp x y = Pervasives.compare (fst x) (fst y) in
snd (List.fold_right (fun (p,op) (map,l) ->
let (mp,vect) = vect_of_poly map p in
let cstr = {coeffs = List.sort cmp vect; op = op_op op ; cst = minus_num (Poly.get Monomial.const p)} in
(mp,cstr::l)) l (Mmn.empty,[]))
let dual_raw_certificate (l: (Poly.t * Mc.op1) list) =
(* List.iter (fun (p,op) -> Printf.fprintf stdout "%a %s 0\n" Poly.pp p (string_of_op op) ) l ; *)
let sys = build_linear_system l in
try
match Fourier.find_point sys with
| Inr _ -> None
| Inl cert -> Some (rats_to_ints (Vect.to_list cert))
(* should not use rats_to_ints *)
with x ->
if debug
then (Printf.printf "raw certificate %s" (Printexc.to_string x);
flush stdout) ;
None
let raw_certificate l =
try
let p = primal l in
match Fourier.find_point p with
| Inr prf ->
if debug then Printf.printf "AProof : %a\n" pp_proof prf ;
let cert = List.map (fun (x,n) -> x+1,n) (fst (List.hd (Proof.mk_proof p prf))) in
if debug then Printf.printf "CProof : %a" Vect.pp_vect cert ;
Some (rats_to_ints (Vect.to_list cert))
| Inl _ -> None
with Strict ->
(* Fourier elimination should handle > *)
dual_raw_certificate l
let simple_linear_prover (*to_constant*) l =
let (lc,li) = List.split l in
match raw_certificate lc with
| None -> None (* No certificate *)
| Some cert -> (* make_certificate to_constant*)Some (cert,li)
let linear_prover n_spec l =
let li = List.combine l (interval 0 (List.length l -1)) in
let (l1,l') = List.partition
(fun (x,_) -> if snd x = Mc.NonEqual then true else false) li in
let l' = List.map
(fun ((x,y),i) -> match y with
Mc.NonEqual -> failwith "cannot happen"
| y -> ((dev_form n_spec x, y),i)) l' in
simple_linear_prover (*n_spec*) l'
let linear_prover n_spec l =
try linear_prover n_spec l with
x -> (print_string (Printexc.to_string x); None)
let linear_prover_with_cert spec l =
match linear_prover spec l with
| None -> None
| Some cert -> Some (make_certificate spec cert)
(* zprover.... *)
(* I need to gather the set of variables --->
Then go for fold
Once I have an interval, I need a certificate : 2 other fourier elims.
(I could probably get the certificate directly
as it is done in the fourier contrib.)
*)
let make_linear_system l =
let l' = List.map fst l in
let monomials = List.fold_left (fun acc p -> Poly.addition p acc)
(Poly.constant (Int 0)) l' in
let monomials = Poly.fold
(fun mn _ l -> if mn = Monomial.const then l else mn::l) monomials [] in
(List.map (fun (c,op) ->
{coeffs = Vect.from_list (List.map (fun mn -> (Poly.get mn c)) monomials) ;
op = op ;
cst = minus_num ( (Poly.get Monomial.const c))}) l
,monomials)
let pplus x y = Mc.PEadd(x,y)
let pmult x y = Mc.PEmul(x,y)
let pconst x = Mc.PEc x
let popp x = Mc.PEopp x
let debug = false
(* keep track of enumerated vectors *)
let rec mem p x l =
match l with [] -> false | e::l -> if p x e then true else mem p x l
let rec remove_assoc p x l =
match l with [] -> [] | e::l -> if p x (fst e) then
remove_assoc p x l else e::(remove_assoc p x l)
let eq x y = Vect.compare x y = 0
let remove e l = List.fold_left (fun l x -> if eq x e then l else x::l) [] l
(* The prover is (probably) incomplete --
only searching for naive cutting planes *)
let candidates sys =
let ll = List.fold_right (
fun (e,k) r ->
match k with
| Mc.NonStrict -> (dev_form z_spec e , Ge)::r
| Mc.Equal -> (dev_form z_spec e , Eq)::r
(* we already know the bound -- don't compute it again *)
| _ -> failwith "Cannot happen candidates") sys [] in
let (sys,var_mn) = make_linear_system ll in
let vars = mapi (fun _ i -> Vect.set i (Int 1) Vect.null) var_mn in
(List.fold_left (fun l cstr ->
let gcd = Big_int (Vect.gcd cstr.coeffs) in
if gcd =/ (Int 1) && cstr.op = Eq
then l
else (Vect.mul (Int 1 // gcd) cstr.coeffs)::l) [] sys) @ vars
let rec xzlinear_prover planes sys =
