1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
|
(* -*- coding: utf-8 -*- *)
(*************************************************************************
PROJET RNRT Calife - 2001
Author: Pierre Crégut - France Télécom R&D
Licence du projet : LGPL version 2.1
*************************************************************************)
Require Import List Bool Sumbool EqNat Setoid Ring_theory Decidable ZArith_base.
Delimit Scope Int_scope with I.
(* Abstract Integers. *)
Module Type Int.
Parameter t : Set.
Parameter zero : t.
Parameter one : t.
Parameter plus : t -> t -> t.
Parameter opp : t -> t.
Parameter minus : t -> t -> t.
Parameter mult : t -> t -> t.
Notation "0" := zero : Int_scope.
Notation "1" := one : Int_scope.
Infix "+" := plus : Int_scope.
Infix "-" := minus : Int_scope.
Infix "*" := mult : Int_scope.
Notation "- x" := (opp x) : Int_scope.
Open Scope Int_scope.
(* First, int is a ring: *)
Axiom ring : @ring_theory t 0 1 plus mult minus opp (@eq t).
(* int should also be ordered: *)
Parameter le : t -> t -> Prop.
Parameter lt : t -> t -> Prop.
Parameter ge : t -> t -> Prop.
Parameter gt : t -> t -> Prop.
Notation "x <= y" := (le x y): Int_scope.
Notation "x < y" := (lt x y) : Int_scope.
Notation "x >= y" := (ge x y) : Int_scope.
Notation "x > y" := (gt x y): Int_scope.
Axiom le_lt_iff : forall i j, (i<=j) <-> ~(j<i).
Axiom ge_le_iff : forall i j, (i>=j) <-> (j<=i).
Axiom gt_lt_iff : forall i j, (i>j) <-> (j<i).
(* Basic properties of this order *)
Axiom lt_trans : forall i j k, i<j -> j<k -> i<k.
Axiom lt_not_eq : forall i j, i<j -> i<>j.
(* Compatibilities *)
Axiom lt_0_1 : 0<1.
Axiom plus_le_compat : forall i j k l, i<=j -> k<=l -> i+k<=j+l.
Axiom opp_le_compat : forall i j, i<=j -> (-j)<=(-i).
Axiom mult_lt_compat_l :
forall i j k, 0 < k -> i < j -> k*i<k*j.
(* We should have a way to decide the equality and the order*)
Parameter compare : t -> t -> comparison.
Infix "?=" := compare (at level 70, no associativity) : Int_scope.
Axiom compare_Eq : forall i j, compare i j = Eq <-> i=j.
Axiom compare_Lt : forall i j, compare i j = Lt <-> i<j.
Axiom compare_Gt : forall i j, compare i j = Gt <-> i>j.
(* Up to here, these requirements could be fulfilled
by any totally ordered ring. Let's now be int-specific: *)
Axiom le_lt_int : forall x y, x<y <-> x<=y+-(1).
(* Btw, lt_0_1 could be deduced from this last axiom *)
End Int.
(* Of course, Z is a model for our abstract int *)
Module Z_as_Int <: Int.
Open Scope Z_scope.
Definition t := Z.
Definition zero := 0.
Definition one := 1.
Definition plus := Z.add.
Definition opp := Z.opp.
Definition minus := Z.sub.
Definition mult := Z.mul.
Lemma ring : @ring_theory t zero one plus mult minus opp (@eq t).
Proof.
constructor.
exact Z.add_0_l.
exact Z.add_comm.
exact Z.add_assoc.
exact Z.mul_1_l.
exact Z.mul_comm.
exact Z.mul_assoc.
exact Z.mul_add_distr_r.
unfold minus, Z.sub; auto.
exact Z.add_opp_diag_r.
Qed.
Definition le := Z.le.
Definition lt := Z.lt.
Definition ge := Z.ge.
Definition gt := Z.gt.
Definition le_lt_iff := Z.le_ngt.
Definition ge_le_iff := Z.ge_le_iff.
Definition gt_lt_iff := Z.gt_lt_iff.
Definition lt_trans := Z.lt_trans.
Definition lt_not_eq := Z.lt_neq.
Definition lt_0_1 := Z.lt_0_1.
Definition plus_le_compat := Z.add_le_mono.
Definition mult_lt_compat_l := Zmult_lt_compat_l.
Lemma opp_le_compat i j : i<=j -> (-j)<=(-i).
Proof. apply -> Z.opp_le_mono. Qed.
Definition compare := Z.compare.
Definition compare_Eq := Z.compare_eq_iff.
Lemma compare_Lt i j : compare i j = Lt <-> i<j.
Proof. reflexivity. Qed.
Lemma compare_Gt i j : compare i j = Gt <-> i>j.
Proof. reflexivity. Qed.
Definition le_lt_int := Z.lt_le_pred.
End Z_as_Int.
Module IntProperties (I:Int).
Import I.
Local Notation int := I.t.
(* Primo, some consequences of being a ring theory... *)
Definition two := 1+1.
Notation "2" := two : Int_scope.
(* Aliases for properties packed in the ring record. *)
Definition plus_assoc := ring.(Radd_assoc).
Definition plus_comm := ring.(Radd_comm).
Definition plus_0_l := ring.(Radd_0_l).
Definition mult_assoc := ring.(Rmul_assoc).
Definition mult_comm := ring.(Rmul_comm).
Definition mult_1_l := ring.(Rmul_1_l).
Definition mult_plus_distr_r := ring.(Rdistr_l).
Definition opp_def := ring.(Ropp_def).
Definition minus_def := ring.(Rsub_def).
Opaque plus_assoc plus_comm plus_0_l mult_assoc mult_comm mult_1_l
mult_plus_distr_r opp_def minus_def.
(* More facts about plus *)
Lemma plus_0_r : forall x, x+0 = x.
Proof. intros; rewrite plus_comm; apply plus_0_l. Qed.
Lemma plus_0_r_reverse : forall x, x = x+0.
Proof. intros; symmetry; apply plus_0_r. Qed.
Lemma plus_assoc_reverse : forall x y z, x+y+z = x+(y+z).
Proof. intros; symmetry; apply plus_assoc. Qed.
Lemma plus_permute : forall x y z, x+(y+z) = y+(x+z).
Proof. intros; do 2 rewrite plus_assoc; f_equal; apply plus_comm. Qed.
Lemma plus_reg_l : forall x y z, x+y = x+z -> y = z.
Proof.
intros.
rewrite (plus_0_r_reverse y), (plus_0_r_reverse z), <-(opp_def x).
now rewrite plus_permute, plus_assoc, H, <- plus_assoc, plus_permute.
Qed.
(* More facts about mult *)
Lemma mult_assoc_reverse : forall x y z, x*y*z = x*(y*z).
Proof. intros; symmetry; apply mult_assoc. Qed.
Lemma mult_plus_distr_l : forall x y z, x*(y+z)=x*y+x*z.
Proof.
intros.
rewrite (mult_comm x (y+z)), (mult_comm x y), (mult_comm x z).
apply mult_plus_distr_r.
Qed.
Lemma mult_0_l : forall x, 0*x = 0.
Proof.
intros.
generalize (mult_plus_distr_r 0 1 x).
rewrite plus_0_l, mult_1_l, plus_comm; intros.
apply plus_reg_l with x.
rewrite <- H.
apply plus_0_r_reverse.
Qed.
(* More facts about opp *)
Definition plus_opp_r := opp_def.
Lemma plus_opp_l : forall x, -x + x = 0.
Proof. intros; now rewrite plus_comm, opp_def. Qed.
Lemma mult_opp_comm : forall x y, - x * y = x * - y.
Proof.
intros.
apply plus_reg_l with (x*y).
rewrite <- mult_plus_distr_l, <- mult_plus_distr_r.
now rewrite opp_def, opp_def, mult_0_l, mult_comm, mult_0_l.
Qed.
Lemma opp_eq_mult_neg_1 : forall x, -x = x * -(1).
Proof.
intros; now rewrite mult_comm, mult_opp_comm, mult_1_l.
Qed.
Lemma opp_involutive : forall x, -(-x) = x.
Proof.
intros.
apply plus_reg_l with (-x).
now rewrite opp_def, plus_comm, opp_def.
Qed.
Lemma opp_plus_distr : forall x y, -(x+y) = -x + -y.
Proof.
intros.
apply plus_reg_l with (x+y).
rewrite opp_def.
rewrite plus_permute.
do 2 rewrite plus_assoc.
now rewrite (plus_comm (-x)), opp_def, plus_0_l, opp_def.
Qed.
Lemma opp_mult_distr_r : forall x y, -(x*y) = x * -y.
Proof.
intros.
rewrite <- mult_opp_comm.
apply plus_reg_l with (x*y).
now rewrite opp_def, <-mult_plus_distr_r, opp_def, mult_0_l.
Qed.
Lemma egal_left : forall n m, n=m -> n+-m = 0.
Proof. intros; subst; apply opp_def. Qed.
Lemma ne_left_2 : forall x y : int, x<>y -> 0<>(x + - y).
Proof.
intros; contradict H.
apply (plus_reg_l (-y)).
now rewrite plus_opp_l, plus_comm, H.
Qed.
(* Special lemmas for factorisation. *)
Lemma red_factor0 : forall n, n = n*1.
Proof. symmetry; rewrite mult_comm; apply mult_1_l. Qed.
Lemma red_factor1 : forall n, n+n = n*2.
Proof.
intros; unfold two.
now rewrite mult_comm, mult_plus_distr_r, mult_1_l.
Qed.
Lemma red_factor2 : forall n m, n + n*m = n * (1+m).
Proof.
intros; rewrite mult_plus_distr_l.
f_equal; now rewrite mult_comm, mult_1_l.
Qed.
Lemma red_factor3 : forall n m, n*m + n = n*(1+m).
Proof. intros; now rewrite plus_comm, red_factor2. Qed.
Lemma red_factor4 : forall n m p, n*m + n*p = n*(m+p).
Proof.
intros; now rewrite mult_plus_distr_l.
Qed.
Lemma red_factor5 : forall n m , n * 0 + m = m.
Proof. intros; now rewrite mult_comm, mult_0_l, plus_0_l. Qed.
Definition red_factor6 := plus_0_r_reverse.
(* Specialized distributivities *)
Hint Rewrite mult_plus_distr_l mult_plus_distr_r mult_assoc : int.
Hint Rewrite <- plus_assoc : int.
Lemma OMEGA10 :
forall v c1 c2 l1 l2 k1 k2 : int,
(v * c1 + l1) * k1 + (v * c2 + l2) * k2 =
v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2).
Proof.
intros; autorewrite with int; f_equal; now rewrite plus_permute.
Qed.
Lemma OMEGA11 :
forall v1 c1 l1 l2 k1 : int,
(v1 * c1 + l1) * k1 + l2 = v1 * (c1 * k1) + (l1 * k1 + l2).
Proof.
intros; now autorewrite with int.
Qed.
Lemma OMEGA12 :
forall v2 c2 l1 l2 k2 : int,
l1 + (v2 * c2 + l2) * k2 = v2 * (c2 * k2) + (l1 + l2 * k2).
Proof.
intros; autorewrite with int; now rewrite plus_permute.
