1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* The type of positivstellensatz -- used to communicate with sos *)
open Num
type vname = string;;
type term =
| Zero
| Const of Num.num
| Var of vname
| Inv of term
| Opp of term
| Add of (term * term)
| Sub of (term * term)
| Mul of (term * term)
| Div of (term * term)
| Pow of (term * int);;
let rec output_term o t =
match t with
| Zero -> output_string o "0"
| Const n -> output_string o (string_of_num n)
| Var n -> Printf.fprintf o "v%s" n
| Inv t -> Printf.fprintf o "1/(%a)" output_term t
| Opp t -> Printf.fprintf o "- (%a)" output_term t
| Add(t1,t2) -> Printf.fprintf o "(%a)+(%a)" output_term t1 output_term t2
| Sub(t1,t2) -> Printf.fprintf o "(%a)-(%a)" output_term t1 output_term t2
| Mul(t1,t2) -> Printf.fprintf o "(%a)*(%a)" output_term t1 output_term t2
| Div(t1,t2) -> Printf.fprintf o "(%a)/(%a)" output_term t1 output_term t2
| Pow(t1,i) -> Printf.fprintf o "(%a)^(%i)" output_term t1 i
(* ------------------------------------------------------------------------- *)
(* Data structure for Positivstellensatz refutations. *)
(* ------------------------------------------------------------------------- *)
type positivstellensatz =
Axiom_eq of int
| Axiom_le of int
| Axiom_lt of int
| Rational_eq of num
| Rational_le of num
| Rational_lt of num
| Square of term
| Monoid of int list
| Eqmul of term * positivstellensatz
| Sum of positivstellensatz * positivstellensatz
| Product of positivstellensatz * positivstellensatz;;
let rec output_psatz o = function
| Axiom_eq i -> Printf.fprintf o "Aeq(%i)" i
| Axiom_le i -> Printf.fprintf o "Ale(%i)" i
| Axiom_lt i -> Printf.fprintf o "Alt(%i)" i
| Rational_eq n -> Printf.fprintf o "eq(%s)" (string_of_num n)
| Rational_le n -> Printf.fprintf o "le(%s)" (string_of_num n)
| Rational_lt n -> Printf.fprintf o "lt(%s)" (string_of_num n)
| Square t -> Printf.fprintf o "(%a)^2" output_term t
| Monoid l -> Printf.fprintf o "monoid"
| Eqmul (t,ps) -> Printf.fprintf o "%a * %a" output_term t output_psatz ps
| Sum (t1,t2) -> Printf.fprintf o "%a + %a" output_psatz t1 output_psatz t2
| Product (t1,t2) -> Printf.fprintf o "%a * %a" output_psatz t1 output_psatz t2
|