1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* ML part of the Ring tactic *)
open Pp
open Util
open Flags
open Term
open Names
open Libnames
open Nameops
open Reductionops
open Tacticals
open Tacexpr
open Tacmach
open Printer
open Equality
open Vernacinterp
open Vernacexpr
open Libobject
open Closure
open Tacred
open Tactics
open Pattern
open Hiddentac
open Nametab
open Quote
open Mod_subst
let mt_evd = Evd.empty
let constr_of c = Constrintern.interp_constr mt_evd (Global.env()) c
let ring_dir = ["Coq";"ring"]
let setoids_dir = ["Coq";"Setoids"]
let ring_constant = Coqlib.gen_constant_in_modules "Ring"
[ring_dir@["LegacyRing_theory"];
ring_dir@["Setoid_ring_theory"];
ring_dir@["Ring_normalize"];
ring_dir@["Ring_abstract"];
setoids_dir@["Setoid"];
ring_dir@["Setoid_ring_normalize"]]
(* Ring theory *)
let coq_Ring_Theory = lazy (ring_constant "Ring_Theory")
let coq_Semi_Ring_Theory = lazy (ring_constant "Semi_Ring_Theory")
(* Setoid ring theory *)
let coq_Setoid_Ring_Theory = lazy (ring_constant "Setoid_Ring_Theory")
let coq_Semi_Setoid_Ring_Theory = lazy(ring_constant "Semi_Setoid_Ring_Theory")
(* Ring normalize *)
let coq_SPplus = lazy (ring_constant "SPplus")
let coq_SPmult = lazy (ring_constant "SPmult")
let coq_SPvar = lazy (ring_constant "SPvar")
let coq_SPconst = lazy (ring_constant "SPconst")
let coq_Pplus = lazy (ring_constant "Pplus")
let coq_Pmult = lazy (ring_constant "Pmult")
let coq_Pvar = lazy (ring_constant "Pvar")
let coq_Pconst = lazy (ring_constant "Pconst")
let coq_Popp = lazy (ring_constant "Popp")
let coq_interp_sp = lazy (ring_constant "interp_sp")
let coq_interp_p = lazy (ring_constant "interp_p")
let coq_interp_cs = lazy (ring_constant "interp_cs")
let coq_spolynomial_simplify = lazy (ring_constant "spolynomial_simplify")
let coq_polynomial_simplify = lazy (ring_constant "polynomial_simplify")
let coq_spolynomial_simplify_ok = lazy(ring_constant "spolynomial_simplify_ok")
let coq_polynomial_simplify_ok = lazy (ring_constant "polynomial_simplify_ok")
(* Setoid theory *)
let coq_Setoid_Theory = lazy(ring_constant "Setoid_Theory")
let coq_seq_refl = lazy(ring_constant "Seq_refl")
let coq_seq_sym = lazy(ring_constant "Seq_sym")
let coq_seq_trans = lazy(ring_constant "Seq_trans")
(* Setoid Ring normalize *)
let coq_SetSPplus = lazy (ring_constant "SetSPplus")
let coq_SetSPmult = lazy (ring_constant "SetSPmult")
let coq_SetSPvar = lazy (ring_constant "SetSPvar")
let coq_SetSPconst = lazy (ring_constant "SetSPconst")
let coq_SetPplus = lazy (ring_constant "SetPplus")
let coq_SetPmult = lazy (ring_constant "SetPmult")
let coq_SetPvar = lazy (ring_constant "SetPvar")
let coq_SetPconst = lazy (ring_constant "SetPconst")
let coq_SetPopp = lazy (ring_constant "SetPopp")
let coq_interp_setsp = lazy (ring_constant "interp_setsp")
let coq_interp_setp = lazy (ring_constant "interp_setp")
let coq_interp_setcs = lazy (ring_constant "interp_setcs")
let coq_setspolynomial_simplify =
lazy (ring_constant "setspolynomial_simplify")
let coq_setpolynomial_simplify =
lazy (ring_constant "setpolynomial_simplify")
let coq_setspolynomial_simplify_ok =
lazy (ring_constant "setspolynomial_simplify_ok")
let coq_setpolynomial_simplify_ok =
lazy (ring_constant "setpolynomial_simplify_ok")
(* Ring abstract *)
let coq_ASPplus = lazy (ring_constant "ASPplus")
let coq_ASPmult = lazy (ring_constant "ASPmult")
let coq_ASPvar = lazy (ring_constant "ASPvar")
let coq_ASP0 = lazy (ring_constant "ASP0")
let coq_ASP1 = lazy (ring_constant "ASP1")
let coq_APplus = lazy (ring_constant "APplus")
let coq_APmult = lazy (ring_constant "APmult")
let coq_APvar = lazy (ring_constant "APvar")
let coq_AP0 = lazy (ring_constant "AP0")
let coq_AP1 = lazy (ring_constant "AP1")
let coq_APopp = lazy (ring_constant "APopp")
let coq_interp_asp = lazy (ring_constant "interp_asp")
let coq_interp_ap = lazy (ring_constant "interp_ap")