Qed.
Lemma OMEGA13 :
forall v l1 l2 x : int,
v * -x + l1 + (v * x + l2) = l1 + l2.
Proof.
intros; autorewrite with int.
rewrite plus_permute; f_equal.
rewrite plus_assoc.
now rewrite <- mult_plus_distr_l, plus_opp_l, mult_comm, mult_0_l, plus_0_l.
Qed.
Lemma OMEGA15 :
forall v c1 c2 l1 l2 k2 : int,
v * c1 + l1 + (v * c2 + l2) * k2 = v * (c1 + c2 * k2) + (l1 + l2 * k2).
Proof.
intros; autorewrite with int; f_equal; now rewrite plus_permute.
Qed.
Lemma OMEGA16 : forall v c l k : int, (v * c + l) * k = v * (c * k) + l * k.
Proof.
intros; now autorewrite with int.
Qed.
Lemma sum1 : forall a b c d : int, 0 = a -> 0 = b -> 0 = a * c + b * d.
Proof.
intros; elim H; elim H0; simpl; auto.
now rewrite mult_0_l, mult_0_l, plus_0_l.
Qed.
(* Secondo, some results about order (and equality) *)
Lemma lt_irrefl : forall n, ~ n<n.
Proof.
intros n H.
elim (lt_not_eq _ _ H); auto.
Qed.
Lemma lt_antisym : forall n m, n<m -> m<n -> False.
Proof.
intros; elim (lt_irrefl _ (lt_trans _ _ _ H H0)); auto.
Qed.
Lemma lt_le_weak : forall n m, n<m -> n<=m.
Proof.
intros; rewrite le_lt_iff; intro H'; eapply lt_antisym; eauto.
Qed.
Lemma le_refl : forall n, n<=n.
Proof.
intros; rewrite le_lt_iff; apply lt_irrefl; auto.
Qed.
Lemma le_antisym : forall n m, n<=m -> m<=n -> n=m.
Proof.
intros n m; do 2 rewrite le_lt_iff; intros.
rewrite <- compare_Lt in H0.
rewrite <- gt_lt_iff, <- compare_Gt in H.
rewrite <- compare_Eq.
destruct compare; intuition.
Qed.
Lemma lt_eq_lt_dec : forall n m, { n<m }+{ n=m }+{ m<n }.
Proof.
intros.
generalize (compare_Lt n m)(compare_Eq n m)(compare_Gt n m).
destruct compare; [ left; right | left; left | right ]; intuition.
rewrite gt_lt_iff in H1; intuition.
Qed.
Lemma lt_dec : forall n m: int, { n<m } + { ~n<m }.
Proof.
intros.
generalize (compare_Lt n m)(compare_Eq n m)(compare_Gt n m).
destruct compare; [ right | left | right ]; intuition discriminate.
Qed.
Lemma lt_le_iff : forall n m, (n<m) <-> ~(m<=n).
Proof.
intros.
rewrite le_lt_iff.
destruct (lt_dec n m); intuition.
Qed.
Lemma le_dec : forall n m: int, { n<=m } + { ~n<=m }.
Proof.
intros; destruct (lt_dec m n); [right|left]; rewrite le_lt_iff; intuition.
Qed.
Lemma le_lt_dec : forall n m, { n<=m } + { m<n }.
Proof.
intros; destruct (le_dec n m); [left|right]; auto; now rewrite lt_le_iff.
Qed.
Definition beq i j := match compare i j with Eq => true | _ => false end.
Lemma beq_iff : forall i j, beq i j = true <-> i=j.
Proof.
intros; unfold beq; generalize (compare_Eq i j).
destruct compare; intuition discriminate.
Qed.
Lemma beq_true : forall i j, beq i j = true -> i=j.
Proof.
intros.
rewrite <- beq_iff; auto.
Qed.
Lemma beq_false : forall i j, beq i j = false -> i<>j.
Proof.
intros.
intro H'.
rewrite <- beq_iff in H'; rewrite H' in H; discriminate.
Qed.
Lemma eq_dec : forall n m:int, { n=m } + { n<>m }.
Proof.
intros; generalize (beq_iff n m); destruct beq; [left|right]; intuition.
Qed.
Definition bgt i j := match compare i j with Gt => true | _ => false end.
Lemma bgt_iff : forall i j, bgt i j = true <-> i>j.
Proof.
intros; unfold bgt; generalize (compare_Gt i j).
destruct compare; intuition discriminate.
Qed.
Lemma bgt_true : forall i j, bgt i j = true -> i>j.
Proof. intros; now rewrite <- bgt_iff. Qed.
Lemma bgt_false : forall i j, bgt i j = false -> i<=j.
Proof.
intros.
rewrite le_lt_iff, <-gt_lt_iff, <-bgt_iff; intro H'; now rewrite H' in H.
Qed.
Lemma le_is_lt_or_eq : forall n m, n<=m -> { n<m } + { n=m }.
Proof.
intros.
destruct (eq_dec n m) as [H'|H'].
right; intuition.
left; rewrite lt_le_iff.
contradict H'.
apply le_antisym; auto.
Qed.
Lemma le_neq_lt : forall n m, n<=m -> n<>m -> n<m.
Proof.
intros.
destruct (le_is_lt_or_eq _ _ H); intuition.
Qed.
Lemma le_trans : forall n m p, n<=m -> m<=p -> n<=p.
Proof.
intros n m p; do 3 rewrite le_lt_iff; intros A B C.
destruct (lt_eq_lt_dec p m) as [[H|H]|H]; subst; auto.
generalize (lt_trans _ _ _ H C); intuition.
Qed.
(* order and operations *)
Lemma le_0_neg : forall n, 0 <= n <-> -n <= 0.
Proof.
intros.
pattern 0 at 2; rewrite <- (mult_0_l (-(1))).
rewrite <- opp_eq_mult_neg_1.
split; intros.
apply opp_le_compat; auto.
rewrite <-(opp_involutive 0), <-(opp_involutive n).
apply opp_le_compat; auto.
Qed.
Lemma le_0_neg' : forall n, n <= 0 <-> 0 <= -n.
Proof.
intros; rewrite le_0_neg, opp_involutive; intuition.
Qed.
Lemma plus_le_reg_r : forall n m p, n + p <= m + p -> n <= m.
Proof.
intros.
replace n with ((n+p)+-p).
replace m with ((m+p)+-p).
apply plus_le_compat; auto.
apply le_refl.
now rewrite <- plus_assoc, opp_def, plus_0_r.
now rewrite <- plus_assoc, opp_def, plus_0_r.
Qed.
Lemma plus_le_lt_compat : forall n m p q, n<=m -> p<q -> n+p<m+q.
Proof.
intros.
apply le_neq_lt.
apply plus_le_compat; auto.
apply lt_le_weak; auto.
rewrite lt_le_iff in H0.
contradict H0.
apply plus_le_reg_r with m.
rewrite (plus_comm q m), <-H0, (plus_comm p m).
apply plus_le_compat; auto.
apply le_refl; auto.
Qed.
Lemma plus_lt_compat : forall n m p q, n<m -> p<q -> n+p<m+q.
Proof.
intros.
apply plus_le_lt_compat; auto.
apply lt_le_weak; auto.
Qed.
Lemma opp_lt_compat : forall n m, n<m -> -m < -n.
Proof.
intros n m; do 2 rewrite lt_le_iff; intros H; contradict H.
rewrite <-(opp_involutive m), <-(opp_involutive n).
apply opp_le_compat; auto.
Qed.
Lemma lt_0_neg : forall n, 0 < n <-> -n < 0.
Proof.
intros.
pattern 0 at 2; rewrite <- (mult_0_l (-(1))).
rewrite <- opp_eq_mult_neg_1.
split; intros.
apply opp_lt_compat; auto.
rewrite <-(opp_involutive 0), <-(opp_involutive n).
apply opp_lt_compat; auto.
Qed.
Lemma lt_0_neg' : forall n, n < 0 <-> 0 < -n.
Proof.
intros; rewrite lt_0_neg, opp_involutive; intuition.
Qed.
Lemma mult_lt_0_compat : forall n m, 0 < n -> 0 < m -> 0 < n*m.
Proof.
intros.
rewrite <- (mult_0_l n), mult_comm.
apply mult_lt_compat_l; auto.
Qed.
Lemma mult_integral : forall n m, n * m = 0 -> n = 0 \/ m = 0.
Proof.
intros.
destruct (lt_eq_lt_dec n 0) as [[Hn|Hn]|Hn]; auto;
destruct (lt_eq_lt_dec m 0) as [[Hm|Hm]|Hm]; auto; exfalso.
rewrite lt_0_neg' in Hn.
rewrite lt_0_neg' in Hm.
generalize (mult_lt_0_compat _ _ Hn Hm).
rewrite <- opp_mult_distr_r, mult_comm, <- opp_mult_distr_r, opp_involutive.
rewrite mult_comm, H.
exact (lt_irrefl 0).
rewrite lt_0_neg' in Hn.
generalize (mult_lt_0_compat _ _ Hn Hm).
rewrite mult_comm, <- opp_mult_distr_r, mult_comm.
rewrite H.
rewrite opp_eq_mult_neg_1, mult_0_l.
exact (lt_irrefl 0).
rewrite lt_0_neg' in Hm.
generalize (mult_lt_0_compat _ _ Hn Hm).
rewrite <- opp_mult_distr_r.
rewrite H.
rewrite opp_eq_mult_neg_1, mult_0_l.
exact (lt_irrefl 0).
generalize (mult_lt_0_compat _ _ Hn Hm).
rewrite H.
exact (lt_irrefl 0).
Qed.
Lemma mult_le_compat :
forall i j k l, i<=j -> k<=l -> 0<=i -> 0<=k -> i*k<=j*l.
Proof.
intros.
destruct (le_is_lt_or_eq _ _ H1).
apply le_trans with (i*l).
destruct (le_is_lt_or_eq _ _ H0); [ | subst; apply le_refl].
apply lt_le_weak.
apply mult_lt_compat_l; auto.
generalize (le_trans _ _ _ H2 H0); clear H0 H1 H2; intros.
rewrite (mult_comm i), (mult_comm j).
destruct (le_is_lt_or_eq _ _ H0);
[ | subst; do 2 rewrite mult_0_l; apply le_refl].
destruct (le_is_lt_or_eq _ _ H);
[ | subst; apply le_refl].
apply lt_le_weak.
apply mult_lt_compat_l; auto.
subst i.
rewrite mult_0_l.
generalize (le_trans _ _ _ H2 H0); clear H0 H1 H2; intros.
destruct (le_is_lt_or_eq _ _ H);
[ | subst; rewrite mult_0_l; apply le_refl].
destruct (le_is_lt_or_eq _ _ H0);
[ | subst; rewrite mult_comm, mult_0_l; apply le_refl].
apply lt_le_weak.
apply mult_lt_0_compat; auto.
Qed.
Lemma sum5 :
forall a b c d : int, c <> 0 -> 0 <> a -> 0 = b -> 0 <> a * c + b * d.
Proof.
intros.
subst b; rewrite mult_0_l, plus_0_r.
contradict H.
symmetry in H; destruct (mult_integral _ _ H); congruence.
