| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 
 | (************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
Require Import List.
Require Import Peano_dec.
Require Import LegacyRing.
Require Import LegacyField_Compl.
Record Field_Theory : Type :=
  {A : Type;
   Aplus : A -> A -> A;
   Amult : A -> A -> A;
   Aone : A;
   Azero : A;
   Aopp : A -> A;
   Aeq : A -> A -> bool;
   Ainv : A -> A;
   Aminus : option (A -> A -> A);
   Adiv : option (A -> A -> A);
   RT : Ring_Theory Aplus Amult Aone Azero Aopp Aeq;
   Th_inv_def : forall n:A, n <> Azero -> Amult (Ainv n) n = Aone}.
(* The reflexion structure *)
Inductive ExprA : Set :=
  | EAzero : ExprA
  | EAone : ExprA
  | EAplus : ExprA -> ExprA -> ExprA
  | EAmult : ExprA -> ExprA -> ExprA
  | EAopp : ExprA -> ExprA
  | EAinv : ExprA -> ExprA
  | EAvar : nat -> ExprA.
(**** Decidability of equality ****)
Lemma eqExprA_O : forall e1 e2:ExprA, {e1 = e2} + {e1 <> e2}.
Proof.
  double induction e1 e2; try intros;
   try (left; reflexivity) || (try (right; discriminate)).
  elim (H1 e0); intro y; elim (H2 e); intro y0;
   try
    (left; rewrite y; rewrite y0; auto) ||
      (right; red; intro; inversion H3; auto).
  elim (H1 e0); intro y; elim (H2 e); intro y0;
   try
    (left; rewrite y; rewrite y0; auto) ||
      (right; red; intro; inversion H3; auto).
  elim (H0 e); intro y.
  left; rewrite y; auto.
  right; red; intro; inversion H1; auto.
  elim (H0 e); intro y.
  left; rewrite y; auto.
  right; red; intro; inversion H1; auto.
  elim (eq_nat_dec n n0); intro y.
  left; rewrite y; auto.
  right; red; intro; inversion H; auto.
Defined.
Definition eq_nat_dec := Eval compute in eq_nat_dec.
Definition eqExprA := Eval compute in eqExprA_O.
(**** Generation of the multiplier ****)
Fixpoint mult_of_list (e:list ExprA) : ExprA :=
  match e with
  | nil => EAone
  | e1 :: l1 => EAmult e1 (mult_of_list l1)
  end.
Section Theory_of_fields.
Variable T : Field_Theory.
Let AT := A T.
Let AplusT := Aplus T.
Let AmultT := Amult T.
Let AoneT := Aone T.
Let AzeroT := Azero T.
Let AoppT := Aopp T.
Let AeqT := Aeq T.
Let AinvT := Ainv T.
Let RTT := RT T.
Let Th_inv_defT := Th_inv_def T.
Add Legacy Abstract Ring (A T) (Aplus T) (Amult T) (Aone T) (
 Azero T) (Aopp T) (Aeq T) (RT T).
Add Legacy Abstract Ring AT AplusT AmultT AoneT AzeroT AoppT AeqT RTT.
(***************************)
(*    Lemmas to be used    *)
(***************************)
Lemma AplusT_comm : forall r1 r2:AT, AplusT r1 r2 = AplusT r2 r1.
Proof.
  intros; legacy ring.
Qed.
Lemma AplusT_assoc :
 forall r1 r2 r3:AT, AplusT (AplusT r1 r2) r3 = AplusT r1 (AplusT r2 r3).
Proof.
  intros; legacy ring.
Qed.
Lemma AmultT_comm : forall r1 r2:AT, AmultT r1 r2 = AmultT r2 r1.
Proof.
  intros; legacy ring.
Qed.
Lemma AmultT_assoc :
 forall r1 r2 r3:AT, AmultT (AmultT r1 r2) r3 = AmultT r1 (AmultT r2 r3).
Proof.
  intros; legacy ring.
Qed.
Lemma AplusT_Ol : forall r:AT, AplusT AzeroT r = r.
Proof.
  intros; legacy ring.
Qed.
Lemma AmultT_1l : forall r:AT, AmultT AoneT r = r.