let coq_interp_acs = lazy (ring_constant "interp_acs")
let coq_interp_sacs = lazy (ring_constant "interp_sacs")
let coq_aspolynomial_normalize = lazy (ring_constant "aspolynomial_normalize")
let coq_apolynomial_normalize = lazy (ring_constant "apolynomial_normalize")
let coq_aspolynomial_normalize_ok =
lazy (ring_constant "aspolynomial_normalize_ok")
let coq_apolynomial_normalize_ok =
lazy (ring_constant "apolynomial_normalize_ok")
(* Logic --> to be found in Coqlib *)
open Coqlib
let mkLApp(fc,v) = mkApp(Lazy.force fc, v)
(*********** Useful types and functions ************)
module OperSet =
Set.Make (struct
type t = global_reference
let compare = (RefOrdered.compare : t->t->int)
end)
type morph =
{ plusm : constr;
multm : constr;
oppm : constr option;
}
type theory =
{ th_ring : bool; (* false for a semi-ring *)
th_abstract : bool;
th_setoid : bool; (* true for a setoid ring *)
th_equiv : constr option;
th_setoid_th : constr option;
th_morph : morph option;
th_a : constr; (* e.g. nat *)
th_plus : constr;
th_mult : constr;
th_one : constr;
th_zero : constr;
th_opp : constr option; (* None if semi-ring *)
th_eq : constr;
th_t : constr; (* e.g. NatTheory *)
th_closed : ConstrSet.t; (* e.g. [S; O] *)
(* Must be empty for an abstract ring *)
}
(* Theories are stored in a table which is synchronised with the Reset
mechanism. *)
module Cmap = Map.Make(struct type t = constr let compare = constr_ord end)
let theories_map = ref Cmap.empty
let theories_map_add (c,t) = theories_map := Cmap.add c t !theories_map
let theories_map_find c = Cmap.find c !theories_map
let theories_map_mem c = Cmap.mem c !theories_map
let _ =
Summary.declare_summary "tactic-ring-table"
{ Summary.freeze_function = (fun () -> !theories_map);
Summary.unfreeze_function = (fun t -> theories_map := t);
Summary.init_function = (fun () -> theories_map := Cmap.empty) }
(* declare a new type of object in the environment, "tactic-ring-theory"
The functions theory_to_obj and obj_to_theory do the conversions
between theories and environement objects. *)
let subst_morph subst morph =
let plusm' = subst_mps subst morph.plusm in
let multm' = subst_mps subst morph.multm in
let oppm' = Option.smartmap (subst_mps subst) morph.oppm in
if plusm' == morph.plusm
&& multm' == morph.multm
&& oppm' == morph.oppm then
morph
else
{ plusm = plusm' ;
multm = multm' ;
oppm = oppm' ;
}
let subst_set subst cset =
let same = ref true in
let copy_subst c newset =
let c' = subst_mps subst c in
if not (c' == c) then same := false;
ConstrSet.add c' newset
in
let cset' = ConstrSet.fold copy_subst cset ConstrSet.empty in
if !same then cset else cset'
let subst_theory subst th =
let th_equiv' = Option.smartmap (subst_mps subst) th.th_equiv in
let th_setoid_th' = Option.smartmap (subst_mps subst) th.th_setoid_th in
let th_morph' = Option.smartmap (subst_morph subst) th.th_morph in
let th_a' = subst_mps subst th.th_a in
let th_plus' = subst_mps subst th.th_plus in
let th_mult' = subst_mps subst th.th_mult in
let th_one' = subst_mps subst th.th_one in
let th_zero' = subst_mps subst th.th_zero in
let th_opp' = Option.smartmap (subst_mps subst) th.th_opp in
let th_eq' = subst_mps subst th.th_eq in
let th_t' = subst_mps subst th.th_t in
let th_closed' = subst_set subst th.th_closed in
if th_equiv' == th.th_equiv
&& th_setoid_th' == th.th_setoid_th
&& th_morph' == th.th_morph
&& th_a' == th.th_a
&& th_plus' == th.th_plus
&& th_mult' == th.th_mult
&& th_one' == th.th_one
&& th_zero' == th.th_zero
&& th_opp' == th.th_opp
&& th_eq' == th.th_eq
&& th_t' == th.th_t
&& th_closed' == th.th_closed
then
th
else
{ th_ring = th.th_ring ;
th_abstract = th.th_abstract ;
th_setoid = th.th_setoid ;
th_equiv = th_equiv' ;
th_setoid_th = th_setoid_th' ;
th_morph = th_morph' ;
th_a = th_a' ;
th_plus = th_plus' ;
th_mult = th_mult' ;
th_one = th_one' ;
th_zero = th_zero' ;
th_opp = th_opp' ;
th_eq = th_eq' ;
th_t = th_t' ;