Qed.
Lemma one_neq_zero : 1 <> 0.
Proof.
red; intro.
symmetry in H.
apply (lt_not_eq 0 1); auto.
apply lt_0_1.
Qed.
Lemma minus_one_neq_zero : -(1) <> 0.
Proof.
apply lt_not_eq.
rewrite <- lt_0_neg.
apply lt_0_1.
Qed.
Lemma le_left : forall n m, n <= m -> 0 <= m + - n.
Proof.
intros.
rewrite <- (opp_def m).
apply plus_le_compat.
apply le_refl.
apply opp_le_compat; auto.
Qed.
Lemma OMEGA2 : forall x y, 0 <= x -> 0 <= y -> 0 <= x + y.
Proof.
intros.
replace 0 with (0+0).
apply plus_le_compat; auto.
rewrite plus_0_l; auto.
Qed.
Lemma OMEGA8 : forall x y, 0 <= x -> 0 <= y -> x = - y -> x = 0.
Proof.
intros.
assert (y=-x).
subst x; symmetry; apply opp_involutive.
clear H1; subst y.
destruct (eq_dec 0 x) as [H'|H']; auto.
assert (H'':=le_neq_lt _ _ H H').
generalize (plus_le_lt_compat _ _ _ _ H0 H'').
rewrite plus_opp_l, plus_0_l.
intros.
elim (lt_not_eq _ _ H1); auto.
Qed.
Lemma sum2 :
forall a b c d : int, 0 <= d -> 0 = a -> 0 <= b -> 0 <= a * c + b * d.
Proof.
intros.
subst a; rewrite mult_0_l, plus_0_l.
rewrite <- (mult_0_l 0).
apply mult_le_compat; auto; apply le_refl.
Qed.
Lemma sum3 :
forall a b c d : int,
0 <= c -> 0 <= d -> 0 <= a -> 0 <= b -> 0 <= a * c + b * d.
Proof.
intros.
rewrite <- (plus_0_l 0).
apply plus_le_compat; auto.
rewrite <- (mult_0_l 0).
apply mult_le_compat; auto; apply le_refl.
rewrite <- (mult_0_l 0).
apply mult_le_compat; auto; apply le_refl.
Qed.
Lemma sum4 : forall k : int, k>0 -> 0 <= k.
Proof.
intros k; rewrite gt_lt_iff; apply lt_le_weak.
Qed.
(* Lemmas specific to integers (they use lt_le_int) *)
Lemma lt_left : forall n m, n < m -> 0 <= m + -(1) + - n.
Proof.
intros; apply le_left.
now rewrite <- le_lt_int.
Qed.
Lemma lt_left_inv : forall x y, 0 <= y + -(1) + - x -> x < y.
Proof.
intros.
generalize (plus_le_compat _ _ _ _ H (le_refl x)); clear H.
now rewrite plus_0_l, <-plus_assoc, plus_opp_l, plus_0_r, le_lt_int.
Qed.
Lemma OMEGA4 : forall x y z, x > 0 -> y > x -> z * y + x <> 0.
Proof.
intros.
intro H'.
rewrite gt_lt_iff in H,H0.
destruct (lt_eq_lt_dec z 0) as [[G|G]|G].
rewrite lt_0_neg' in G.
generalize (plus_le_lt_compat _ _ _ _ (le_refl (z*y)) H0).
rewrite H'.
pattern y at 2; rewrite <-(mult_1_l y), <-mult_plus_distr_r.
intros.
rewrite le_lt_int in G.
rewrite <- opp_plus_distr in G.
assert (0 < y) by (apply lt_trans with x; auto).
generalize (mult_le_compat _ _ _ _ G (lt_le_weak _ _ H2) (le_refl 0) (le_refl 0)).
rewrite mult_0_l, mult_comm, <- opp_mult_distr_r, mult_comm, <-le_0_neg', le_lt_iff.
intuition.
subst; rewrite mult_0_l, plus_0_l in H'; subst.
apply (lt_not_eq _ _ H); auto.
apply (lt_not_eq 0 (z*y+x)); auto.
rewrite <- (plus_0_l 0).
apply plus_lt_compat; auto.
apply mult_lt_0_compat; auto.
apply lt_trans with x; auto.
Qed.
Lemma OMEGA19 : forall x, x<>0 -> 0 <= x + -(1) \/ 0 <= x * -(1) + -(1).
Proof.
intros.
do 2 rewrite <- le_lt_int.
rewrite <- opp_eq_mult_neg_1.
destruct (lt_eq_lt_dec 0 x) as [[H'|H']|H'].
auto.
congruence.
right.
rewrite <-(mult_0_l (-(1))), <-(opp_eq_mult_neg_1 0).
apply opp_lt_compat; auto.
Qed.
Lemma mult_le_approx :
forall n m p, n > 0 -> n > p -> 0 <= m * n + p -> 0 <= m.
Proof.
intros n m p.
do 2 rewrite gt_lt_iff.
do 2 rewrite le_lt_iff; intros.
contradict H1.
rewrite lt_0_neg' in H1.
rewrite lt_0_neg'.
rewrite opp_plus_distr.
rewrite mult_comm, opp_mult_distr_r.
rewrite le_lt_int.
rewrite <- plus_assoc, (plus_comm (-p)), plus_assoc.
apply lt_left.
rewrite le_lt_int.
rewrite le_lt_int in H0.
apply le_trans with (n+-(1)); auto.
apply plus_le_compat; [ | apply le_refl ].
rewrite le_lt_int in H1.
generalize (mult_le_compat _ _ _ _ (lt_le_weak _ _ H) H1 (le_refl 0) (le_refl 0)).
rewrite mult_0_l.
rewrite mult_plus_distr_l.
rewrite <- opp_eq_mult_neg_1.
intros.
generalize (plus_le_compat _ _ _ _ (le_refl n) H2).
now rewrite plus_permute, opp_def, plus_0_r, plus_0_r.
Qed.
(* Some decidabilities *)
Lemma dec_eq : forall i j:int, decidable (i=j).
Proof.
red; intros; destruct (eq_dec i j); auto.
Qed.
Lemma dec_ne : forall i j:int, decidable (i<>j).
Proof.
red; intros; destruct (eq_dec i j); auto.
Qed.
Lemma dec_le : forall i j:int, decidable (i<=j).
Proof.
red; intros; destruct (le_dec i j); auto.
Qed.
Lemma dec_lt : forall i j:int, decidable (i<j).
Proof.
red; intros; destruct (lt_dec i j); auto.
Qed.
Lemma dec_ge : forall i j:int, decidable (i>=j).
Proof.
red; intros; rewrite ge_le_iff; destruct (le_dec j i); auto.
Qed.
Lemma dec_gt : forall i j:int, decidable (i>j).
Proof.
red; intros; rewrite gt_lt_iff; destruct (lt_dec j i); auto.
Qed.
End IntProperties.
Module IntOmega (I:Int).
Import I.
Module IP:=IntProperties(I).
Import IP.
Local Notation int := I.t.
(* \subsubsection{Definition of reified integer expressions}
Terms are either:
\begin{itemize}
\item integers [Tint]
\item variables [Tvar]
\item operation over integers (addition, product, opposite, subtraction)
The last two are translated in additions and products. *)
Inductive term : Set :=
| Tint : int -> term
| Tplus : term -> term -> term
| Tmult : term -> term -> term
| Tminus : term -> term -> term
| Topp : term -> term
| Tvar : nat -> term.
Delimit Scope romega_scope with term.
Arguments Tint _%I.
Arguments Tplus (_ _)%term.
Arguments Tmult (_ _)%term.
Arguments Tminus (_ _)%term.
Arguments Topp _%term.
Infix "+" := Tplus : romega_scope.
Infix "*" := Tmult : romega_scope.
Infix "-" := Tminus : romega_scope.
Notation "- x" := (Topp x) : romega_scope.
Notation "[ x ]" := (Tvar x) (at level 0) : romega_scope.
(* \subsubsection{Definition of reified goals} *)
(* Very restricted definition of handled predicates that should be extended
to cover a wider set of operations.
Taking care of negations and disequations require solving more than a
goal in parallel. This is a major improvement over previous versions. *)
Inductive proposition : Set :=
| EqTerm : term -> term -> proposition (* equality between terms *)
| LeqTerm : term -> term -> proposition (* less or equal on terms *)
| TrueTerm : proposition (* true *)
| FalseTerm : proposition (* false *)
| Tnot : proposition -> proposition (* negation *)
| GeqTerm : term -> term -> proposition
| GtTerm : term -> term -> proposition
| LtTerm : term -> term -> proposition
| NeqTerm : term -> term -> proposition
| Tor : proposition -> proposition -> proposition
| Tand : proposition -> proposition -> proposition
| Timp : proposition -> proposition -> proposition
| Tprop : nat -> proposition.
(* Definition of goals as a list of hypothesis *)
Notation hyps := (list proposition).
(* Definition of lists of subgoals (set of open goals) *)
Notation lhyps := (list hyps).
(* a single goal packed in a subgoal list *)
Notation singleton := (fun a : hyps => a :: nil).
(* an absurd goal *)
Definition absurd := FalseTerm :: nil.
(* \subsubsection{Traces for merging equations}
This inductive type describes how the monomial of two equations should be
merged when the equations are added.
For [F_equal], both equations have the same head variable and coefficient
must be added, furthermore if coefficients are opposite, [F_cancel] should
be used to collapse the term. [F_left] and [F_right] indicate which monomial
should be put first in the result *)
Inductive t_fusion : Set :=
| F_equal : t_fusion
| F_cancel : t_fusion
| F_left : t_fusion
| F_right : t_fusion.
(* \subsubsection{Rewriting steps to normalize terms} *)
Inductive step : Set :=
(* apply the rewriting steps to both subterms of an operation *)
| C_DO_BOTH : step -> step -> step
(* apply the rewriting step to the first branch *)
| C_LEFT : step -> step
(* apply the rewriting step to the second branch *)
| C_RIGHT : step -> step
(* apply two steps consecutively to a term *)
| C_SEQ : step -> step -> step
(* empty step *)
| C_NOP : step
(* the following operations correspond to actual rewriting *)
| C_OPP_PLUS : step
| C_OPP_OPP : step
| C_OPP_MULT_R : step
| C_OPP_ONE : step
(* This is a special step that reduces the term (computation) *)
| C_REDUCE : step
| C_MULT_PLUS_DISTR : step
| C_MULT_OPP_LEFT : step
| C_MULT_ASSOC_R : step
| C_PLUS_ASSOC_R : step
| C_PLUS_ASSOC_L : step
| C_PLUS_PERMUTE : step
| C_PLUS_COMM : step
| C_RED0 : step
| C_RED1 : step
| C_RED2 : step
| C_RED3 : step
| C_RED4 : step
| C_RED5 : step
| C_RED6 : step
| C_MULT_ASSOC_REDUCED : step
| C_MINUS : step
| C_MULT_COMM : step.
