1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Arith Max Min BinInt BinNat Znat Nnat.
Local Open Scope Z_scope.
(** * zify: the Z-ification tactic *)
(* This tactic searches for nat and N and positive elements in the goal and
translates everything into Z. It is meant as a pre-processor for
(r)omega; for instance a positivity hypothesis is added whenever
- a multiplication is encountered
- an atom is encountered (that is a variable or an unknown construct)
Recognized relations (can be handled as deeply as allowed by setoid rewrite):
- { eq, le, lt, ge, gt } on { Z, positive, N, nat }
Recognized operations:
- on Z: Z.min, Z.max, Z.abs, Z.sgn are translated in term of <= < =
- on nat: + * - S O pred min max Pos.to_nat N.to_nat Z.abs_nat
- on positive: Zneg Zpos xI xO xH + * - Pos.succ Pos.pred Pos.min Pos.max Pos.of_succ_nat
- on N: N0 Npos + * - N.succ N.min N.max N.of_nat Z.abs_N
*)
(** I) translation of Z.max, Z.min, Z.abs, Z.sgn into recognized equations *)
Ltac zify_unop_core t thm a :=
(* Let's introduce the specification theorem for t *)
pose proof (thm a);
(* Then we replace (t a) everywhere with a fresh variable *)
let z := fresh "z" in set (z:=t a) in *; clearbody z.
Ltac zify_unop_var_or_term t thm a :=
(* If a is a variable, no need for aliasing *)
let za := fresh "z" in
(rename a into za; rename za into a; zify_unop_core t thm a) ||
(* Otherwise, a is a complex term: we alias it. *)
(remember a as za; zify_unop_core t thm za).
Ltac zify_unop t thm a :=
(* if a is a scalar, we can simply reduce the unop *)
let isz := isZcst a in
match isz with
| true => simpl (t a) in *
| _ => zify_unop_var_or_term t thm a
end.
Ltac zify_unop_nored t thm a :=
(* in this version, we don't try to reduce the unop (that can be (Z.add x)) *)
let isz := isZcst a in
match isz with
| true => zify_unop_core t thm a
| _ => zify_unop_var_or_term t thm a
end.
Ltac zify_binop t thm a b:=
(* works as zify_unop, except that we should be careful when
dealing with b, since it can be equal to a *)
let isza := isZcst a in
match isza with
| true => zify_unop (t a) (thm a) b
| _ =>
let za := fresh "z" in
(rename a into za; rename za into a; zify_unop_nored (t a) (thm a) b) ||
(remember a as za; match goal with
| H : za = b |- _ => zify_unop_nored (t za) (thm za) za
| _ => zify_unop_nored (t za) (thm za) b
end)
end.
Ltac zify_op_1 :=
match goal with
| |- context [ Z.max ?a ?b ] => zify_binop Z.max Z.max_spec a b
| H : context [ Z.max ?a ?b ] |- _ => zify_binop Z.max Z.max_spec a b
| |- context [ Z.min ?a ?b ] => zify_binop Z.min Z.min_spec a b
| H : context [ Z.min ?a ?b ] |- _ => zify_binop Z.min Z.min_spec a b
| |- context [ Z.sgn ?a ] => zify_unop Z.sgn Z.sgn_spec a
| H : context [ Z.sgn ?a ] |- _ => zify_unop Z.sgn Z.sgn_spec a
| |- context [ Z.abs ?a ] => zify_unop Z.abs Z.abs_spec a
| H : context [ Z.abs ?a ] |- _ => zify_unop Z.abs Z.abs_spec a
end.
Ltac zify_op := repeat zify_op_1.
(** II) Conversion from nat to Z *)
Definition Z_of_nat' := Z.of_nat.
Ltac hide_Z_of_nat t :=
let z := fresh "z" in set (z:=Z.of_nat t) in *;
change Z.of_nat with Z_of_nat' in z;
unfold z in *; clear z.
