1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Names
open Term
open Tacmach
open Tactics
open Tacticals
open Termops
open Declarations
open Formula
open Sequent
open Libnames
type seqtac= (Sequent.t -> tactic) -> Sequent.t -> tactic
type lseqtac= global_reference -> seqtac
type 'a with_backtracking = tactic -> 'a
let wrap n b continue seq gls=
check_for_interrupt ();
let nc=pf_hyps gls in
let env=pf_env gls in
let rec aux i nc ctx=
if i<=0 then seq else
match nc with
[]->anomaly "Not the expected number of hyps"
| ((id,_,typ) as nd)::q->
if occur_var env id (pf_concl gls) ||
List.exists (occur_var_in_decl env id) ctx then
(aux (i-1) q (nd::ctx))
else
add_formula Hyp (VarRef id) typ (aux (i-1) q (nd::ctx)) gls in
let seq1=aux n nc [] in
let seq2=if b then
add_formula Concl dummy_id (pf_concl gls) seq1 gls else seq1 in
continue seq2 gls
let basename_of_global=function
VarRef id->id
| _->assert false
let clear_global=function
VarRef id->clear [id]
| _->tclIDTAC
(* connection rules *)
let axiom_tac t seq=
try exact_no_check (constr_of_global (find_left t seq))
with Not_found->tclFAIL 0 (Pp.str "No axiom link")
let ll_atom_tac a backtrack id continue seq=
tclIFTHENELSE
(try
tclTHENLIST
[generalize [mkApp(constr_of_global id,
[|constr_of_global (find_left a seq)|])];
clear_global id;
intro]
with Not_found->tclFAIL 0 (Pp.str "No link"))
(wrap 1 false continue seq) backtrack
(* right connectives rules *)
let and_tac backtrack continue seq=
tclIFTHENELSE simplest_split (wrap 0 true continue seq) backtrack
let or_tac backtrack continue seq=
tclORELSE
(any_constructor false (Some (tclCOMPLETE (wrap 0 true continue seq))))
backtrack
let arrow_tac backtrack continue seq=
tclIFTHENELSE intro (wrap 1 true continue seq)
(tclORELSE
(tclTHEN introf (tclCOMPLETE (wrap 1 true continue seq)))
backtrack)
(* left connectives rules *)
let left_and_tac ind backtrack id continue seq gls=
let n=(construct_nhyps ind gls).(0) in
tclIFTHENELSE
(tclTHENLIST
[simplest_elim (constr_of_global id);
clear_global id;
tclDO n intro])
(wrap n false continue seq)
backtrack gls
let left_or_tac ind backtrack id continue seq gls=
let v=construct_nhyps ind gls in
let f n=
tclTHENLIST
[clear_global id;
tclDO n intro;
wrap n false continue seq] in
tclIFTHENSVELSE
(simplest_elim (constr_of_global id))
(Array.map f v)
backtrack gls
let left_false_tac id=
simplest_elim (constr_of_global id)
(* left arrow connective rules *)
(* We use this function for false, and, or, exists *)
let ll_ind_tac ind largs backtrack id continue seq gl=
let rcs=ind_hyps 0 ind largs gl in
let vargs=Array.of_list largs in
(* construire le terme H->B, le generaliser etc *)
let myterm i=
let rc=rcs.(i) in
let p=List.length rc in
let cstr=mkApp ((mkConstruct (ind,(i+1))),vargs) in
let vars=Array.init p (fun j->mkRel (p-j)) in
let capply=mkApp ((lift p cstr),vars) in
let head=mkApp ((lift p (constr_of_global id)),[|capply|]) in
it_mkLambda_or_LetIn head rc in
let lp=Array.length rcs in
let newhyps=list_tabulate myterm lp in
tclIFTHENELSE
(tclTHENLIST
[generalize newhyps;
clear_global id;
tclDO lp intro])
(wrap lp false continue seq) backtrack gl
let ll_arrow_tac a b c backtrack id continue seq=
let cc=mkProd(Anonymous,a,(lift 1 b)) in
let d=mkLambda (Anonymous,b,
mkApp ((constr_of_global id),
[|mkLambda (Anonymous,(lift 1 a),(mkRel 2))|])) in
tclORELSE
(tclTHENS (cut c)
[tclTHENLIST
[introf;
clear_global id;
wrap 1 false continue seq];
tclTHENS (cut cc)
[exact_no_check (constr_of_global id);
tclTHENLIST
[generalize [d];
clear_global id;
introf;
introf;
tclCOMPLETE (wrap 2 true continue seq)]]])
backtrack
(* quantifier rules (easy side) *)
let forall_tac backtrack continue seq=
tclORELSE
(tclIFTHENELSE intro (wrap 0 true continue seq)
(tclORELSE
(tclTHEN introf (tclCOMPLETE (wrap 0 true continue seq)))
backtrack))
(if !qflag then
tclFAIL 0 (Pp.str "reversible in 1st order mode")
else
backtrack)
let left_exists_tac ind backtrack id continue seq gls=
let n=(construct_nhyps ind gls).(0) in
tclIFTHENELSE
(simplest_elim (constr_of_global id))
(tclTHENLIST [clear_global id;
tclDO n intro;
(wrap (n-1) false continue seq)])
backtrack
gls
let ll_forall_tac prod backtrack id continue seq=
tclORELSE
(tclTHENS (cut prod)
[tclTHENLIST
[intro;
(fun gls->
let id0=pf_nth_hyp_id gls 1 in
let term=mkApp((constr_of_global id),[|mkVar(id0)|]) in
tclTHEN (generalize [term]) (clear [id0]) gls);
clear_global id;
intro;
tclCOMPLETE (wrap 1 false continue (deepen seq))];
tclCOMPLETE (wrap 0 true continue (deepen seq))])
backtrack
(* rules for instantiation with unification moved to instances.ml *)
(* special for compatibility with old Intuition *)
let constant str = Coqlib.gen_constant "User" ["Init";"Logic"] str
let defined_connectives=lazy
[all_occurrences,EvalConstRef (destConst (constant "not"));
all_occurrences,EvalConstRef (destConst (constant "iff"))]
let normalize_evaluables=
onAllHypsAndConcl
(function
None->unfold_in_concl (Lazy.force defined_connectives)
| Some id ->
unfold_in_hyp (Lazy.force defined_connectives) (id,InHypTypeOnly))
|