Proof.
  intros; legacy ring.
Qed.
Lemma AplusT_AoppT_r : forall r:AT, AplusT r (AoppT r) = AzeroT.
Proof.
  intros; legacy ring.
Qed.
Lemma AmultT_AplusT_distr :
 forall r1 r2 r3:AT,
   AmultT r1 (AplusT r2 r3) = AplusT (AmultT r1 r2) (AmultT r1 r3).
Proof.
  intros; legacy ring.
Qed.
Lemma r_AplusT_plus : forall r r1 r2:AT, AplusT r r1 = AplusT r r2 -> r1 = r2.
Proof.
  intros; transitivity (AplusT (AplusT (AoppT r) r) r1).
  legacy ring.
  transitivity (AplusT (AplusT (AoppT r) r) r2).
  repeat rewrite AplusT_assoc; rewrite <- H; reflexivity.
  legacy ring.
Qed.
Lemma r_AmultT_mult :
 forall r r1 r2:AT, AmultT r r1 = AmultT r r2 -> r <> AzeroT -> r1 = r2.
Proof.
  intros; transitivity (AmultT (AmultT (AinvT r) r) r1).
  rewrite Th_inv_defT; [ symmetry ; apply AmultT_1l; auto | auto ].
  transitivity (AmultT (AmultT (AinvT r) r) r2).
  repeat rewrite AmultT_assoc; rewrite H; trivial.
  rewrite Th_inv_defT; [ apply AmultT_1l; auto | auto ].
Qed.
Lemma AmultT_Or : forall r:AT, AmultT r AzeroT = AzeroT.
Proof.
  intro; legacy ring.
Qed.
Lemma AmultT_Ol : forall r:AT, AmultT AzeroT r = AzeroT.
Proof.
  intro; legacy ring.
Qed.
Lemma AmultT_1r : forall r:AT, AmultT r AoneT = r.
Proof.
  intro; legacy ring.
Qed.
Lemma AinvT_r : forall r:AT, r <> AzeroT -> AmultT r (AinvT r) = AoneT.
Proof.
  intros; rewrite AmultT_comm; apply Th_inv_defT; auto.
Qed.
Lemma Rmult_neq_0_reg :
 forall r1 r2:AT, AmultT r1 r2 <> AzeroT -> r1 <> AzeroT /\ r2 <> AzeroT.
Proof.
  intros r1 r2 H; split; red; intro; apply H; rewrite H0; legacy ring.
Qed.
(************************)
(*    Interpretation    *)
(************************)
(**** ExprA --> A ****)
Fixpoint interp_ExprA (lvar:list (AT * nat)) (e:ExprA) {struct e} :
 AT :=
  match e with
  | EAzero => AzeroT
  | EAone => AoneT
  | EAplus e1 e2 => AplusT (interp_ExprA lvar e1) (interp_ExprA lvar e2)
  | EAmult e1 e2 => AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2)
  | EAopp e => Aopp T (interp_ExprA lvar e)
  | EAinv e => Ainv T (interp_ExprA lvar e)
  | EAvar n => assoc_2nd AT nat eq_nat_dec lvar n AzeroT
  end.
(************************)
(*    Simplification    *)
(************************)
(**** Associativity ****)
Definition merge_mult :=
  (fix merge_mult (e1:ExprA) : ExprA -> ExprA :=
     fun e2:ExprA =>
       match e1 with
       | EAmult t1 t2 =>
           match t2 with
           | EAmult t2 t3 => EAmult t1 (EAmult t2 (merge_mult t3 e2))
           | _ => EAmult t1 (EAmult t2 e2)
           end
       | _ => EAmult e1 e2
       end).
Fixpoint assoc_mult (e:ExprA) : ExprA :=
  match e with
  | EAmult e1 e3 =>
      match e1 with
      | EAmult e1 e2 =>
          merge_mult (merge_mult (assoc_mult e1) (assoc_mult e2))
            (assoc_mult e3)
      | _ => EAmult e1 (assoc_mult e3)
      end
  | _ => e
  end.