(* \subsubsection{Omega steps} *)
(* The following inductive type describes steps as they can be found in
the trace coming from the decision procedure Omega. *)
Inductive t_omega : Set :=
(* n = 0 and n!= 0 *)
| O_CONSTANT_NOT_NUL : nat -> t_omega
| O_CONSTANT_NEG : nat -> t_omega
(* division and approximation of an equation *)
| O_DIV_APPROX : int -> int -> term -> nat -> t_omega -> nat -> t_omega
(* no solution because no exact division *)
| O_NOT_EXACT_DIVIDE : int -> int -> term -> nat -> nat -> t_omega
(* exact division *)
| O_EXACT_DIVIDE : int -> term -> nat -> t_omega -> nat -> t_omega
| O_SUM : int -> nat -> int -> nat -> list t_fusion -> t_omega -> t_omega
| O_CONTRADICTION : nat -> nat -> nat -> t_omega
| O_MERGE_EQ : nat -> nat -> nat -> t_omega -> t_omega
| O_SPLIT_INEQ : nat -> nat -> t_omega -> t_omega -> t_omega
| O_CONSTANT_NUL : nat -> t_omega
| O_NEGATE_CONTRADICT : nat -> nat -> t_omega
| O_NEGATE_CONTRADICT_INV : nat -> nat -> nat -> t_omega
| O_STATE : int -> step -> nat -> nat -> t_omega -> t_omega.
(* \subsubsection{Rules for normalizing the hypothesis} *)
(* These rules indicate how to normalize useful propositions
of each useful hypothesis before the decomposition of hypothesis.
The rules include the inversion phase for negation removal. *)
Inductive p_step : Set :=
| P_LEFT : p_step -> p_step
| P_RIGHT : p_step -> p_step
| P_INVERT : step -> p_step
| P_STEP : step -> p_step
| P_NOP : p_step.
(* List of normalizations to perform : with a constructor of type
[p_step] allowing to visit both left and right branches, we would be
able to restrict to only one normalization by hypothesis.
And since all hypothesis are useful (otherwise they wouldn't be included),
we would be able to replace [h_step] by a simple list. *)
Inductive h_step : Set :=
pair_step : nat -> p_step -> h_step.
(* \subsubsection{Rules for decomposing the hypothesis} *)
(* This type allows to navigate in the logical constructors that
form the predicats of the hypothesis in order to decompose them.
This allows in particular to extract one hypothesis from a
conjunction with possibly the right level of negations. *)
Inductive direction : Set :=
| D_left : direction
| D_right : direction
| D_mono : direction.
(* This type allows to extract useful components from hypothesis, either
hypothesis generated by splitting a disjonction, or equations.
The last constructor indicates how to solve the obtained system
via the use of the trace type of Omega [t_omega] *)
Inductive e_step : Set :=
| E_SPLIT : nat -> list direction -> e_step -> e_step -> e_step
| E_EXTRACT : nat -> list direction -> e_step -> e_step
| E_SOLVE : t_omega -> e_step.
(* \subsection{Efficient decidable equality} *)
(* For each reified data-type, we define an efficient equality test.
It is not the one produced by [Decide Equality].
Then we prove two theorem allowing to eliminate such equalities :
\begin{verbatim}
(t1,t2: typ) (eq_typ t1 t2) = true -> t1 = t2.
(t1,t2: typ) (eq_typ t1 t2) = false -> ~ t1 = t2.
\end{verbatim} *)
(* \subsubsection{Reified terms} *)
Open Scope romega_scope.
Fixpoint eq_term (t1 t2 : term) {struct t2} : bool :=
match t1, t2 with
| Tint st1, Tint st2 => beq st1 st2
| (st11 + st12), (st21 + st22) => eq_term st11 st21 && eq_term st12 st22
| (st11 * st12), (st21 * st22) => eq_term st11 st21 && eq_term st12 st22
| (st11 - st12), (st21 - st22) => eq_term st11 st21 && eq_term st12 st22
| (- st1), (- st2) => eq_term st1 st2
| [st1], [st2] => beq_nat st1 st2
| _, _ => false
end.
Close Scope romega_scope.
Theorem eq_term_true : forall t1 t2 : term, eq_term t1 t2 = true -> t1 = t2.
Proof.
induction t1; destruct t2; simpl in *; try discriminate;
(rewrite andb_true_iff; intros (H1,H2)) || intros H; f_equal;
auto using beq_true, beq_nat_true.
Qed.
Theorem eq_term_refl : forall t0 : term, eq_term t0 t0 = true.
Proof.
induction t0; simpl in *; try (apply andb_true_iff; split); trivial.
- now apply beq_iff.
- now apply beq_nat_true_iff.
Qed.
Ltac trivial_case := unfold not; intros; discriminate.
Theorem eq_term_false :
forall t1 t2 : term, eq_term t1 t2 = false -> t1 <> t2.
Proof.
intros t1 t2 H E. subst t2. now rewrite eq_term_refl in H.
Qed.
(* \subsubsection{Tactiques pour éliminer ces tests}
Si on se contente de faire un [Case (eq_typ t1 t2)] on perd
totalement dans chaque branche le fait que [t1=t2] ou [~t1=t2].
Initialement, les développements avaient été réalisés avec les
tests rendus par [Decide Equality], c'est à dire un test rendant
des termes du type [{t1=t2}+{~t1=t2}]. Faire une élimination sur un
tel test préserve bien l'information voulue mais calculatoirement de
telles fonctions sont trop lentes. *)
(* Les tactiques définies si après se comportent exactement comme si on
avait utilisé le test précédent et fait une elimination dessus. *)
Ltac elim_eq_term t1 t2 :=
pattern (eq_term t1 t2); apply bool_eq_ind; intro Aux;
[ generalize (eq_term_true t1 t2 Aux); clear Aux
| generalize (eq_term_false t1 t2 Aux); clear Aux ].
Ltac elim_beq t1 t2 :=
pattern (beq t1 t2); apply bool_eq_ind; intro Aux;
[ generalize (beq_true t1 t2 Aux); clear Aux
| generalize (beq_false t1 t2 Aux); clear Aux ].
Ltac elim_bgt t1 t2 :=
pattern (bgt t1 t2); apply bool_eq_ind; intro Aux;
[ generalize (bgt_true t1 t2 Aux); clear Aux
| generalize (bgt_false t1 t2 Aux); clear Aux ].
(* \subsection{Interprétations}
\subsubsection{Interprétation des termes dans Z} *)
Fixpoint interp_term (env : list int) (t : term) {struct t} : int :=
match t with
| Tint x => x
| (t1 + t2)%term => interp_term env t1 + interp_term env t2
| (t1 * t2)%term => interp_term env t1 * interp_term env t2
| (t1 - t2)%term => interp_term env t1 - interp_term env t2
| (- t)%term => - interp_term env t
| [n]%term => nth n env 0
end.
(* \subsubsection{Interprétation des prédicats} *)
Fixpoint interp_proposition (envp : list Prop) (env : list int)
(p : proposition) {struct p} : Prop :=
match p with
| EqTerm t1 t2 => interp_term env t1 = interp_term env t2
| LeqTerm t1 t2 => interp_term env t1 <= interp_term env t2
| TrueTerm => True
| FalseTerm => False
| Tnot p' => ~ interp_proposition envp env p'
| GeqTerm t1 t2 => interp_term env t1 >= interp_term env t2
| GtTerm t1 t2 => interp_term env t1 > interp_term env t2
| LtTerm t1 t2 => interp_term env t1 < interp_term env t2
| NeqTerm t1 t2 => (interp_term env t1)<>(interp_term env t2)
| Tor p1 p2 =>
interp_proposition envp env p1 \/ interp_proposition envp env p2
| Tand p1 p2 =>
interp_proposition envp env p1 /\ interp_proposition envp env p2
| Timp p1 p2 =>
interp_proposition envp env p1 -> interp_proposition envp env p2
| Tprop n => nth n envp True
end.
(* \subsubsection{Inteprétation des listes d'hypothèses}
\paragraph{Sous forme de conjonction}
Interprétation sous forme d'une conjonction d'hypothèses plus faciles
à manipuler individuellement *)
Fixpoint interp_hyps (envp : list Prop) (env : list int)
(l : hyps) {struct l} : Prop :=
match l with
| nil => True
| p' :: l' => interp_proposition envp env p' /\ interp_hyps envp env l'
end.
(* \paragraph{sous forme de but}
C'est cette interpétation que l'on utilise sur le but (car on utilise
[Generalize] et qu'une conjonction est forcément lourde (répétition des
types dans les conjonctions intermédiaires) *)
Fixpoint interp_goal_concl (c : proposition) (envp : list Prop)
(env : list int) (l : hyps) {struct l} : Prop :=
match l with
| nil => interp_proposition envp env c
| p' :: l' =>
interp_proposition envp env p' -> interp_goal_concl c envp env l'
end.
Notation interp_goal := (interp_goal_concl FalseTerm).
(* Les théorèmes qui suivent assurent la correspondance entre les deux
interprétations. *)
Theorem goal_to_hyps :
forall (envp : list Prop) (env : list int) (l : hyps),
(interp_hyps envp env l -> False) -> interp_goal envp env l.
Proof.
simple induction l;
[ simpl; auto
| simpl; intros a l1 H1 H2 H3; apply H1; intro H4; apply H2; auto ].
Qed.
Theorem hyps_to_goal :
forall (envp : list Prop) (env : list int) (l : hyps),
interp_goal envp env l -> interp_hyps envp env l -> False.
Proof.
simple induction l; simpl; [ auto | intros; apply H; elim H1; auto ].
Qed.
(* \subsection{Manipulations sur les hypothèses} *)
(* \subsubsection{Définitions de base de stabilité pour la réflexion} *)
(* Une opération laisse un terme stable si l'égalité est préservée *)
Definition term_stable (f : term -> term) :=
forall (e : list int) (t : term), interp_term e t = interp_term e (f t).
(* Une opération est valide sur une hypothèse, si l'hypothèse implique le
résultat de l'opération. \emph{Attention : cela ne concerne que des
opérations sur les hypothèses et non sur les buts (contravariance)}.
On définit la validité pour une opération prenant une ou deux propositions
en argument (cela suffit pour omega). *)
Definition valid1 (f : proposition -> proposition) :=
forall (ep : list Prop) (e : list int) (p1 : proposition),
interp_proposition ep e p1 -> interp_proposition ep e (f p1).
Definition valid2 (f : proposition -> proposition -> proposition) :=
forall (ep : list Prop) (e : list int) (p1 p2 : proposition),
interp_proposition ep e p1 ->
interp_proposition ep e p2 -> interp_proposition ep e (f p1 p2).
(* Dans cette notion de validité, la fonction prend directement une
liste de propositions et rend une nouvelle liste de proposition.
On reste contravariant *)
Definition valid_hyps (f : hyps -> hyps) :=
forall (ep : list Prop) (e : list int) (lp : hyps),
interp_hyps ep e lp -> interp_hyps ep e (f lp).
(* Enfin ce théorème élimine la contravariance et nous ramène à une
opération sur les buts *)
Theorem valid_goal :
forall (ep : list Prop) (env : list int) (l : hyps) (a : hyps -> hyps),
valid_hyps a -> interp_goal ep env (a l) -> interp_goal ep env l.