th_closed = th_closed' ;
}
let subst_th (subst,(c,th as obj)) =
let c' = subst_mps subst c in
let th' = subst_theory subst th in
if c' == c && th' == th then obj else
(c',th')
let theory_to_obj : constr * theory -> obj =
let cache_th (_,(c, th)) = theories_map_add (c,th) in
declare_object {(default_object "tactic-ring-theory") with
open_function = (fun i o -> if i=1 then cache_th o);
cache_function = cache_th;
subst_function = subst_th;
classify_function = (fun x -> Substitute x) }
(* from the set A, guess the associated theory *)
(* With this simple solution, the theory to use is automatically guessed *)
(* But only one theory can be declared for a given Set *)
let guess_theory a =
try
theories_map_find a
with Not_found ->
errorlabstrm "Ring"
(str "No Declared Ring Theory for " ++
pr_lconstr a ++ fnl () ++
str "Use Add [Semi] Ring to declare it")
(* Looks up an option *)
let unbox = function
| Some w -> w
| None -> anomaly "Ring : Not in case of a setoid ring."
(* Protects the convertibility test against undue exceptions when using it
with untyped terms *)
let safe_pf_conv_x gl c1 c2 =
try pf_conv_x gl c1 c2 with e when Errors.noncritical e -> false
(* Add a Ring or a Semi-Ring to the database after a type verification *)
let implement_theory env t th args =
is_conv env Evd.empty (Typing.type_of env Evd.empty t) (mkLApp (th, args))
(* (\* The following test checks whether the provided morphism is the default *)
(* one for the given operation. In principle the test is too strict, since *)
(* it should possible to provide another proof for the same fact (proof *)
(* irrelevance). In particular, the error message is be not very explicative. *\) *)
let states_compatibility_for env plus mult opp morphs =
let check op compat = true in
(* is_conv env Evd.empty (Setoid_replace.default_morphism op).Setoid_replace.lem *)
(* compat in *)
check plus morphs.plusm &&
check mult morphs.multm &&
(match (opp,morphs.oppm) with
None, None -> true
| Some opp, Some compat -> check opp compat
| _,_ -> assert false)
let add_theory want_ring want_abstract want_setoid a aequiv asetth amorph aplus amult aone azero aopp aeq t cset =
if theories_map_mem a then errorlabstrm "Add Semi Ring"
(str "A (Semi-)(Setoid-)Ring Structure is already declared for " ++
pr_lconstr a);
let env = Global.env () in
if (want_ring & want_setoid & (
not (implement_theory env t coq_Setoid_Ring_Theory
[| a; (unbox aequiv); aplus; amult; aone; azero; (unbox aopp); aeq|])
||
not (implement_theory env (unbox asetth) coq_Setoid_Theory
[| a; (unbox aequiv) |]) ||
not (states_compatibility_for env aplus amult aopp (unbox amorph))
)) then
errorlabstrm "addring" (str "Not a valid Setoid-Ring theory");
if (not want_ring & want_setoid & (
not (implement_theory env t coq_Semi_Setoid_Ring_Theory
[| a; (unbox aequiv); aplus; amult; aone; azero; aeq|]) ||
not (implement_theory env (unbox asetth) coq_Setoid_Theory
[| a; (unbox aequiv) |]) ||
not (states_compatibility_for env aplus amult aopp (unbox amorph))))
then
errorlabstrm "addring" (str "Not a valid Semi-Setoid-Ring theory");
if (want_ring & not want_setoid &
not (implement_theory env t coq_Ring_Theory
[| a; aplus; amult; aone; azero; (unbox aopp); aeq |])) then
errorlabstrm "addring" (str "Not a valid Ring theory");
if (not want_ring & not want_setoid &
not (implement_theory env t coq_Semi_Ring_Theory
[| a; aplus; amult; aone; azero; aeq |])) then
errorlabstrm "addring" (str "Not a valid Semi-Ring theory");
Lib.add_anonymous_leaf
(theory_to_obj
(a, { th_ring = want_ring;
th_abstract = want_abstract;
th_setoid = want_setoid;
th_equiv = aequiv;
th_setoid_th = asetth;
th_morph = amorph;
th_a = a;
th_plus = aplus;
th_mult = amult;
th_one = aone;
th_zero = azero;
th_opp = aopp;
th_eq = aeq;
th_t = t;
th_closed = cset }))
(******** The tactic itself *********)
(*
gl : goal sigma
th : semi-ring theory (concrete)
cl : constr list [c1; c2; ...]