Ltac zify_nat_rel :=
match goal with
(* I: equalities *)
| |- (@eq nat ?a ?b) => apply (Nat2Z.inj a b) (* shortcut *)
| H : context [ @eq nat ?a ?b ] |- _ => rewrite <- (Nat2Z.inj_iff a b) in H
| |- context [ @eq nat ?a ?b ] => rewrite <- (Nat2Z.inj_iff a b)
(* II: less than *)
| H : context [ lt ?a ?b ] |- _ => rewrite (Nat2Z.inj_lt a b) in H
| |- context [ lt ?a ?b ] => rewrite (Nat2Z.inj_lt a b)
(* III: less or equal *)
| H : context [ le ?a ?b ] |- _ => rewrite (Nat2Z.inj_le a b) in H
| |- context [ le ?a ?b ] => rewrite (Nat2Z.inj_le a b)
(* IV: greater than *)
| H : context [ gt ?a ?b ] |- _ => rewrite (Nat2Z.inj_gt a b) in H
| |- context [ gt ?a ?b ] => rewrite (Nat2Z.inj_gt a b)
(* V: greater or equal *)
| H : context [ ge ?a ?b ] |- _ => rewrite (Nat2Z.inj_ge a b) in H
| |- context [ ge ?a ?b ] => rewrite (Nat2Z.inj_ge a b)
end.
Ltac zify_nat_op :=
match goal with
(* misc type conversions: positive/N/Z to nat *)
| H : context [ Z.of_nat (Pos.to_nat ?a) ] |- _ => rewrite (positive_nat_Z a) in H
| |- context [ Z.of_nat (Pos.to_nat ?a) ] => rewrite (positive_nat_Z a)
| H : context [ Z.of_nat (N.to_nat ?a) ] |- _ => rewrite (N_nat_Z a) in H
| |- context [ Z.of_nat (N.to_nat ?a) ] => rewrite (N_nat_Z a)
| H : context [ Z.of_nat (Z.abs_nat ?a) ] |- _ => rewrite (Zabs2Nat.id_abs a) in H
| |- context [ Z.of_nat (Z.abs_nat ?a) ] => rewrite (Zabs2Nat.id_abs a)
(* plus -> Z.add *)
| H : context [ Z.of_nat (plus ?a ?b) ] |- _ => rewrite (Nat2Z.inj_add a b) in H
| |- context [ Z.of_nat (plus ?a ?b) ] => rewrite (Nat2Z.inj_add a b)
(* min -> Z.min *)
| H : context [ Z.of_nat (min ?a ?b) ] |- _ => rewrite (Nat2Z.inj_min a b) in H
| |- context [ Z.of_nat (min ?a ?b) ] => rewrite (Nat2Z.inj_min a b)
(* max -> Z.max *)
| H : context [ Z.of_nat (max ?a ?b) ] |- _ => rewrite (Nat2Z.inj_max a b) in H
| |- context [ Z.of_nat (max ?a ?b) ] => rewrite (Nat2Z.inj_max a b)
(* minus -> Z.max (Z.sub ... ...) 0 *)
| H : context [ Z.of_nat (minus ?a ?b) ] |- _ => rewrite (Nat2Z.inj_sub_max a b) in H
| |- context [ Z.of_nat (minus ?a ?b) ] => rewrite (Nat2Z.inj_sub_max a b)
(* pred -> minus ... -1 -> Z.max (Z.sub ... -1) 0 *)
| H : context [ Z.of_nat (pred ?a) ] |- _ => rewrite (pred_of_minus a) in H
| |- context [ Z.of_nat (pred ?a) ] => rewrite (pred_of_minus a)
(* mult -> Z.mul and a positivity hypothesis *)
| H : context [ Z.of_nat (mult ?a ?b) ] |- _ =>
pose proof (Nat2Z.is_nonneg (mult a b));
rewrite (Nat2Z.inj_mul a b) in *
| |- context [ Z.of_nat (mult ?a ?b) ] =>
pose proof (Nat2Z.is_nonneg (mult a b));
rewrite (Nat2Z.inj_mul a b) in *
(* O -> Z0 *)
| H : context [ Z.of_nat O ] |- _ => simpl (Z.of_nat O) in H
| |- context [ Z.of_nat O ] => simpl (Z.of_nat O)
(* S -> number or Z.succ *)
| H : context [ Z.of_nat (S ?a) ] |- _ =>
let isnat := isnatcst a in
match isnat with
| true => simpl (Z.of_nat (S a)) in H
| _ => rewrite (Nat2Z.inj_succ a) in H
end
| |- context [ Z.of_nat (S ?a) ] =>
let isnat := isnatcst a in
match isnat with
| true => simpl (Z.of_nat (S a))
| _ => rewrite (Nat2Z.inj_succ a)
end
(* atoms of type nat : we add a positivity condition (if not already there) *)
| _ : 0 <= Z.of_nat ?a |- _ => hide_Z_of_nat a
| _ : context [ Z.of_nat ?a ] |- _ =>
pose proof (Nat2Z.is_nonneg a); hide_Z_of_nat a
| |- context [ Z.of_nat ?a ] =>
pose proof (Nat2Z.is_nonneg a); hide_Z_of_nat a
end.