Definition merge_plus :=
  (fix merge_plus (e1:ExprA) : ExprA -> ExprA :=
     fun e2:ExprA =>
       match e1 with
       | EAplus t1 t2 =>
           match t2 with
           | EAplus t2 t3 => EAplus t1 (EAplus t2 (merge_plus t3 e2))
           | _ => EAplus t1 (EAplus t2 e2)
           end
       | _ => EAplus e1 e2
       end).
Fixpoint assoc (e:ExprA) : ExprA :=
  match e with
  | EAplus e1 e3 =>
      match e1 with
      | EAplus e1 e2 =>
          merge_plus (merge_plus (assoc e1) (assoc e2)) (assoc e3)
      | _ => EAplus (assoc_mult e1) (assoc e3)
      end
  | _ => assoc_mult e
  end.
Lemma merge_mult_correct1 :
 forall (e1 e2 e3:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar (merge_mult (EAmult e1 e2) e3) =
   interp_ExprA lvar (EAmult e1 (merge_mult e2 e3)).
Proof.
intros e1 e2; generalize e1; generalize e2; clear e1 e2.
simple induction e2; auto; intros.
unfold merge_mult at 1; fold merge_mult;
 unfold interp_ExprA at 2; fold interp_ExprA;
 rewrite (H0 e e3 lvar); unfold interp_ExprA at 1;
 fold interp_ExprA; unfold interp_ExprA at 5;
 fold interp_ExprA; auto.
Qed.
Lemma merge_mult_correct :
 forall (e1 e2:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar (merge_mult e1 e2) = interp_ExprA lvar (EAmult e1 e2).
Proof.
simple induction e1; auto; intros.
elim e0; try (intros; simpl; legacy ring).
unfold interp_ExprA in H2; fold interp_ExprA in H2;
 cut
  (AmultT (interp_ExprA lvar e2)
     (AmultT (interp_ExprA lvar e4)
        (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e3))) =
   AmultT
     (AmultT (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e4))
        (interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
intro H3; rewrite H3; rewrite <- H2; rewrite merge_mult_correct1;
 simpl; legacy ring.
legacy ring.
Qed.
Lemma assoc_mult_correct1 :
 forall (e1 e2:ExprA) (lvar:list (AT * nat)),
   AmultT (interp_ExprA lvar (assoc_mult e1))
     (interp_ExprA lvar (assoc_mult e2)) =
   interp_ExprA lvar (assoc_mult (EAmult e1 e2)).
Proof.
simple induction e1; auto; intros.
rewrite <- (H e0 lvar); simpl; rewrite merge_mult_correct;
 simpl; rewrite merge_mult_correct; simpl;
 auto.
Qed.
Lemma assoc_mult_correct :
 forall (e:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar (assoc_mult e) = interp_ExprA lvar e.
Proof.
simple induction e; auto; intros.
elim e0; intros.
intros; simpl; legacy ring.
simpl; rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1)));
 rewrite (AmultT_1l (interp_ExprA lvar e1)); apply H0.
simpl; rewrite (H0 lvar); auto.
simpl; rewrite merge_mult_correct; simpl;
 rewrite merge_mult_correct; simpl; rewrite AmultT_assoc;
 rewrite assoc_mult_correct1; rewrite H2; simpl;
 rewrite <- assoc_mult_correct1 in H1; unfold interp_ExprA at 3 in H1;
 fold interp_ExprA in H1; rewrite (H0 lvar) in H1;
 rewrite (AmultT_comm (interp_ExprA lvar e3) (interp_ExprA lvar e1));
 rewrite <- AmultT_assoc; rewrite H1; rewrite AmultT_assoc;
 legacy ring.
simpl; rewrite (H0 lvar); auto.
simpl; rewrite (H0 lvar); auto.
simpl; rewrite (H0 lvar); auto.
Qed.
Lemma merge_plus_correct1 :
 forall (e1 e2 e3:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar (merge_plus (EAplus e1 e2) e3) =
   interp_ExprA lvar (EAplus e1 (merge_plus e2 e3)).