Proof.
intros; simpl; apply goal_to_hyps; intro H1;
apply (hyps_to_goal ep env (a l) H0); apply H; assumption.
Qed.
(* \subsubsection{Généralisation a des listes de buts (disjonctions)} *)
Fixpoint interp_list_hyps (envp : list Prop) (env : list int)
(l : lhyps) {struct l} : Prop :=
match l with
| nil => False
| h :: l' => interp_hyps envp env h \/ interp_list_hyps envp env l'
end.
Fixpoint interp_list_goal (envp : list Prop) (env : list int)
(l : lhyps) {struct l} : Prop :=
match l with
| nil => True
| h :: l' => interp_goal envp env h /\ interp_list_goal envp env l'
end.
Theorem list_goal_to_hyps :
forall (envp : list Prop) (env : list int) (l : lhyps),
(interp_list_hyps envp env l -> False) -> interp_list_goal envp env l.
Proof.
simple induction l; simpl;
[ auto
| intros h1 l1 H H1; split;
[ apply goal_to_hyps; intro H2; apply H1; auto
| apply H; intro H2; apply H1; auto ] ].
Qed.
Theorem list_hyps_to_goal :
forall (envp : list Prop) (env : list int) (l : lhyps),
interp_list_goal envp env l -> interp_list_hyps envp env l -> False.
Proof.
simple induction l; simpl;
[ auto
| intros h1 l1 H (H1, H2) H3; elim H3; intro H4;
[ apply hyps_to_goal with (1 := H1); assumption | auto ] ].
Qed.
Definition valid_list_hyps (f : hyps -> lhyps) :=
forall (ep : list Prop) (e : list int) (lp : hyps),
interp_hyps ep e lp -> interp_list_hyps ep e (f lp).
Definition valid_list_goal (f : hyps -> lhyps) :=
forall (ep : list Prop) (e : list int) (lp : hyps),
interp_list_goal ep e (f lp) -> interp_goal ep e lp.
Theorem goal_valid :
forall f : hyps -> lhyps, valid_list_hyps f -> valid_list_goal f.
Proof.
unfold valid_list_goal; intros f H ep e lp H1; apply goal_to_hyps;
intro H2; apply list_hyps_to_goal with (1 := H1);
apply (H ep e lp); assumption.
Qed.
Theorem append_valid :
forall (ep : list Prop) (e : list int) (l1 l2 : lhyps),
interp_list_hyps ep e l1 \/ interp_list_hyps ep e l2 ->
interp_list_hyps ep e (l1 ++ l2).
Proof.
intros ep e; simple induction l1;
[ simpl; intros l2 [H| H]; [ contradiction | trivial ]
| simpl; intros h1 t1 HR l2 [[H| H]| H];
[ auto
| right; apply (HR l2); left; trivial
| right; apply (HR l2); right; trivial ] ].
Qed.
(* \subsubsection{Opérateurs valides sur les hypothèses} *)
(* Extraire une hypothèse de la liste *)
Definition nth_hyps (n : nat) (l : hyps) := nth n l TrueTerm.
Theorem nth_valid :
forall (ep : list Prop) (e : list int) (i : nat) (l : hyps),
interp_hyps ep e l -> interp_proposition ep e (nth_hyps i l).
Proof.
unfold nth_hyps; simple induction i;
[ simple induction l; simpl; [ auto | intros; elim H0; auto ]
| intros n H; simple induction l;
[ simpl; trivial
| intros; simpl; apply H; elim H1; auto ] ].
Qed.
(* Appliquer une opération (valide) sur deux hypothèses extraites de
la liste et ajouter le résultat à la liste. *)
Definition apply_oper_2 (i j : nat)
(f : proposition -> proposition -> proposition) (l : hyps) :=
f (nth_hyps i l) (nth_hyps j l) :: l.
Theorem apply_oper_2_valid :
forall (i j : nat) (f : proposition -> proposition -> proposition),
valid2 f -> valid_hyps (apply_oper_2 i j f).
Proof.
intros i j f Hf; unfold apply_oper_2, valid_hyps; simpl;
intros lp Hlp; split; [ apply Hf; apply nth_valid; assumption | assumption ].
Qed.
(* Modifier une hypothèse par application d'une opération valide *)
Fixpoint apply_oper_1 (i : nat) (f : proposition -> proposition)
(l : hyps) {struct i} : hyps :=
match l with
| nil => nil (A:=proposition)
| p :: l' =>
match i with
| O => f p :: l'
| S j => p :: apply_oper_1 j f l'
end
end.
Theorem apply_oper_1_valid :
forall (i : nat) (f : proposition -> proposition),
valid1 f -> valid_hyps (apply_oper_1 i f).
Proof.
unfold valid_hyps; intros i f Hf ep e; elim i;
[ intro lp; case lp;
[ simpl; trivial
| simpl; intros p l' (H1, H2); split;
[ apply Hf with (1 := H1) | assumption ] ]
| intros n Hrec lp; case lp;
[ simpl; auto
| simpl; intros p l' (H1, H2); split;
[ assumption | apply Hrec; assumption ] ] ].
Qed.
(* \subsubsection{Manipulations de termes} *)
(* Les fonctions suivantes permettent d'appliquer une fonction de
réécriture sur un sous terme du terme principal. Avec la composition,
cela permet de construire des réécritures complexes proches des
tactiques de conversion *)
Definition apply_left (f : term -> term) (t : term) :=
match t with
| (x + y)%term => (f x + y)%term
| (x * y)%term => (f x * y)%term
| (- x)%term => (- f x)%term
| x => x
end.
Definition apply_right (f : term -> term) (t : term) :=
match t with
| (x + y)%term => (x + f y)%term
| (x * y)%term => (x * f y)%term
| x => x
end.
Definition apply_both (f g : term -> term) (t : term) :=
match t with
| (x + y)%term => (f x + g y)%term
| (x * y)%term => (f x * g y)%term
| x => x
end.
(* Les théorèmes suivants montrent la stabilité (conditionnée) des
fonctions. *)
Theorem apply_left_stable :
forall f : term -> term, term_stable f -> term_stable (apply_left f).
Proof.
unfold term_stable; intros f H e t; case t; auto; simpl;
intros; elim H; trivial.
Qed.
Theorem apply_right_stable :
forall f : term -> term, term_stable f -> term_stable (apply_right f).
Proof.
unfold term_stable; intros f H e t; case t; auto; simpl;
intros t0 t1; elim H; trivial.
Qed.
Theorem apply_both_stable :
forall f g : term -> term,
term_stable f -> term_stable g -> term_stable (apply_both f g).
Proof.
unfold term_stable; intros f g H1 H2 e t; case t; auto; simpl;
intros t0 t1; elim H1; elim H2; trivial.
Qed.
Theorem compose_term_stable :
forall f g : term -> term,
term_stable f -> term_stable g -> term_stable (fun t : term => f (g t)).
Proof.
unfold term_stable; intros f g Hf Hg e t; elim Hf; apply Hg.
Qed.
(* \subsection{Les règles de réécriture} *)
(* Chacune des règles de réécriture est accompagnée par sa preuve de
stabilité. Toutes ces preuves ont la même forme : il faut analyser
suivant la forme du terme (élimination de chaque Case). On a besoin d'une
élimination uniquement dans les cas d'utilisation d'égalité décidable.
Cette tactique itère la décomposition des Case. Elle est
constituée de deux fonctions s'appelant mutuellement :
\begin{itemize}
\item une fonction d'enrobage qui lance la recherche sur le but,
\item une fonction récursive qui décompose ce but. Quand elle a trouvé un
Case, elle l'élimine.
\end{itemize}
Les motifs sur les cas sont très imparfaits et dans certains cas, il
semble que cela ne marche pas. On aimerait plutot un motif de la
forme [ Case (?1 :: T) of _ end ] permettant de s'assurer que l'on
utilise le bon type.
Chaque élimination introduit correctement exactement le nombre d'hypothèses
nécessaires et conserve dans le cas d'une égalité la connaissance du
résultat du test en faisant la réécriture. Pour un test de comparaison,
on conserve simplement le résultat.
Cette fonction déborde très largement la résolution des réécritures
simples et fait une bonne partie des preuves des pas de Omega.
*)
(* \subsubsection{La tactique pour prouver la stabilité} *)
Ltac loop t :=
match t with
(* Global *)
| (?X1 = ?X2) => loop X1 || loop X2
| (_ -> ?X1) => loop X1
(* Interpretations *)
| (interp_hyps _ _ ?X1) => loop X1
| (interp_list_hyps _ _ ?X1) => loop X1
| (interp_proposition _ _ ?X1) => loop X1
| (interp_term _ ?X1) => loop X1
(* Propositions *)
| (EqTerm ?X1 ?X2) => loop X1 || loop X2
| (LeqTerm ?X1 ?X2) => loop X1 || loop X2
(* Termes *)
| (?X1 + ?X2)%term => loop X1 || loop X2
| (?X1 - ?X2)%term => loop X1 || loop X2
| (?X1 * ?X2)%term => loop X1 || loop X2
| (- ?X1)%term => loop X1
| (Tint ?X1) => loop X1
(* Eliminations *)
| match ?X1 with
| EqTerm x x0 => _
| LeqTerm x x0 => _
| TrueTerm => _
| FalseTerm => _
| Tnot x => _
| GeqTerm x x0 => _
| GtTerm x x0 => _
| LtTerm x x0 => _
| NeqTerm x x0 => _
| Tor x x0 => _
| Tand x x0 => _
| Timp x x0 => _
| Tprop x => _
end => destruct X1; auto; Simplify
| match ?X1 with
| Tint x => _
| (x + x0)%term => _
| (x * x0)%term => _
| (x - x0)%term => _
| (- x)%term => _
| [x]%term => _
end => destruct X1; auto; Simplify
| (if beq ?X1 ?X2 then _ else _) =>
let H := fresh "H" in
elim_beq X1 X2; intro H; try (rewrite H in *; clear H);
simpl; auto; Simplify
| (if bgt ?X1 ?X2 then _ else _) =>
let H := fresh "H" in
elim_bgt X1 X2; intro H; simpl; auto; Simplify
| (if eq_term ?X1 ?X2 then _ else _) =>
let H := fresh "H" in
elim_eq_term X1 X2; intro H; try (rewrite H in *; clear H);
simpl; auto; Simplify
| (if _ && _ then _ else _) => rewrite andb_if; Simplify
| (if negb _ then _ else _) => rewrite negb_if; Simplify
| _ => fail
end
with Simplify := match goal with
| |- ?X1 => try loop X1
| _ => idtac
end.
Ltac prove_stable x th :=
match constr:x with
| ?X1 =>
unfold term_stable, X1; intros; Simplify; simpl;
apply th
end.
(* \subsubsection{Les règles elle mêmes} *)
Definition Tplus_assoc_l (t : term) :=
match t with
| (n + (m + p))%term => (n + m + p)%term
| _ => t
end.
Theorem Tplus_assoc_l_stable : term_stable Tplus_assoc_l.
Proof.
prove_stable Tplus_assoc_l (ring.(Radd_assoc)).
Qed.
Definition Tplus_assoc_r (t : term) :=
match t with
| (n + m + p)%term => (n + (m + p))%term
| _ => t
end.