Builds
- a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
where c'i is convertible with ci and
c'i_eq_c''i is a proof of equality of c'i and c''i
*)
module Constrhash = Hashtbl.Make
(struct type t = constr
let equal = eq_constr
let hash = hash_constr
end)
let build_spolynom gl th lc =
let varhash = (Constrhash.create 17 : constr Constrhash.t) in
let varlist = ref ([] : constr list) in (* list of variables *)
let counter = ref 1 in (* number of variables created + 1 *)
(* aux creates the spolynom p by a recursive destructuration of c
and builds the varmap with side-effects *)
let rec aux c =
match (kind_of_term (strip_outer_cast c)) with
| App (binop,[|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
mkLApp(coq_SPplus, [|th.th_a; aux c1; aux c2 |])
| App (binop,[|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
mkLApp(coq_SPmult, [|th.th_a; aux c1; aux c2 |])
| _ when closed_under th.th_closed c ->
mkLApp(coq_SPconst, [|th.th_a; c |])
| _ ->
try Constrhash.find varhash c
with Not_found ->
let newvar =
mkLApp(coq_SPvar, [|th.th_a; (path_of_int !counter) |]) in
begin
incr counter;
varlist := c :: !varlist;
Constrhash.add varhash c newvar;
newvar
end
in
let lp = List.map aux lc in
let v = btree_of_array (Array.of_list (List.rev !varlist)) th.th_a in
List.map
(fun p ->
(mkLApp (coq_interp_sp,
[|th.th_a; th.th_plus; th.th_mult; th.th_zero; v; p |]),
mkLApp (coq_interp_cs,
[|th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero; v;
pf_reduce cbv_betadeltaiota gl
(mkLApp (coq_spolynomial_simplify,
[| th.th_a; th.th_plus; th.th_mult;
th.th_one; th.th_zero;
th.th_eq; p|])) |]),
mkLApp (coq_spolynomial_simplify_ok,
[| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero;
th.th_eq; v; th.th_t; p |])))
lp
(*
gl : goal sigma
th : ring theory (concrete)
cl : constr list [c1; c2; ...]
Builds
- a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
where c'i is convertible with ci and
c'i_eq_c''i is a proof of equality of c'i and c''i
*)
let build_polynom gl th lc =
let varhash = (Constrhash.create 17 : constr Constrhash.t) in
let varlist = ref ([] : constr list) in (* list of variables *)
let counter = ref 1 in (* number of variables created + 1 *)
let rec aux c =
match (kind_of_term (strip_outer_cast c)) with
| App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
mkLApp(coq_Pplus, [|th.th_a; aux c1; aux c2 |])
| App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
mkLApp(coq_Pmult, [|th.th_a; aux c1; aux c2 |])
(* The special case of Z.sub *)
| App (binop, [|c1; c2|])
when safe_pf_conv_x gl c
(mkApp (th.th_plus, [|c1; mkApp(unbox th.th_opp, [|c2|])|])) ->
mkLApp(coq_Pplus,
[|th.th_a; aux c1;
mkLApp(coq_Popp, [|th.th_a; aux c2|]) |])
| App (unop, [|c1|]) when safe_pf_conv_x gl unop (unbox th.th_opp) ->
mkLApp(coq_Popp, [|th.th_a; aux c1|])
| _ when closed_under th.th_closed c ->
mkLApp(coq_Pconst, [|th.th_a; c |])
| _ ->
try Constrhash.find varhash c
with Not_found ->
let newvar =
mkLApp(coq_Pvar, [|th.th_a; (path_of_int !counter) |]) in
begin
incr counter;
varlist := c :: !varlist;
Constrhash.add varhash c newvar;
newvar
end
in
let lp = List.map aux lc in
let v = (btree_of_array (Array.of_list (List.rev !varlist)) th.th_a) in
List.map
(fun p ->
(mkLApp(coq_interp_p,
[| th.th_a; th.th_plus; th.th_mult; th.th_zero;
(unbox th.th_opp); v; p |])),
mkLApp(coq_interp_cs,
[| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero; v;
pf_reduce cbv_betadeltaiota gl
(mkLApp(coq_polynomial_simplify,
[| th.th_a; th.th_plus; th.th_mult;
th.th_one; th.th_zero;
(unbox th.th_opp); th.th_eq; p |])) |]),
mkLApp(coq_polynomial_simplify_ok,
[| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero;
(unbox th.th_opp); th.th_eq; v; th.th_t; p |]))
lp
(*
gl : goal sigma
th : semi-ring theory (abstract)
cl : constr list [c1; c2; ...]