Ltac zify_nat := repeat zify_nat_rel; repeat zify_nat_op; unfold Z_of_nat' in *.
(* III) conversion from positive to Z *)
Definition Zpos' := Zpos.
Definition Zneg' := Zneg.
Ltac hide_Zpos t :=
let z := fresh "z" in set (z:=Zpos t) in *;
change Zpos with Zpos' in z;
unfold z in *; clear z.
Ltac zify_positive_rel :=
match goal with
(* I: equalities *)
| |- (@eq positive ?a ?b) => apply Pos2Z.inj
| H : context [ @eq positive ?a ?b ] |- _ => rewrite <- (Pos2Z.inj_iff a b) in H
| |- context [ @eq positive ?a ?b ] => rewrite <- (Pos2Z.inj_iff a b)
(* II: less than *)
| H : context [ (?a < ?b)%positive ] |- _ => change (a<b)%positive with (Zpos a<Zpos b) in H
| |- context [ (?a < ?b)%positive ] => change (a<b)%positive with (Zpos a<Zpos b)
(* III: less or equal *)
| H : context [ (?a <= ?b)%positive ] |- _ => change (a<=b)%positive with (Zpos a<=Zpos b) in H
| |- context [ (?a <= ?b)%positive ] => change (a<=b)%positive with (Zpos a<=Zpos b)
(* IV: greater than *)
| H : context [ (?a > ?b)%positive ] |- _ => change (a>b)%positive with (Zpos a>Zpos b) in H
| |- context [ (?a > ?b)%positive ] => change (a>b)%positive with (Zpos a>Zpos b)
(* V: greater or equal *)
| H : context [ (?a >= ?b)%positive ] |- _ => change (a>=b)%positive with (Zpos a>=Zpos b) in H
| |- context [ (?a >= ?b)%positive ] => change (a>=b)%positive with (Zpos a>=Zpos b)
end.
Ltac zify_positive_op :=
match goal with
(* Zneg -> -Zpos (except for numbers) *)
| H : context [ Zneg ?a ] |- _ =>
let isp := isPcst a in
match isp with
| true => change (Zneg a) with (Zneg' a) in H
| _ => change (Zneg a) with (- Zpos a) in H
end
| |- context [ Zneg ?a ] =>
let isp := isPcst a in
match isp with
| true => change (Zneg a) with (Zneg' a)
| _ => change (Zneg a) with (- Zpos a)
end
(* misc type conversions: nat to positive *)
| H : context [ Zpos (Pos.of_succ_nat ?a) ] |- _ => rewrite (Zpos_P_of_succ_nat a) in H
| |- context [ Zpos (Pos.of_succ_nat ?a) ] => rewrite (Zpos_P_of_succ_nat a)
(* Pos.add -> Z.add *)
| H : context [ Zpos (?a + ?b) ] |- _ => change (Zpos (a+b)) with (Zpos a + Zpos b) in H
| |- context [ Zpos (?a + ?b) ] => change (Zpos (a+b)) with (Zpos a + Zpos b)
(* Pos.min -> Z.min *)
| H : context [ Zpos (Pos.min ?a ?b) ] |- _ => rewrite (Pos2Z.inj_min a b) in H
| |- context [ Zpos (Pos.min ?a ?b) ] => rewrite (Pos2Z.inj_min a b)
(* Pos.max -> Z.max *)