Proof.
intros e1 e2; generalize e1; generalize e2; clear e1 e2.
simple induction e2; auto; intros.
unfold merge_plus at 1; fold merge_plus;
 unfold interp_ExprA at 2; fold interp_ExprA;
 rewrite (H0 e e3 lvar); unfold interp_ExprA at 1;
 fold interp_ExprA; unfold interp_ExprA at 5;
 fold interp_ExprA; auto.
Qed.
Lemma merge_plus_correct :
 forall (e1 e2:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar (merge_plus e1 e2) = interp_ExprA lvar (EAplus e1 e2).
Proof.
simple induction e1; auto; intros.
elim e0; try intros; try (simpl; legacy ring).
unfold interp_ExprA in H2; fold interp_ExprA in H2;
 cut
  (AplusT (interp_ExprA lvar e2)
     (AplusT (interp_ExprA lvar e4)
        (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e3))) =
   AplusT
     (AplusT (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e4))
        (interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
intro H3; rewrite H3; rewrite <- H2; rewrite merge_plus_correct1;
 simpl; legacy ring.
legacy ring.
Qed.
Lemma assoc_plus_correct :
 forall (e1 e2:ExprA) (lvar:list (AT * nat)),
   AplusT (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2)) =
   interp_ExprA lvar (assoc (EAplus e1 e2)).
Proof.
simple induction e1; auto; intros.
rewrite <- (H e0 lvar); simpl; rewrite merge_plus_correct;
 simpl; rewrite merge_plus_correct; simpl;
 auto.
Qed.
Lemma assoc_correct :
 forall (e:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar (assoc e) = interp_ExprA lvar e.
Proof.
simple induction e; auto; intros.
elim e0; intros.
simpl; rewrite (H0 lvar); auto.
simpl; rewrite (H0 lvar); auto.
simpl; rewrite merge_plus_correct; simpl;
 rewrite merge_plus_correct; simpl; rewrite AplusT_assoc;
 rewrite assoc_plus_correct; rewrite H2; simpl;
 apply
  (r_AplusT_plus (interp_ExprA lvar (assoc e1))
     (AplusT (interp_ExprA lvar (assoc e2))
        (AplusT (interp_ExprA lvar e3) (interp_ExprA lvar e1)))
     (AplusT (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e3))
        (interp_ExprA lvar e1))); rewrite <- AplusT_assoc;
 rewrite
  (AplusT_comm (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2)))
  ; rewrite assoc_plus_correct; rewrite H1; simpl;
 rewrite (H0 lvar);
 rewrite <-
  (AplusT_assoc (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e1))
     (interp_ExprA lvar e3) (interp_ExprA lvar e1))
  ;
 rewrite
  (AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e1)
     (interp_ExprA lvar e3));
 rewrite (AplusT_comm (interp_ExprA lvar e1) (interp_ExprA lvar e3));
 rewrite <-
  (AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e3)
     (interp_ExprA lvar e1)); apply AplusT_comm.
unfold assoc; fold assoc; unfold interp_ExprA;
 fold interp_ExprA; rewrite assoc_mult_correct;
 rewrite (H0 lvar); simpl; auto.
simpl; rewrite (H0 lvar); auto.
simpl; rewrite (H0 lvar); auto.
simpl; rewrite (H0 lvar); auto.
unfold assoc; fold assoc; unfold interp_ExprA;
 fold interp_ExprA; rewrite assoc_mult_correct;
 simpl; auto.
Qed.
(**** Distribution *****)
Fixpoint distrib_EAopp (e:ExprA) : ExprA :=
  match e with
  | EAplus e1 e2 => EAplus (distrib_EAopp e1) (distrib_EAopp e2)
  | EAmult e1 e2 => EAmult (distrib_EAopp e1) (distrib_EAopp e2)
  | EAopp e => EAmult (EAopp EAone) (distrib_EAopp e)
  | e => e
  end.
Definition distrib_mult_right :=
  (fix distrib_mult_right (e1:ExprA) : ExprA -> ExprA :=
     fun e2:ExprA =>
       match e1 with
       | EAplus t1 t2 =>
           EAplus (distrib_mult_right t1 e2) (distrib_mult_right t2 e2)
       | _ => EAmult e1 e2
       end).