Theorem Tplus_assoc_r_stable : term_stable Tplus_assoc_r.
Proof.
prove_stable Tplus_assoc_r plus_assoc_reverse.
Qed.
Definition Tmult_assoc_r (t : term) :=
match t with
| (n * m * p)%term => (n * (m * p))%term
| _ => t
end.
Theorem Tmult_assoc_r_stable : term_stable Tmult_assoc_r.
Proof.
prove_stable Tmult_assoc_r mult_assoc_reverse.
Qed.
Definition Tplus_permute (t : term) :=
match t with
| (n + (m + p))%term => (m + (n + p))%term
| _ => t
end.
Theorem Tplus_permute_stable : term_stable Tplus_permute.
Proof.
prove_stable Tplus_permute plus_permute.
Qed.
Definition Tplus_comm (t : term) :=
match t with
| (x + y)%term => (y + x)%term
| _ => t
end.
Theorem Tplus_comm_stable : term_stable Tplus_comm.
Proof.
prove_stable Tplus_comm plus_comm.
Qed.
Definition Tmult_comm (t : term) :=
match t with
| (x * y)%term => (y * x)%term
| _ => t
end.
Theorem Tmult_comm_stable : term_stable Tmult_comm.
Proof.
prove_stable Tmult_comm mult_comm.
Qed.
Definition T_OMEGA10 (t : term) :=
match t with
| ((v * Tint c1 + l1) * Tint k1 + (v' * Tint c2 + l2) * Tint k2)%term =>
if eq_term v v'
then (v * Tint (c1 * k1 + c2 * k2)%I + (l1 * Tint k1 + l2 * Tint k2))%term
else t
| _ => t
end.
Theorem T_OMEGA10_stable : term_stable T_OMEGA10.
Proof.
prove_stable T_OMEGA10 OMEGA10.
Qed.
Definition T_OMEGA11 (t : term) :=
match t with
| ((v1 * Tint c1 + l1) * Tint k1 + l2)%term =>
(v1 * Tint (c1 * k1) + (l1 * Tint k1 + l2))%term
| _ => t
end.
Theorem T_OMEGA11_stable : term_stable T_OMEGA11.
Proof.
prove_stable T_OMEGA11 OMEGA11.
Qed.
Definition T_OMEGA12 (t : term) :=
match t with
| (l1 + (v2 * Tint c2 + l2) * Tint k2)%term =>
(v2 * Tint (c2 * k2) + (l1 + l2 * Tint k2))%term
| _ => t
end.
Theorem T_OMEGA12_stable : term_stable T_OMEGA12.
Proof.
prove_stable T_OMEGA12 OMEGA12.
Qed.
Definition T_OMEGA13 (t : term) :=
match t with
| (v * Tint x + l1 + (v' * Tint x' + l2))%term =>
if eq_term v v' && beq x (-x')
then (l1+l2)%term
else t
| _ => t
end.
Theorem T_OMEGA13_stable : term_stable T_OMEGA13.
Proof.
unfold term_stable, T_OMEGA13; intros; Simplify; simpl;
apply OMEGA13.
Qed.
Definition T_OMEGA15 (t : term) :=
match t with
| (v * Tint c1 + l1 + (v' * Tint c2 + l2) * Tint k2)%term =>
if eq_term v v'
then (v * Tint (c1 + c2 * k2)%I + (l1 + l2 * Tint k2))%term
else t
| _ => t
end.
Theorem T_OMEGA15_stable : term_stable T_OMEGA15.
Proof.
prove_stable T_OMEGA15 OMEGA15.
Qed.
Definition T_OMEGA16 (t : term) :=
match t with
| ((v * Tint c + l) * Tint k)%term => (v * Tint (c * k) + l * Tint k)%term
| _ => t
end.
Theorem T_OMEGA16_stable : term_stable T_OMEGA16.
Proof.
prove_stable T_OMEGA16 OMEGA16.
Qed.
Definition Tred_factor5 (t : term) :=
match t with
| (x * Tint c + y)%term => if beq c 0 then y else t
| _ => t
end.
Theorem Tred_factor5_stable : term_stable Tred_factor5.
Proof.
prove_stable Tred_factor5 red_factor5.
Qed.
Definition Topp_plus (t : term) :=
match t with
| (- (x + y))%term => (- x + - y)%term
| _ => t
end.
Theorem Topp_plus_stable : term_stable Topp_plus.
Proof.
prove_stable Topp_plus opp_plus_distr.
Qed.
Definition Topp_opp (t : term) :=
match t with
| (- - x)%term => x
| _ => t
end.
Theorem Topp_opp_stable : term_stable Topp_opp.
Proof.
prove_stable Topp_opp opp_involutive.
Qed.
Definition Topp_mult_r (t : term) :=
match t with
| (- (x * Tint k))%term => (x * Tint (- k))%term
| _ => t
end.
Theorem Topp_mult_r_stable : term_stable Topp_mult_r.
Proof.
prove_stable Topp_mult_r opp_mult_distr_r.
Qed.
Definition Topp_one (t : term) :=
match t with
| (- x)%term => (x * Tint (-(1)))%term
| _ => t
end.
Theorem Topp_one_stable : term_stable Topp_one.
Proof.
prove_stable Topp_one opp_eq_mult_neg_1.
Qed.
Definition Tmult_plus_distr (t : term) :=
match t with
| ((n + m) * p)%term => (n * p + m * p)%term
| _ => t
end.
Theorem Tmult_plus_distr_stable : term_stable Tmult_plus_distr.
Proof.
prove_stable Tmult_plus_distr mult_plus_distr_r.
Qed.
Definition Tmult_opp_left (t : term) :=
match t with
| (- x * Tint y)%term => (x * Tint (- y))%term
| _ => t
end.
Theorem Tmult_opp_left_stable : term_stable Tmult_opp_left.
Proof.
prove_stable Tmult_opp_left mult_opp_comm.
Qed.
Definition Tmult_assoc_reduced (t : term) :=
match t with
| (n * Tint m * Tint p)%term => (n * Tint (m * p))%term
| _ => t
end.
Theorem Tmult_assoc_reduced_stable : term_stable Tmult_assoc_reduced.
Proof.
prove_stable Tmult_assoc_reduced mult_assoc_reverse.
Qed.
Definition Tred_factor0 (t : term) := (t * Tint 1)%term.
Theorem Tred_factor0_stable : term_stable Tred_factor0.
Proof.
prove_stable Tred_factor0 red_factor0.
Qed.
Definition Tred_factor1 (t : term) :=
match t with
| (x + y)%term =>
if eq_term x y
then (x * Tint 2)%term
else t
| _ => t
end.
Theorem Tred_factor1_stable : term_stable Tred_factor1.
Proof.
prove_stable Tred_factor1 red_factor1.
Qed.
Definition Tred_factor2 (t : term) :=
match t with
| (x + y * Tint k)%term =>
if eq_term x y
then (x * Tint (1 + k))%term
else t
| _ => t
end.
Theorem Tred_factor2_stable : term_stable Tred_factor2.
Proof.
prove_stable Tred_factor2 red_factor2.
Qed.
Definition Tred_factor3 (t : term) :=
match t with
| (x * Tint k + y)%term =>
if eq_term x y
then (x * Tint (1 + k))%term
else t
| _ => t
end.
Theorem Tred_factor3_stable : term_stable Tred_factor3.
Proof.
prove_stable Tred_factor3 red_factor3.
Qed.
Definition Tred_factor4 (t : term) :=
match t with
| (x * Tint k1 + y * Tint k2)%term =>
if eq_term x y
then (x * Tint (k1 + k2))%term
else t
| _ => t
end.
Theorem Tred_factor4_stable : term_stable Tred_factor4.
Proof.
prove_stable Tred_factor4 red_factor4.
Qed.
Definition Tred_factor6 (t : term) := (t + Tint 0)%term.
Theorem Tred_factor6_stable : term_stable Tred_factor6.
Proof.
prove_stable Tred_factor6 red_factor6.
Qed.
Definition Tminus_def (t : term) :=
match t with
| (x - y)%term => (x + - y)%term
| _ => t
end.
Theorem Tminus_def_stable : term_stable Tminus_def.
Proof.
prove_stable Tminus_def minus_def.
Qed.
(* \subsection{Fonctions de réécriture complexes} *)
(* \subsubsection{Fonction de réduction} *)
(* Cette fonction réduit un terme dont la forme normale est un entier. Il
suffit pour cela d'échanger le constructeur [Tint] avec les opérateurs
réifiés. La réduction est ``gratuite''. *)
Fixpoint reduce (t : term) : term :=
match t with
| (x + y)%term =>
match reduce x with
| Tint x' =>
match reduce y with
| Tint y' => Tint (x' + y')
| y' => (Tint x' + y')%term
end
| x' => (x' + reduce y)%term
end
| (x * y)%term =>
match reduce x with
| Tint x' =>
match reduce y with
| Tint y' => Tint (x' * y')
| y' => (Tint x' * y')%term
end
| x' => (x' * reduce y)%term
end
| (x - y)%term =>
match reduce x with
| Tint x' =>
match reduce y with
| Tint y' => Tint (x' - y')
| y' => (Tint x' - y')%term
end
| x' => (x' - reduce y)%term
end
| (- x)%term =>
match reduce x with
| Tint x' => Tint (- x')
| x' => (- x')%term
end
| _ => t
end.
Theorem reduce_stable : term_stable reduce.
Proof.
unfold term_stable; intros e t; elim t; auto;
try
(intros t0 H0 t1 H1; simpl; rewrite H0; rewrite H1;
(case (reduce t0);
[ intro z0; case (reduce t1); intros; auto
| intros; auto
| intros; auto
| intros; auto
| intros; auto
| intros; auto ])); intros t0 H0; simpl;
rewrite H0; case (reduce t0); intros; auto.
Qed.
(* \subsubsection{Fusions}
\paragraph{Fusion de deux équations} *)
(* On donne une somme de deux équations qui sont supposées normalisées.
Cette fonction prend une trace de fusion en argument et transforme
le terme en une équation normalisée. C'est une version très simplifiée
du moteur de réécriture [rewrite]. *)
Fixpoint fusion (trace : list t_fusion) (t : term) {struct trace} : term :=
match trace with
| nil => reduce t
| step :: trace' =>
match step with
| F_equal => apply_right (fusion trace') (T_OMEGA10 t)
| F_cancel => fusion trace' (Tred_factor5 (T_OMEGA10 t))
| F_left => apply_right (fusion trace') (T_OMEGA11 t)
| F_right => apply_right (fusion trace') (T_OMEGA12 t)
end
end.
Theorem fusion_stable : forall trace : list t_fusion, term_stable (fusion trace).
Proof.
simple induction trace; simpl;
[ exact reduce_stable
| intros stp l H; case stp;
[ apply compose_term_stable;
[ apply apply_right_stable; assumption | exact T_OMEGA10_stable ]
| unfold term_stable; intros e t1; rewrite T_OMEGA10_stable;
rewrite Tred_factor5_stable; apply H
| apply compose_term_stable;
[ apply apply_right_stable; assumption | exact T_OMEGA11_stable ]
| apply compose_term_stable;
[ apply apply_right_stable; assumption | exact T_OMEGA12_stable ] ] ].