Builds
- a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
where c'i is convertible with ci and
c'i_eq_c''i is a proof of equality of c'i and c''i
*)
let build_aspolynom gl th lc =
let varhash = (Constrhash.create 17 : constr Constrhash.t) in
let varlist = ref ([] : constr list) in (* list of variables *)
let counter = ref 1 in (* number of variables created + 1 *)
(* aux creates the aspolynom p by a recursive destructuration of c
and builds the varmap with side-effects *)
let rec aux c =
match (kind_of_term (strip_outer_cast c)) with
| App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
mkLApp(coq_ASPplus, [| aux c1; aux c2 |])
| App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
mkLApp(coq_ASPmult, [| aux c1; aux c2 |])
| _ when safe_pf_conv_x gl c th.th_zero -> Lazy.force coq_ASP0
| _ when safe_pf_conv_x gl c th.th_one -> Lazy.force coq_ASP1
| _ ->
try Constrhash.find varhash c
with Not_found ->
let newvar = mkLApp(coq_ASPvar, [|(path_of_int !counter) |]) in
begin
incr counter;
varlist := c :: !varlist;
Constrhash.add varhash c newvar;
newvar
end
in
let lp = List.map aux lc in
let v = btree_of_array (Array.of_list (List.rev !varlist)) th.th_a in
List.map
(fun p ->
(mkLApp(coq_interp_asp,
[| th.th_a; th.th_plus; th.th_mult;
th.th_one; th.th_zero; v; p |]),
mkLApp(coq_interp_acs,
[| th.th_a; th.th_plus; th.th_mult;
th.th_one; th.th_zero; v;
pf_reduce cbv_betadeltaiota gl
(mkLApp(coq_aspolynomial_normalize,[|p|])) |]),
mkLApp(coq_spolynomial_simplify_ok,
[| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero;
th.th_eq; v; th.th_t; p |])))
lp
(*
gl : goal sigma
th : ring theory (abstract)
cl : constr list [c1; c2; ...]
Builds
- a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
where c'i is convertible with ci and
c'i_eq_c''i is a proof of equality of c'i and c''i
*)
let build_apolynom gl th lc =
let varhash = (Constrhash.create 17 : constr Constrhash.t) in
let varlist = ref ([] : constr list) in (* list of variables *)
let counter = ref 1 in (* number of variables created + 1 *)
let rec aux c =
match (kind_of_term (strip_outer_cast c)) with
| App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
mkLApp(coq_APplus, [| aux c1; aux c2 |])
| App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
mkLApp(coq_APmult, [| aux c1; aux c2 |])
(* The special case of Z.sub *)
| App (binop, [|c1; c2|])
when safe_pf_conv_x gl c
(mkApp(th.th_plus, [|c1; mkApp(unbox th.th_opp,[|c2|]) |])) ->
mkLApp(coq_APplus,
[|aux c1; mkLApp(coq_APopp,[|aux c2|]) |])
| App (unop, [|c1|]) when safe_pf_conv_x gl unop (unbox th.th_opp) ->
mkLApp(coq_APopp, [| aux c1 |])
| _ when safe_pf_conv_x gl c th.th_zero -> Lazy.force coq_AP0
| _ when safe_pf_conv_x gl c th.th_one -> Lazy.force coq_AP1
| _ ->
try Constrhash.find varhash c
with Not_found ->
let newvar =
mkLApp(coq_APvar, [| path_of_int !counter |]) in
begin
incr counter;
varlist := c :: !varlist;
Constrhash.add varhash c newvar;
newvar
end
in
let lp = List.map aux lc in
let v = (btree_of_array (Array.of_list (List.rev !varlist)) th.th_a) in
List.map
(fun p ->
(mkLApp(coq_interp_ap,
[| th.th_a; th.th_plus; th.th_mult; th.th_one;
th.th_zero; (unbox th.th_opp); v; p |]),
mkLApp(coq_interp_sacs,
[| th.th_a; th.th_plus; th.th_mult;
th.th_one; th.th_zero; (unbox th.th_opp); v;
pf_reduce cbv_betadeltaiota gl
(mkLApp(coq_apolynomial_normalize, [|p|])) |]),
mkLApp(coq_apolynomial_normalize_ok,
[| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero;
(unbox th.th_opp); th.th_eq; v; th.th_t; p |])))
lp
(*
gl : goal sigma
th : setoid ring theory (concrete)
cl : constr list [c1; c2; ...]