Fixpoint distrib_mult_left (e1 e2:ExprA) {struct e1} : ExprA :=
  match e1 with
  | EAplus t1 t2 =>
      EAplus (distrib_mult_left t1 e2) (distrib_mult_left t2 e2)
  | _ => distrib_mult_right e2 e1
  end.
Fixpoint distrib_main (e:ExprA) : ExprA :=
  match e with
  | EAmult e1 e2 => distrib_mult_left (distrib_main e1) (distrib_main e2)
  | EAplus e1 e2 => EAplus (distrib_main e1) (distrib_main e2)
  | EAopp e => EAopp (distrib_main e)
  | _ => e
  end.
Definition distrib (e:ExprA) : ExprA := distrib_main (distrib_EAopp e).
Lemma distrib_mult_right_correct :
 forall (e1 e2:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar (distrib_mult_right e1 e2) =
   AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2).
Proof.
simple induction e1; try intros; simpl; auto.
rewrite AmultT_comm; rewrite AmultT_AplusT_distr; rewrite (H e2 lvar);
 rewrite (H0 e2 lvar); legacy ring.
Qed.
Lemma distrib_mult_left_correct :
 forall (e1 e2:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar (distrib_mult_left e1 e2) =
   AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2).
Proof.
simple induction e1; try intros; simpl.
rewrite AmultT_Ol; rewrite distrib_mult_right_correct; simpl;
 apply AmultT_Or.
rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
rewrite AmultT_comm;
 rewrite
  (AmultT_AplusT_distr (interp_ExprA lvar e2) (interp_ExprA lvar e)
     (interp_ExprA lvar e0));
 rewrite (AmultT_comm (interp_ExprA lvar e2) (interp_ExprA lvar e));
 rewrite (AmultT_comm (interp_ExprA lvar e2) (interp_ExprA lvar e0));
 rewrite (H e2 lvar); rewrite (H0 e2 lvar); auto.
rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
Qed.
Lemma distrib_correct :
 forall (e:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar (distrib e) = interp_ExprA lvar e.
Proof.
simple induction e; intros; auto.
simpl; rewrite <- (H lvar); rewrite <- (H0 lvar);
 unfold distrib; simpl; auto.
simpl; rewrite <- (H lvar); rewrite <- (H0 lvar);
 unfold distrib; simpl; apply distrib_mult_left_correct.
simpl; fold AoppT; rewrite <- (H lvar);
 unfold distrib; simpl; rewrite distrib_mult_right_correct;
 simpl; fold AoppT; legacy ring.
Qed.
(**** Multiplication by the inverse product ****)
Lemma mult_eq :
 forall (e1 e2 a:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar a <> AzeroT ->
   interp_ExprA lvar (EAmult a e1) = interp_ExprA lvar (EAmult a e2) ->
   interp_ExprA lvar e1 = interp_ExprA lvar e2.
Proof.
  simpl; intros;
   apply
    (r_AmultT_mult (interp_ExprA lvar a) (interp_ExprA lvar e1)
       (interp_ExprA lvar e2)); assumption.
Qed.
Fixpoint multiply_aux (a e:ExprA) {struct e} : ExprA :=
  match e with
  | EAplus e1 e2 => EAplus (EAmult a e1) (multiply_aux a e2)
  | _ => EAmult a e
  end.
Definition multiply (e:ExprA) : ExprA :=
  match e with
  | EAmult a e1 => multiply_aux a e1
  | _ => e
  end.
Lemma multiply_aux_correct :
 forall (a e:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar (multiply_aux a e) =
   AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
Proof.
simple induction e; simpl; intros; try rewrite merge_mult_correct;
 auto.
  simpl; rewrite (H0 lvar); legacy ring.
Qed.
Lemma multiply_correct :
 forall (e:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar (multiply e) = interp_ExprA lvar e.
Proof.
  simple induction e; simpl; auto.
  intros; apply multiply_aux_correct.
Qed.