Qed.
(* \paragraph{Fusion de deux équations dont une sans coefficient} *)
Definition fusion_right (trace : list t_fusion) (t : term) : term :=
match trace with
| nil => reduce t (* Il faut mettre un compute *)
| step :: trace' =>
match step with
| F_equal => apply_right (fusion trace') (T_OMEGA15 t)
| F_cancel => fusion trace' (Tred_factor5 (T_OMEGA15 t))
| F_left => apply_right (fusion trace') (Tplus_assoc_r t)
| F_right => apply_right (fusion trace') (T_OMEGA12 t)
end
end.
(* \paragraph{Fusion avec annihilation} *)
(* Normalement le résultat est une constante *)
Fixpoint fusion_cancel (trace : nat) (t : term) {struct trace} : term :=
match trace with
| O => reduce t
| S trace' => fusion_cancel trace' (T_OMEGA13 t)
end.
Theorem fusion_cancel_stable : forall t : nat, term_stable (fusion_cancel t).
Proof.
unfold term_stable, fusion_cancel; intros trace e; elim trace;
[ exact (reduce_stable e)
| intros n H t; elim H; exact (T_OMEGA13_stable e t) ].
Qed.
(* \subsubsection{Opérations affines sur une équation} *)
(* \paragraph{Multiplication scalaire et somme d'une constante} *)
Fixpoint scalar_norm_add (trace : nat) (t : term) {struct trace} : term :=
match trace with
| O => reduce t
| S trace' => apply_right (scalar_norm_add trace') (T_OMEGA11 t)
end.
Theorem scalar_norm_add_stable :
forall t : nat, term_stable (scalar_norm_add t).
Proof.
unfold term_stable, scalar_norm_add; intros trace; elim trace;
[ exact reduce_stable
| intros n H e t; elim apply_right_stable;
[ exact (T_OMEGA11_stable e t) | exact H ] ].
Qed.
(* \paragraph{Multiplication scalaire} *)
Fixpoint scalar_norm (trace : nat) (t : term) {struct trace} : term :=
match trace with
| O => reduce t
| S trace' => apply_right (scalar_norm trace') (T_OMEGA16 t)
end.
Theorem scalar_norm_stable : forall t : nat, term_stable (scalar_norm t).
Proof.
unfold term_stable, scalar_norm; intros trace; elim trace;
[ exact reduce_stable
| intros n H e t; elim apply_right_stable;
[ exact (T_OMEGA16_stable e t) | exact H ] ].
Qed.
(* \paragraph{Somme d'une constante} *)
Fixpoint add_norm (trace : nat) (t : term) {struct trace} : term :=
match trace with
| O => reduce t
| S trace' => apply_right (add_norm trace') (Tplus_assoc_r t)
end.
Theorem add_norm_stable : forall t : nat, term_stable (add_norm t).
Proof.
unfold term_stable, add_norm; intros trace; elim trace;
[ exact reduce_stable
| intros n H e t; elim apply_right_stable;
[ exact (Tplus_assoc_r_stable e t) | exact H ] ].
Qed.
(* \subsection{La fonction de normalisation des termes (moteur de réécriture)} *)
Fixpoint t_rewrite (s : step) : term -> term :=
match s with
| C_DO_BOTH s1 s2 => apply_both (t_rewrite s1) (t_rewrite s2)
| C_LEFT s => apply_left (t_rewrite s)
| C_RIGHT s => apply_right (t_rewrite s)
| C_SEQ s1 s2 => fun t : term => t_rewrite s2 (t_rewrite s1 t)
| C_NOP => fun t : term => t
| C_OPP_PLUS => Topp_plus
| C_OPP_OPP => Topp_opp
| C_OPP_MULT_R => Topp_mult_r
| C_OPP_ONE => Topp_one
| C_REDUCE => reduce
| C_MULT_PLUS_DISTR => Tmult_plus_distr
| C_MULT_OPP_LEFT => Tmult_opp_left
| C_MULT_ASSOC_R => Tmult_assoc_r
| C_PLUS_ASSOC_R => Tplus_assoc_r
| C_PLUS_ASSOC_L => Tplus_assoc_l
| C_PLUS_PERMUTE => Tplus_permute
| C_PLUS_COMM => Tplus_comm
| C_RED0 => Tred_factor0
| C_RED1 => Tred_factor1
| C_RED2 => Tred_factor2
| C_RED3 => Tred_factor3
| C_RED4 => Tred_factor4
| C_RED5 => Tred_factor5
| C_RED6 => Tred_factor6
| C_MULT_ASSOC_REDUCED => Tmult_assoc_reduced
| C_MINUS => Tminus_def
| C_MULT_COMM => Tmult_comm
end.
Theorem t_rewrite_stable : forall s : step, term_stable (t_rewrite s).
Proof.
simple induction s; simpl;
[ intros; apply apply_both_stable; auto
| intros; apply apply_left_stable; auto
| intros; apply apply_right_stable; auto
| unfold term_stable; intros; elim H0; apply H
| unfold term_stable; auto
| exact Topp_plus_stable
| exact Topp_opp_stable
| exact Topp_mult_r_stable
| exact Topp_one_stable
| exact reduce_stable
| exact Tmult_plus_distr_stable
| exact Tmult_opp_left_stable
| exact Tmult_assoc_r_stable
| exact Tplus_assoc_r_stable
| exact Tplus_assoc_l_stable
| exact Tplus_permute_stable
| exact Tplus_comm_stable
| exact Tred_factor0_stable
| exact Tred_factor1_stable
| exact Tred_factor2_stable
| exact Tred_factor3_stable
| exact Tred_factor4_stable
| exact Tred_factor5_stable
| exact Tred_factor6_stable
| exact Tmult_assoc_reduced_stable
| exact Tminus_def_stable
| exact Tmult_comm_stable ].
Qed.
(* \subsection{tactiques de résolution d'un but omega normalisé}
Trace de la procédure
\subsubsection{Tactiques générant une contradiction}
\paragraph{[O_CONSTANT_NOT_NUL]} *)
Definition constant_not_nul (i : nat) (h : hyps) :=
match nth_hyps i h with
| EqTerm (Tint Nul) (Tint n) =>
if beq n Nul then h else absurd
| _ => h
end.
Theorem constant_not_nul_valid :
forall i : nat, valid_hyps (constant_not_nul i).
Proof.
unfold valid_hyps, constant_not_nul; intros i ep e lp H.
generalize (nth_valid ep e i lp H); Simplify.
Qed.
(* \paragraph{[O_CONSTANT_NEG]} *)
Definition constant_neg (i : nat) (h : hyps) :=
match nth_hyps i h with
| LeqTerm (Tint Nul) (Tint Neg) =>
if bgt Nul Neg then absurd else h
| _ => h
end.
Theorem constant_neg_valid : forall i : nat, valid_hyps (constant_neg i).
Proof.
unfold valid_hyps, constant_neg; intros;
generalize (nth_valid ep e i lp); Simplify; simpl.
rewrite gt_lt_iff in H0; rewrite le_lt_iff; intuition.
Qed.
(* \paragraph{[NOT_EXACT_DIVIDE]} *)
Definition not_exact_divide (k1 k2 : int) (body : term)
(t i : nat) (l : hyps) :=
match nth_hyps i l with
| EqTerm (Tint Nul) b =>
if beq Nul 0 &&
eq_term (scalar_norm_add t (body * Tint k1 + Tint k2)%term) b &&
bgt k2 0 &&
bgt k1 k2
then absurd
else l
| _ => l
end.
Theorem not_exact_divide_valid :
forall (k1 k2 : int) (body : term) (t0 i : nat),
valid_hyps (not_exact_divide k1 k2 body t0 i).
Proof.
unfold valid_hyps, not_exact_divide; intros;
generalize (nth_valid ep e i lp); Simplify.
rewrite (scalar_norm_add_stable t0 e), <-H1.
do 2 rewrite <- scalar_norm_add_stable; simpl in *; intros.
absurd (interp_term e body * k1 + k2 = 0);
[ now apply OMEGA4 | symmetry; auto ].
Qed.
(* \paragraph{[O_CONTRADICTION]} *)
Definition contradiction (t i j : nat) (l : hyps) :=
match nth_hyps i l with
| LeqTerm (Tint Nul) b1 =>
match nth_hyps j l with
| LeqTerm (Tint Nul') b2 =>
match fusion_cancel t (b1 + b2)%term with
| Tint k => if beq Nul 0 && beq Nul' 0 && bgt 0 k
then absurd
else l
| _ => l
end
| _ => l
end
| _ => l
end.
Theorem contradiction_valid :
forall t i j : nat, valid_hyps (contradiction t i j).
Proof.
unfold valid_hyps, contradiction; intros t i j ep e l H;
generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
case (nth_hyps i l); auto; intros t1 t2; case t1;
auto; case (nth_hyps j l);
auto; intros t3 t4; case t3; auto;
simpl; intros z z' H1 H2;
generalize (eq_refl (interp_term e (fusion_cancel t (t2 + t4)%term)));
pattern (fusion_cancel t (t2 + t4)%term) at 2 3;
case (fusion_cancel t (t2 + t4)%term); simpl;
auto; intro k; elim (fusion_cancel_stable t); simpl.
Simplify; intro H3.
generalize (OMEGA2 _ _ H2 H1); rewrite H3.
rewrite gt_lt_iff in H0; rewrite le_lt_iff; intuition.
Qed.
(* \paragraph{[O_NEGATE_CONTRADICT]} *)
Definition negate_contradict (i1 i2 : nat) (h : hyps) :=
match nth_hyps i1 h with
| EqTerm (Tint Nul) b1 =>
match nth_hyps i2 h with
| NeqTerm (Tint Nul') b2 =>
if beq Nul 0 && beq Nul' 0 && eq_term b1 b2
then absurd
else h
| _ => h
end
| NeqTerm (Tint Nul) b1 =>
match nth_hyps i2 h with
| EqTerm (Tint Nul') b2 =>
if beq Nul 0 && beq Nul' 0 && eq_term b1 b2
then absurd
else h
| _ => h
end
| _ => h
end.
Definition negate_contradict_inv (t i1 i2 : nat) (h : hyps) :=
match nth_hyps i1 h with
| EqTerm (Tint Nul) b1 =>
match nth_hyps i2 h with
| NeqTerm (Tint Nul') b2 =>
if beq Nul 0 && beq Nul' 0 &&
eq_term b1 (scalar_norm t (b2 * Tint (-(1)))%term)
then absurd
else h
| _ => h
end
| NeqTerm (Tint Nul) b1 =>
match nth_hyps i2 h with
| EqTerm (Tint Nul') b2 =>
if beq Nul 0 && beq Nul' 0 &&
eq_term b1 (scalar_norm t (b2 * Tint (-(1)))%term)
then absurd
else h
| _ => h
end
| _ => h
end.
Theorem negate_contradict_valid :
forall i j : nat, valid_hyps (negate_contradict i j).