match linear_prover z_spec sys with
| Some prf -> Some (Mc.RatProof (make_certificate z_spec prf,Mc.DoneProof))
| None -> (* find the candidate with the smallest range *)
(* Grrr - linear_prover is also calling 'make_linear_system' *)
let ll = List.fold_right (fun (e,k) r -> match k with
Mc.NonEqual -> r
| k -> (dev_form z_spec e ,
match k with
Mc.NonStrict -> Ge
| Mc.Equal -> Eq
| Mc.Strict | Mc.NonEqual -> failwith "Cannot happen") :: r) sys [] in
let (ll,var) = make_linear_system ll in
let candidates = List.fold_left (fun acc vect ->
match Fourier.optimise vect ll with
| None -> acc
| Some i ->
(* Printf.printf "%s in %s\n" (Vect.string vect) (string_of_intrvl i) ; *)
flush stdout ;
(vect,i) ::acc) [] planes in
let smallest_interval =
match List.fold_left (fun (x1,i1) (x2,i2) ->
if Itv.smaller_itv i1 i2
then (x1,i1) else (x2,i2)) (Vect.null,(None,None)) candidates
with
| (x,(Some i, Some j)) -> Some(i,x,j)
| x -> None (* This might be a cutting plane *)
in
match smallest_interval with
| Some (lb,e,ub) ->
let (lbn,lbd) =
(Ml2C.bigint (sub_big_int (numerator lb) unit_big_int),
Ml2C.bigint (denominator lb)) in
let (ubn,ubd) =
(Ml2C.bigint (add_big_int unit_big_int (numerator ub)) ,
Ml2C.bigint (denominator ub)) in
let expr = list_to_polynomial var (Vect.to_list e) in
(match
(*x <= ub -> x > ub *)
linear_prover z_spec
((pplus (pmult (pconst ubd) expr) (popp (pconst ubn)),
Mc.NonStrict) :: sys),
(* lb <= x -> lb > x *)
linear_prover z_spec
((pplus (popp (pmult (pconst lbd) expr)) (pconst lbn),
Mc.NonStrict)::sys)
with
| Some cub , Some clb ->
(match zlinear_enum (remove e planes) expr
(ceiling_num lb) (floor_num ub) sys
with
| None -> None
| Some prf ->
let bound_proof (c,l) = make_certificate z_spec (List.tl c , List.tl (List.map (fun x -> x -1) l)) in
Some (Mc.EnumProof((*Ml2C.q lb,expr,Ml2C.q ub,*) bound_proof clb, bound_proof cub,prf)))
| _ -> None
)
| _ -> None
and zlinear_enum planes expr clb cub l =
if clb >/ cub
then Some []
else
let pexpr = pplus (popp (pconst (Ml2C.bigint (numerator clb)))) expr in
let sys' = (pexpr, Mc.Equal)::l in
(*let enum = *)
match xzlinear_prover planes sys' with
| None -> if debug then print_string "zlp?"; None
| Some prf -> if debug then print_string "zlp!";
match zlinear_enum planes expr (clb +/ (Int 1)) cub l with
| None -> None
| Some prfl -> Some (prf :: prfl)
let zlinear_prover sys =
let candidates = candidates sys in
(* Printf.printf "candidates %d" (List.length candidates) ; *)
(*let t0 = Sys.time () in*)
let res = xzlinear_prover candidates sys in
(*Printf.printf "Time prover : %f" (Sys.time () -. t0) ;*) res
open Sos_types
open Mutils
let rec scale_term t =
match t with
| Zero -> unit_big_int , Zero
| Const n -> (denominator n) , Const (Big_int (numerator n))
| Var n -> unit_big_int , Var n
| Inv _ -> failwith "scale_term : not implemented"
| Opp t -> let s, t = scale_term t in s, Opp t
| Add(t1,t2) -> let s1,y1 = scale_term t1 and s2,y2 = scale_term t2 in
let g = gcd_big_int s1 s2 in
let s1' = div_big_int s1 g in
let s2' = div_big_int s2 g in
let e = mult_big_int g (mult_big_int s1' s2') in
if (compare_big_int e unit_big_int) = 0
then (unit_big_int, Add (y1,y2))
else e, Add (Mul(Const (Big_int s2'), y1),
Mul (Const (Big_int s1'), y2))
| Sub _ -> failwith "scale term: not implemented"
| Mul(y,z) -> let s1,y1 = scale_term y and s2,y2 = scale_term z in
mult_big_int s1 s2 , Mul (y1, y2)
| Pow(t,n) -> let s,t = scale_term t in
power_big_int_positive_int s n , Pow(t,n)
| _ -> failwith "scale_term : not implemented"
let scale_term t =
let (s,t') = scale_term t in
s,t'
let get_index_of_ith_match f i l =
let rec get j res l =
match l with
| [] -> failwith "bad index"
| e::l -> if f e
then
(if j = i then res else get (j+1) (res+1) l )