Builds
- a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
where c'i is convertible with ci and
c'i_eq_c''i is a proof of equality of c'i and c''i
*)
let build_setpolynom gl th lc =
let varhash = (Constrhash.create 17 : constr Constrhash.t) in
let varlist = ref ([] : constr list) in (* list of variables *)
let counter = ref 1 in (* number of variables created + 1 *)
let rec aux c =
match (kind_of_term (strip_outer_cast c)) with
| App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
mkLApp(coq_SetPplus, [|th.th_a; aux c1; aux c2 |])
| App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
mkLApp(coq_SetPmult, [|th.th_a; aux c1; aux c2 |])
(* The special case of Z.sub *)
| App (binop, [|c1; c2|])
when safe_pf_conv_x gl c
(mkApp(th.th_plus, [|c1; mkApp(unbox th.th_opp,[|c2|])|])) ->
mkLApp(coq_SetPplus,
[| th.th_a; aux c1;
mkLApp(coq_SetPopp, [|th.th_a; aux c2|]) |])
| App (unop, [|c1|]) when safe_pf_conv_x gl unop (unbox th.th_opp) ->
mkLApp(coq_SetPopp, [| th.th_a; aux c1 |])
| _ when closed_under th.th_closed c ->
mkLApp(coq_SetPconst, [| th.th_a; c |])
| _ ->
try Constrhash.find varhash c
with Not_found ->
let newvar =
mkLApp(coq_SetPvar, [| th.th_a; path_of_int !counter |]) in
begin
incr counter;
varlist := c :: !varlist;
Constrhash.add varhash c newvar;
newvar
end
in
let lp = List.map aux lc in
let v = (btree_of_array (Array.of_list (List.rev !varlist)) th.th_a) in
List.map
(fun p ->
(mkLApp(coq_interp_setp,
[| th.th_a; th.th_plus; th.th_mult; th.th_zero;
(unbox th.th_opp); v; p |]),
mkLApp(coq_interp_setcs,
[| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero; v;
pf_reduce cbv_betadeltaiota gl
(mkLApp(coq_setpolynomial_simplify,
[| th.th_a; th.th_plus; th.th_mult;
th.th_one; th.th_zero;
(unbox th.th_opp); th.th_eq; p |])) |]),
mkLApp(coq_setpolynomial_simplify_ok,
[| th.th_a; (unbox th.th_equiv); th.th_plus;
th.th_mult; th.th_one; th.th_zero;(unbox th.th_opp);
th.th_eq; (unbox th.th_setoid_th);
(unbox th.th_morph).plusm; (unbox th.th_morph).multm;
(unbox (unbox th.th_morph).oppm); v; th.th_t; p |])))
lp
(*
gl : goal sigma
th : semi setoid ring theory (concrete)
cl : constr list [c1; c2; ...]