| H : context [ Zpos (Pos.max ?a ?b) ] |- _ => rewrite (Pos2Z.inj_max a b) in H
| |- context [ Zpos (Pos.max ?a ?b) ] => rewrite (Pos2Z.inj_max a b)
(* Pos.sub -> Z.max 1 (Z.sub ... ...) *)
| H : context [ Zpos (Pos.sub ?a ?b) ] |- _ => rewrite (Pos2Z.inj_sub a b) in H
| |- context [ Zpos (Pos.sub ?a ?b) ] => rewrite (Pos2Z.inj_sub a b)
(* Pos.succ -> Z.succ *)
| H : context [ Zpos (Pos.succ ?a) ] |- _ => rewrite (Pos2Z.inj_succ a) in H
| |- context [ Zpos (Pos.succ ?a) ] => rewrite (Pos2Z.inj_succ a)
(* Pos.pred -> Pos.sub ... -1 -> Z.max 1 (Z.sub ... - 1) *)
| H : context [ Zpos (Pos.pred ?a) ] |- _ => rewrite <- (Pos.sub_1_r a) in H
| |- context [ Zpos (Pos.pred ?a) ] => rewrite <- (Pos.sub_1_r a)
(* Pos.mul -> Z.mul and a positivity hypothesis *)
| H : context [ Zpos (?a * ?b) ] |- _ =>
pose proof (Pos2Z.is_pos (Pos.mul a b));
change (Zpos (a*b)) with (Zpos a * Zpos b) in *
| |- context [ Zpos (?a * ?b) ] =>
pose proof (Pos2Z.is_pos (Pos.mul a b));
change (Zpos (a*b)) with (Zpos a * Zpos b) in *
(* xO *)
| H : context [ Zpos (xO ?a) ] |- _ =>
let isp := isPcst a in
match isp with
| true => change (Zpos (xO a)) with (Zpos' (xO a)) in H
| _ => rewrite (Pos2Z.inj_xO a) in H
end
| |- context [ Zpos (xO ?a) ] =>
let isp := isPcst a in
match isp with
| true => change (Zpos (xO a)) with (Zpos' (xO a))
| _ => rewrite (Pos2Z.inj_xO a)
end
(* xI *)
| H : context [ Zpos (xI ?a) ] |- _ =>
let isp := isPcst a in
match isp with
| true => change (Zpos (xI a)) with (Zpos' (xI a)) in H
| _ => rewrite (Pos2Z.inj_xI a) in H
end
| |- context [ Zpos (xI ?a) ] =>
let isp := isPcst a in
match isp with
| true => change (Zpos (xI a)) with (Zpos' (xI a))
| _ => rewrite (Pos2Z.inj_xI a)
end
(* xI : nothing to do, just prevent adding a useless positivity condition *)
| H : context [ Zpos xH ] |- _ => hide_Zpos xH
| |- context [ Zpos xH ] => hide_Zpos xH
(* atoms of type positive : we add a positivity condition (if not already there) *)
| _ : 0 < Zpos ?a |- _ => hide_Zpos a
| _ : context [ Zpos ?a ] |- _ => pose proof (Pos2Z.is_pos a); hide_Zpos a
| |- context [ Zpos ?a ] => pose proof (Pos2Z.is_pos a); hide_Zpos a
end.
Ltac zify_positive :=
repeat zify_positive_rel; repeat zify_positive_op; unfold Zpos',Zneg' in *.
(* IV) conversion from N to Z *)
Definition Z_of_N' := Z.of_N.
Ltac hide_Z_of_N t :=
let z := fresh "z" in set (z:=Z.of_N t) in *;
change Z.of_N with Z_of_N' in z;
unfold z in *; clear z.