else get j (res+1) l in
get 0 0 l
let rec scale_certificate pos = match pos with
| Axiom_eq i -> unit_big_int , Axiom_eq i
| Axiom_le i -> unit_big_int , Axiom_le i
| Axiom_lt i -> unit_big_int , Axiom_lt i
| Monoid l -> unit_big_int , Monoid l
| Rational_eq n -> (denominator n) , Rational_eq (Big_int (numerator n))
| Rational_le n -> (denominator n) , Rational_le (Big_int (numerator n))
| Rational_lt n -> (denominator n) , Rational_lt (Big_int (numerator n))
| Square t -> let s,t' = scale_term t in
mult_big_int s s , Square t'
| Eqmul (t, y) -> let s1,y1 = scale_term t and s2,y2 = scale_certificate y in
mult_big_int s1 s2 , Eqmul (y1,y2)
| Sum (y, z) -> let s1,y1 = scale_certificate y
and s2,y2 = scale_certificate z in
let g = gcd_big_int s1 s2 in
let s1' = div_big_int s1 g in
let s2' = div_big_int s2 g in
mult_big_int g (mult_big_int s1' s2'),
Sum (Product(Rational_le (Big_int s2'), y1),
Product (Rational_le (Big_int s1'), y2))
| Product (y, z) ->
let s1,y1 = scale_certificate y and s2,y2 = scale_certificate z in
mult_big_int s1 s2 , Product (y1,y2)
open Micromega
let rec term_to_q_expr = function
| Const n -> PEc (Ml2C.q n)
| Zero -> PEc ( Ml2C.q (Int 0))
| Var s -> PEX (Ml2C.index
(int_of_string (String.sub s 1 (String.length s - 1))))
| Mul(p1,p2) -> PEmul(term_to_q_expr p1, term_to_q_expr p2)
| Add(p1,p2) -> PEadd(term_to_q_expr p1, term_to_q_expr p2)
| Opp p -> PEopp (term_to_q_expr p)
| Pow(t,n) -> PEpow (term_to_q_expr t,Ml2C.n n)
| Sub(t1,t2) -> PEsub (term_to_q_expr t1, term_to_q_expr t2)
| _ -> failwith "term_to_q_expr: not implemented"
let term_to_q_pol e = Mc.norm_aux (Ml2C.q (Int 0)) (Ml2C.q (Int 1)) Mc.qplus Mc.qmult Mc.qminus Mc.qopp Mc.qeq_bool (term_to_q_expr e)
let rec product l =
match l with
| [] -> Mc.PsatzZ
| [i] -> Mc.PsatzIn (Ml2C.nat i)
| i ::l -> Mc.PsatzMulE(Mc.PsatzIn (Ml2C.nat i), product l)
let q_cert_of_pos pos =
let rec _cert_of_pos = function
Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_le i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i)
| Monoid l -> product l
| Rational_eq n | Rational_le n | Rational_lt n ->
if compare_num n (Int 0) = 0 then Mc.PsatzZ else
Mc.PsatzC (Ml2C.q n)
| Square t -> Mc.PsatzSquare (term_to_q_pol t)
| Eqmul (t, y) -> Mc.PsatzMulC(term_to_q_pol t, _cert_of_pos y)
| Sum (y, z) -> Mc.PsatzAdd (_cert_of_pos y, _cert_of_pos z)
| Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z) in
simplify_cone q_spec (_cert_of_pos pos)
let rec term_to_z_expr = function
| Const n -> PEc (Ml2C.bigint (big_int_of_num n))
| Zero -> PEc ( Z0)
| Var s -> PEX (Ml2C.index
(int_of_string (String.sub s 1 (String.length s - 1))))
| Mul(p1,p2) -> PEmul(term_to_z_expr p1, term_to_z_expr p2)
| Add(p1,p2) -> PEadd(term_to_z_expr p1, term_to_z_expr p2)
| Opp p -> PEopp (term_to_z_expr p)
| Pow(t,n) -> PEpow (term_to_z_expr t,Ml2C.n n)
| Sub(t1,t2) -> PEsub (term_to_z_expr t1, term_to_z_expr t2)
| _ -> failwith "term_to_z_expr: not implemented"
let term_to_z_pol e = Mc.norm_aux (Ml2C.z 0) (Ml2C.z 1) Mc.zplus Mc.zmult Mc.zminus Mc.zopp Mc.zeq_bool (term_to_z_expr e)
let z_cert_of_pos pos =
let s,pos = (scale_certificate pos) in
let rec _cert_of_pos = function
Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_le i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i)
| Monoid l -> product l
| Rational_eq n | Rational_le n | Rational_lt n ->
if compare_num n (Int 0) = 0 then Mc.PsatzZ else
Mc.PsatzC (Ml2C.bigint (big_int_of_num n))
| Square t -> Mc.PsatzSquare (term_to_z_pol t)
| Eqmul (t, y) -> Mc.PsatzMulC(term_to_z_pol t, _cert_of_pos y)
| Sum (y, z) -> Mc.PsatzAdd (_cert_of_pos y, _cert_of_pos z)
| Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z) in
simplify_cone z_spec (_cert_of_pos pos)
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
|