Builds
- a list of tuples [(c1, c'1, c''1, c'1_eq_c''1); ... ]
where c'i is convertible with ci and
c'i_eq_c''i is a proof of equality of c'i and c''i
*)
let build_setspolynom gl th lc =
let varhash = (Constrhash.create 17 : constr Constrhash.t) in
let varlist = ref ([] : constr list) in (* list of variables *)
let counter = ref 1 in (* number of variables created + 1 *)
let rec aux c =
match (kind_of_term (strip_outer_cast c)) with
| App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_plus ->
mkLApp(coq_SetSPplus, [|th.th_a; aux c1; aux c2 |])
| App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
mkLApp(coq_SetSPmult, [| th.th_a; aux c1; aux c2 |])
| _ when closed_under th.th_closed c ->
mkLApp(coq_SetSPconst, [| th.th_a; c |])
| _ ->
try Constrhash.find varhash c
with Not_found ->
let newvar =
mkLApp(coq_SetSPvar, [|th.th_a; path_of_int !counter |]) in
begin
incr counter;
varlist := c :: !varlist;
Constrhash.add varhash c newvar;
newvar
end
in
let lp = List.map aux lc in
let v = (btree_of_array (Array.of_list (List.rev !varlist)) th.th_a) in
List.map
(fun p ->
(mkLApp(coq_interp_setsp,
[| th.th_a; th.th_plus; th.th_mult; th.th_zero; v; p |]),
mkLApp(coq_interp_setcs,
[| th.th_a; th.th_plus; th.th_mult; th.th_one; th.th_zero; v;
pf_reduce cbv_betadeltaiota gl
(mkLApp(coq_setspolynomial_simplify,
[| th.th_a; th.th_plus; th.th_mult;
th.th_one; th.th_zero;
th.th_eq; p |])) |]),
mkLApp(coq_setspolynomial_simplify_ok,
[| th.th_a; (unbox th.th_equiv); th.th_plus;
th.th_mult; th.th_one; th.th_zero; th.th_eq;
(unbox th.th_setoid_th);
(unbox th.th_morph).plusm;
(unbox th.th_morph).multm; v; th.th_t; p |])))
lp
module SectionPathSet =
Set.Make(struct
type t = full_path
let compare = Pervasives.compare
end)
(* Avec l'uniformisation des red_kind, on perd ici sur la structure
SectionPathSet; peut-tre faudra-t-il la dplacer dans Closure *)
let constants_to_unfold =
(* List.fold_right SectionPathSet.add *)
let transform s =
let sp = path_of_string s in
let dir, id = repr_path sp in
Libnames.encode_con dir id
in
List.map transform
[ "Coq.ring.Ring_normalize.interp_cs";
"Coq.ring.Ring_normalize.interp_var";
"Coq.ring.Ring_normalize.interp_vl";
"Coq.ring.Ring_abstract.interp_acs";
"Coq.ring.Ring_abstract.interp_sacs";
"Coq.quote.Quote.varmap_find";
(* anciennement des Local devenus Definition *)
"Coq.ring.Ring_normalize.ics_aux";
"Coq.ring.Ring_normalize.ivl_aux";
"Coq.ring.Ring_normalize.interp_m";
"Coq.ring.Ring_abstract.iacs_aux";
"Coq.ring.Ring_abstract.isacs_aux";
"Coq.ring.Setoid_ring_normalize.interp_cs";
"Coq.ring.Setoid_ring_normalize.interp_var";
"Coq.ring.Setoid_ring_normalize.interp_vl";
"Coq.ring.Setoid_ring_normalize.ics_aux";
"Coq.ring.Setoid_ring_normalize.ivl_aux";
"Coq.ring.Setoid_ring_normalize.interp_m";
]
(* SectionPathSet.empty *)
(* Unfolds the functions interp and find_btree in the term c of goal gl *)
open RedFlags
let polynom_unfold_tac =
let flags =
(mkflags(fBETA::fIOTA::(List.map fCONST constants_to_unfold))) in
reduct_in_concl (cbv_norm_flags flags,DEFAULTcast)
let polynom_unfold_tac_in_term gl =
let flags =
(mkflags(fBETA::fIOTA::fZETA::(List.map fCONST constants_to_unfold)))
in
cbv_norm_flags flags (pf_env gl) (project gl)
(* lc : constr list *)
(* th : theory associated to t *)
(* op : clause (None for conclusion or Some id for hypothesis id) *)
(* gl : goal *)
(* Does the rewriting c_i -> (interp R RC v (polynomial_simplify p_i))
where the ring R, the Ring theory RC, the varmap v and the polynomials p_i
are guessed and such that c_i = (interp R RC v p_i) *)
let raw_polynom th op lc gl =
(* first we sort the terms : if t' is a subterm of t it must appear