(**** Permutations and simplification ****)
Fixpoint monom_remove (a m:ExprA) {struct m} : ExprA :=
  match m with
  | EAmult m0 m1 =>
      match eqExprA m0 (EAinv a) with
      | left _ => m1
      | right _ => EAmult m0 (monom_remove a m1)
      end
  | _ =>
      match eqExprA m (EAinv a) with
      | left _ => EAone
      | right _ => EAmult a m
      end
  end.
Definition monom_simplif_rem :=
  (fix monom_simplif_rem (a:ExprA) : ExprA -> ExprA :=
     fun m:ExprA =>
       match a with
       | EAmult a0 a1 => monom_simplif_rem a1 (monom_remove a0 m)
       | _ => monom_remove a m
       end).
Definition monom_simplif (a m:ExprA) : ExprA :=
  match m with
  | EAmult a' m' =>
      match eqExprA a a' with
      | left _ => monom_simplif_rem a m'
      | right _ => m
      end
  | _ => m
  end.
Fixpoint inverse_simplif (a e:ExprA) {struct e} : ExprA :=
  match e with
  | EAplus e1 e2 => EAplus (monom_simplif a e1) (inverse_simplif a e2)
  | _ => monom_simplif a e
  end.
Lemma monom_remove_correct :
 forall (e a:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar a <> AzeroT ->
   interp_ExprA lvar (monom_remove a e) =
   AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
Proof.
simple induction e; intros.
simpl; case (eqExprA EAzero (EAinv a)); intros;
 [ inversion e0 | simpl; trivial ].
simpl; case (eqExprA EAone (EAinv a)); intros;
 [ inversion e0 | simpl; trivial ].
simpl; case (eqExprA (EAplus e0 e1) (EAinv a)); intros;
 [ inversion e2 | simpl; trivial ].
simpl; case (eqExprA e0 (EAinv a)); intros.
rewrite e2; simpl; fold AinvT.
rewrite <-
 (AmultT_assoc (interp_ExprA lvar a) (AinvT (interp_ExprA lvar a))
    (interp_ExprA lvar e1)); rewrite AinvT_r; [ legacy ring | assumption ].
simpl; rewrite H0; auto; legacy ring.
simpl; fold AoppT; case (eqExprA (EAopp e0) (EAinv a));
 intros; [ inversion e1 | simpl; trivial ].
unfold monom_remove; case (eqExprA (EAinv e0) (EAinv a)); intros.
case (eqExprA e0 a); intros.
rewrite e2; simpl; fold AinvT; rewrite AinvT_r; auto.
inversion e1; simpl; exfalso; auto.
simpl; trivial.
unfold monom_remove; case (eqExprA (EAvar n) (EAinv a)); intros;
 [ inversion e0 | simpl; trivial ].
Qed.
Lemma monom_simplif_rem_correct :
 forall (a e:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar a <> AzeroT ->
   interp_ExprA lvar (monom_simplif_rem a e) =
   AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
Proof.
simple induction a; simpl; intros; try rewrite monom_remove_correct;
 auto.
elim (Rmult_neq_0_reg (interp_ExprA lvar e) (interp_ExprA lvar e0) H1);
 intros.
rewrite (H0 (monom_remove e e1) lvar H3); rewrite monom_remove_correct; auto.
legacy ring.
Qed.
Lemma monom_simplif_correct :
 forall (e a:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar a <> AzeroT ->
   interp_ExprA lvar (monom_simplif a e) = interp_ExprA lvar e.
Proof.
simple induction e; intros; auto.
simpl; case (eqExprA a e0); intros.
rewrite <- e2; apply monom_simplif_rem_correct; auto.
simpl; trivial.
Qed.
Lemma inverse_correct :
 forall (e a:ExprA) (lvar:list (AT * nat)),
   interp_ExprA lvar a <> AzeroT ->
   interp_ExprA lvar (inverse_simplif a e) = interp_ExprA lvar e.
Proof.
simple induction e; intros; auto.
simpl; rewrite (H0 a lvar H1); rewrite monom_simplif_correct; auto.
unfold inverse_simplif; rewrite monom_simplif_correct; auto.
Qed.
End Theory_of_fields.
(* Compatibility *)
Notation AplusT_sym := AplusT_comm (only parsing).
Notation AmultT_sym := AmultT_comm (only parsing).
 |