Ltac zify_N_rel :=
match goal with
(* I: equalities *)
| |- (@eq N ?a ?b) => apply (N2Z.inj a b) (* shortcut *)
| H : context [ @eq N ?a ?b ] |- _ => rewrite <- (N2Z.inj_iff a b) in H
| |- context [ @eq N ?a ?b ] => rewrite <- (N2Z.inj_iff a b)
(* II: less than *)
| H : context [ (?a < ?b)%N ] |- _ => rewrite (N2Z.inj_lt a b) in H
| |- context [ (?a < ?b)%N ] => rewrite (N2Z.inj_lt a b)
(* III: less or equal *)
| H : context [ (?a <= ?b)%N ] |- _ => rewrite (N2Z.inj_le a b) in H
| |- context [ (?a <= ?b)%N ] => rewrite (N2Z.inj_le a b)
(* IV: greater than *)
| H : context [ (?a > ?b)%N ] |- _ => rewrite (N2Z.inj_gt a b) in H
| |- context [ (?a > ?b)%N ] => rewrite (N2Z.inj_gt a b)
(* V: greater or equal *)
| H : context [ (?a >= ?b)%N ] |- _ => rewrite (N2Z.inj_ge a b) in H
| |- context [ (?a >= ?b)%N ] => rewrite (N2Z.inj_ge a b)
end.
Ltac zify_N_op :=
match goal with
(* misc type conversions: nat to positive *)
| H : context [ Z.of_N (N.of_nat ?a) ] |- _ => rewrite (nat_N_Z a) in H
| |- context [ Z.of_N (N.of_nat ?a) ] => rewrite (nat_N_Z a)
| H : context [ Z.of_N (Z.abs_N ?a) ] |- _ => rewrite (N2Z.inj_abs_N a) in H
| |- context [ Z.of_N (Z.abs_N ?a) ] => rewrite (N2Z.inj_abs_N a)
| H : context [ Z.of_N (Npos ?a) ] |- _ => rewrite (N2Z.inj_pos a) in H
| |- context [ Z.of_N (Npos ?a) ] => rewrite (N2Z.inj_pos a)
| H : context [ Z.of_N N0 ] |- _ => change (Z.of_N N0) with Z0 in H
| |- context [ Z.of_N N0 ] => change (Z.of_N N0) with Z0
(* N.add -> Z.add *)
| H : context [ Z.of_N (N.add ?a ?b) ] |- _ => rewrite (N2Z.inj_add a b) in H
| |- context [ Z.of_N (N.add ?a ?b) ] => rewrite (N2Z.inj_add a b)
(* N.min -> Z.min *)
| H : context [ Z.of_N (N.min ?a ?b) ] |- _ => rewrite (N2Z.inj_min a b) in H
| |- context [ Z.of_N (N.min ?a ?b) ] => rewrite (N2Z.inj_min a b)
(* N.max -> Z.max *)
| H : context [ Z.of_N (N.max ?a ?b) ] |- _ => rewrite (N2Z.inj_max a b) in H
| |- context [ Z.of_N (N.max ?a ?b) ] => rewrite (N2Z.inj_max a b)
(* N.sub -> Z.max 0 (Z.sub ... ...) *)
| H : context [ Z.of_N (N.sub ?a ?b) ] |- _ => rewrite (N2Z.inj_sub_max a b) in H
| |- context [ Z.of_N (N.sub ?a ?b) ] => rewrite (N2Z.inj_sub_max a b)
(* N.succ -> Z.succ *)
| H : context [ Z.of_N (N.succ ?a) ] |- _ => rewrite (N2Z.inj_succ a) in H
| |- context [ Z.of_N (N.succ ?a) ] => rewrite (N2Z.inj_succ a)
(* N.mul -> Z.mul and a positivity hypothesis *)
| H : context [ Z.of_N (N.mul ?a ?b) ] |- _ =>
pose proof (N2Z.is_nonneg (N.mul a b)); rewrite (N2Z.inj_mul a b) in *
| |- context [ Z.of_N (N.mul ?a ?b) ] =>
pose proof (N2Z.is_nonneg (N.mul a b)); rewrite (N2Z.inj_mul a b) in *
(* atoms of type N : we add a positivity condition (if not already there) *)
| _ : 0 <= Z.of_N ?a |- _ => hide_Z_of_N a
| _ : context [ Z.of_N ?a ] |- _ => pose proof (N2Z.is_nonneg a); hide_Z_of_N a
| |- context [ Z.of_N ?a ] => pose proof (N2Z.is_nonneg a); hide_Z_of_N a
end.
Ltac zify_N := repeat zify_N_rel; repeat zify_N_op; unfold Z_of_N' in *.
(** The complete Z-ification tactic *)
Ltac zify :=
repeat progress (zify_nat; zify_positive; zify_N); zify_op.
|