after t in the list. This is to avoid that the normalization of t'
modifies t in a non-desired way *)
let lc = sort_subterm gl lc in
let ltriplets =
if th.th_setoid then
if th.th_ring
then build_setpolynom gl th lc
else build_setspolynom gl th lc
else
if th.th_ring then
if th.th_abstract
then build_apolynom gl th lc
else build_polynom gl th lc
else
if th.th_abstract
then build_aspolynom gl th lc
else build_spolynom gl th lc in
let polynom_tac =
List.fold_right2
(fun ci (c'i, c''i, c'i_eq_c''i) tac ->
let c'''i =
if !term_quality then polynom_unfold_tac_in_term gl c''i else c''i
in
if !term_quality && safe_pf_conv_x gl c'''i ci then
tac (* convertible terms *)
else if th.th_setoid
then
(tclORELSE
(tclORELSE
(h_exact c'i_eq_c''i)
(h_exact (mkLApp(coq_seq_sym,
[| th.th_a; (unbox th.th_equiv);
(unbox th.th_setoid_th);
c'''i; ci; c'i_eq_c''i |]))))
(tclTHENS
(tclORELSE
(Equality.general_rewrite true
Termops.all_occurrences true false c'i_eq_c''i)
(Equality.general_rewrite false
Termops.all_occurrences true false c'i_eq_c''i))
[tac]))
else
(tclORELSE
(tclORELSE
(h_exact c'i_eq_c''i)
(h_exact (mkApp(build_coq_eq_sym (),
[|th.th_a; c'''i; ci; c'i_eq_c''i |]))))
(tclTHENS
(elim_type
(mkApp(build_coq_eq (), [|th.th_a; c'''i; ci |])))
[ tac;
h_exact c'i_eq_c''i ]))
)
lc ltriplets polynom_unfold_tac
in
polynom_tac gl
let guess_eq_tac th =
(tclORELSE reflexivity
(tclTHEN
polynom_unfold_tac
(tclTHEN
(* Normalized sums associate on the right *)
(tclREPEAT
(tclTHENFIRST
(apply (mkApp(build_coq_f_equal2 (),
[| th.th_a; th.th_a; th.th_a;
th.th_plus |])))
reflexivity))
(tclTRY
(tclTHENLAST
(apply (mkApp(build_coq_f_equal2 (),
[| th.th_a; th.th_a; th.th_a;
th.th_plus |])))
reflexivity)))))
let guess_equiv_tac th =
(tclORELSE (apply (mkLApp(coq_seq_refl,
[| th.th_a; (unbox th.th_equiv);
(unbox th.th_setoid_th)|])))
(tclTHEN
polynom_unfold_tac
(tclREPEAT
(tclORELSE
(apply (unbox th.th_morph).plusm)
(apply (unbox th.th_morph).multm)))))
let match_with_equiv c = match (kind_of_term c) with
| App (e,a) ->
if (List.mem e []) (* (Setoid_replace.equiv_list ())) *)
then Some (decompose_app c)
else None
| _ -> None
let polynom lc gl =
Coqlib.check_required_library ["Coq";"ring";"LegacyRing"];
match lc with
(* If no argument is given, try to recognize either an equality or
a declared relation with arguments c1 ... cn,
do "Ring c1 c2 ... cn" and then try to apply the simplification
theorems declared for the relation *)
| [] ->
(try
match Hipattern.match_with_equation (pf_concl gl) with
| _,_,Hipattern.PolymorphicLeibnizEq (t,c1,c2) ->
let th = guess_theory t in
(tclTHEN (raw_polynom th None [c1;c2]) (guess_eq_tac th)) gl
| _,_,Hipattern.HeterogenousEq (t1,c1,t2,c2)
when safe_pf_conv_x gl t1 t2 ->
let th = guess_theory t1 in
(tclTHEN (raw_polynom th None [c1;c2]) (guess_eq_tac th)) gl
| _ -> raise Exit
with Hipattern.NoEquationFound | Exit ->
(match match_with_equiv (pf_concl gl) with
| Some (equiv, c1::args) ->
let t = (pf_type_of gl c1) in
let th = (guess_theory t) in
if List.exists
(fun c2 -> not (safe_pf_conv_x gl t (pf_type_of gl c2))) args
then
errorlabstrm "Ring :"
(str" All terms must have the same type");
(tclTHEN (raw_polynom th None (c1::args)) (guess_equiv_tac th)) gl
| _ -> errorlabstrm "polynom :"
(str" This goal is not an equality nor a setoid equivalence")))
(* Elsewhere, guess the theory, check that all terms have the same type
and apply raw_polynom *)
| c :: lc' ->
let t = pf_type_of gl c in
let th = guess_theory t in
if List.exists
(fun c1 -> not (safe_pf_conv_x gl t (pf_type_of gl c1))) lc'
then
errorlabstrm "Ring :"
(str" All terms must have the same type");
(tclTHEN (raw_polynom th None lc) polynom_unfold_tac) gl
|