Proof.
unfold valid_hyps, negate_contradict; intros i j ep e l H;
generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
case (nth_hyps i l); auto; intros t1 t2; case t1;
auto; intros z; auto; case (nth_hyps j l);
auto; intros t3 t4; case t3; auto; intros z';
auto; simpl; intros H1 H2; Simplify.
Qed.
Theorem negate_contradict_inv_valid :
forall t i j : nat, valid_hyps (negate_contradict_inv t i j).
Proof.
unfold valid_hyps, negate_contradict_inv; intros t i j ep e l H;
generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
case (nth_hyps i l); auto; intros t1 t2; case t1;
auto; intros z; auto; case (nth_hyps j l);
auto; intros t3 t4; case t3; auto; intros z';
auto; simpl; intros H1 H2; Simplify;
[
rewrite <- scalar_norm_stable in H2; simpl in *;
elim (mult_integral (interp_term e t4) (-(1))); intuition;
elim minus_one_neq_zero; auto
|
elim H2; clear H2;
rewrite <- scalar_norm_stable; simpl in *;
now rewrite <- H1, mult_0_l
].
Qed.
(* \subsubsection{Tactiques générant une nouvelle équation} *)
(* \paragraph{[O_SUM]}
C'est une oper2 valide mais elle traite plusieurs cas à la fois (suivant
les opérateurs de comparaison des deux arguments) d'où une
preuve un peu compliquée. On utilise quelques lemmes qui sont des
généralisations des théorèmes utilisés par OMEGA. *)
Definition sum (k1 k2 : int) (trace : list t_fusion)
(prop1 prop2 : proposition) :=
match prop1 with
| EqTerm (Tint Null) b1 =>
match prop2 with
| EqTerm (Tint Null') b2 =>
if beq Null 0 && beq Null' 0
then EqTerm (Tint 0) (fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
else TrueTerm
| LeqTerm (Tint Null') b2 =>
if beq Null 0 && beq Null' 0 && bgt k2 0
then LeqTerm (Tint 0)
(fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
else TrueTerm
| _ => TrueTerm
end
| LeqTerm (Tint Null) b1 =>
if beq Null 0 && bgt k1 0
then match prop2 with
| EqTerm (Tint Null') b2 =>
if beq Null' 0 then
LeqTerm (Tint 0)
(fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
else TrueTerm
| LeqTerm (Tint Null') b2 =>
if beq Null' 0 && bgt k2 0
then LeqTerm (Tint 0)
(fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
else TrueTerm
| _ => TrueTerm
end
else TrueTerm
| NeqTerm (Tint Null) b1 =>
match prop2 with
| EqTerm (Tint Null') b2 =>
if beq Null 0 && beq Null' 0 && (negb (beq k1 0))
then NeqTerm (Tint 0)
(fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
else TrueTerm
| _ => TrueTerm
end
| _ => TrueTerm
end.
Theorem sum_valid :
forall (k1 k2 : int) (t : list t_fusion), valid2 (sum k1 k2 t).
Proof.
unfold valid2; intros k1 k2 t ep e p1 p2; unfold sum;
Simplify; simpl; auto; try elim (fusion_stable t);
simpl; intros;
[ apply sum1; assumption
| apply sum2; try assumption; apply sum4; assumption
| rewrite plus_comm; apply sum2; try assumption; apply sum4; assumption
| apply sum3; try assumption; apply sum4; assumption
| apply sum5; auto ].
Qed.
(* \paragraph{[O_EXACT_DIVIDE]}
c'est une oper1 valide mais on préfère une substitution a ce point la *)
Definition exact_divide (k : int) (body : term) (t : nat)
(prop : proposition) :=
match prop with
| EqTerm (Tint Null) b =>
if beq Null 0 &&
eq_term (scalar_norm t (body * Tint k)%term) b &&
negb (beq k 0)
then EqTerm (Tint 0) body
else TrueTerm
| NeqTerm (Tint Null) b =>
if beq Null 0 &&
eq_term (scalar_norm t (body * Tint k)%term) b &&
negb (beq k 0)
then NeqTerm (Tint 0) body
else TrueTerm
| _ => TrueTerm
end.
Theorem exact_divide_valid :
forall (k : int) (t : term) (n : nat), valid1 (exact_divide k t n).
Proof.
unfold valid1, exact_divide; intros k1 k2 t ep e p1;
Simplify; simpl; auto; subst;
rewrite <- scalar_norm_stable; simpl; intros;
[ destruct (mult_integral _ _ (eq_sym H0)); intuition
| contradict H0; rewrite <- H0, mult_0_l; auto
].
Qed.
(* \paragraph{[O_DIV_APPROX]}
La preuve reprend le schéma de la précédente mais on
est sur une opération de type valid1 et non sur une opération terminale. *)
Definition divide_and_approx (k1 k2 : int) (body : term)
(t : nat) (prop : proposition) :=
match prop with
| LeqTerm (Tint Null) b =>
if beq Null 0 &&
eq_term (scalar_norm_add t (body * Tint k1 + Tint k2)%term) b &&
bgt k1 0 &&
bgt k1 k2
then LeqTerm (Tint 0) body
else prop
| _ => prop
end.
Theorem divide_and_approx_valid :
forall (k1 k2 : int) (body : term) (t : nat),
valid1 (divide_and_approx k1 k2 body t).
Proof.
unfold valid1, divide_and_approx; intros k1 k2 body t ep e p1;
Simplify; simpl; auto; subst;
elim (scalar_norm_add_stable t e); simpl.
intro H2; apply mult_le_approx with (3 := H2); assumption.
Qed.
(* \paragraph{[MERGE_EQ]} *)
Definition merge_eq (t : nat) (prop1 prop2 : proposition) :=
match prop1 with
| LeqTerm (Tint Null) b1 =>
match prop2 with
| LeqTerm (Tint Null') b2 =>
if beq Null 0 && beq Null' 0 &&
eq_term b1 (scalar_norm t (b2 * Tint (-(1)))%term)
then EqTerm (Tint 0) b1
else TrueTerm
| _ => TrueTerm
end
| _ => TrueTerm
end.
Theorem merge_eq_valid : forall n : nat, valid2 (merge_eq n).
Proof.
unfold valid2, merge_eq; intros n ep e p1 p2; Simplify; simpl;
auto; elim (scalar_norm_stable n e); simpl;
intros; symmetry ; apply OMEGA8 with (2 := H0);
[ assumption | elim opp_eq_mult_neg_1; trivial ].
Qed.
(* \paragraph{[O_CONSTANT_NUL]} *)
Definition constant_nul (i : nat) (h : hyps) :=
match nth_hyps i h with
| NeqTerm (Tint Null) (Tint Null') =>
if beq Null Null' then absurd else h
| _ => h
end.
Theorem constant_nul_valid : forall i : nat, valid_hyps (constant_nul i).
Proof.
unfold valid_hyps, constant_nul; intros;
generalize (nth_valid ep e i lp); Simplify; simpl;
intro H1; absurd (0 = 0); intuition.
Qed.
(* \paragraph{[O_STATE]} *)
Definition state (m : int) (s : step) (prop1 prop2 : proposition) :=
match prop1 with
| EqTerm (Tint Null) b1 =>
match prop2 with
| EqTerm b2 b3 =>
if beq Null 0
then EqTerm (Tint 0) (t_rewrite s (b1 + (- b3 + b2) * Tint m)%term)
else TrueTerm
| _ => TrueTerm
end
| _ => TrueTerm
end.
Theorem state_valid : forall (m : int) (s : step), valid2 (state m s).
Proof.
unfold valid2; intros m s ep e p1 p2; unfold state; Simplify;
simpl; auto; elim (t_rewrite_stable s e); simpl;
intros H1 H2; elim H1.
now rewrite H2, plus_opp_l, plus_0_l, mult_0_l.
Qed.
(* \subsubsection{Tactiques générant plusieurs but}
\paragraph{[O_SPLIT_INEQ]}
La seule pour le moment (tant que la normalisation n'est pas réfléchie). *)
Definition split_ineq (i t : nat) (f1 f2 : hyps -> lhyps)
(l : hyps) :=
match nth_hyps i l with
| NeqTerm (Tint Null) b1 =>
if beq Null 0 then
f1 (LeqTerm (Tint 0) (add_norm t (b1 + Tint (-(1)))%term) :: l) ++
f2
(LeqTerm (Tint 0)
(scalar_norm_add t (b1 * Tint (-(1)) + Tint (-(1)))%term) :: l)
else l :: nil
| _ => l :: nil
end.
Theorem split_ineq_valid :
forall (i t : nat) (f1 f2 : hyps -> lhyps),
valid_list_hyps f1 ->
valid_list_hyps f2 -> valid_list_hyps (split_ineq i t f1 f2).
Proof.
unfold valid_list_hyps, split_ineq; intros i t f1 f2 H1 H2 ep e lp H;
generalize (nth_valid _ _ i _ H); case (nth_hyps i lp);
simpl; auto; intros t1 t2; case t1; simpl;
auto; intros z; simpl; auto; intro H3.
Simplify.
apply append_valid; elim (OMEGA19 (interp_term e t2));
[ intro H4; left; apply H1; simpl; elim (add_norm_stable t);
simpl; auto
| intro H4; right; apply H2; simpl; elim (scalar_norm_add_stable t);
simpl; auto
| generalize H3; unfold not; intros E1 E2; apply E1;
symmetry ; trivial ].
Qed.
(* \subsection{La fonction de rejeu de la trace} *)
Fixpoint execute_omega (t : t_omega) (l : hyps) {struct t} : lhyps :=
match t with
| O_CONSTANT_NOT_NUL n => singleton (constant_not_nul n l)
| O_CONSTANT_NEG n => singleton (constant_neg n l)
| O_DIV_APPROX k1 k2 body t cont n =>
execute_omega cont (apply_oper_1 n (divide_and_approx k1 k2 body t) l)
| O_NOT_EXACT_DIVIDE k1 k2 body t i =>
singleton (not_exact_divide k1 k2 body t i l)
| O_EXACT_DIVIDE k body t cont n =>
execute_omega cont (apply_oper_1 n (exact_divide k body t) l)
| O_SUM k1 i1 k2 i2 t cont =>
execute_omega cont (apply_oper_2 i1 i2 (sum k1 k2 t) l)
| O_CONTRADICTION t i j => singleton (contradiction t i j l)
| O_MERGE_EQ t i1 i2 cont =>
execute_omega cont (apply_oper_2 i1 i2 (merge_eq t) l)
| O_SPLIT_INEQ t i cont1 cont2 =>
split_ineq i t (execute_omega cont1) (execute_omega cont2) l
| O_CONSTANT_NUL i => singleton (constant_nul i l)
| O_NEGATE_CONTRADICT i j => singleton (negate_contradict i j l)
| O_NEGATE_CONTRADICT_INV t i j =>
singleton (negate_contradict_inv t i j l)
| O_STATE m s i1 i2 cont =>
execute_omega cont (apply_oper_2 i1 i2 (state m s) l)
end.
Theorem omega_valid : forall tr : t_omega, valid_list_hyps (execute_omega tr).
Proof.
simple induction tr; simpl;
[ unfold valid_list_hyps; simpl; intros; left;
apply (constant_not_nul_valid n ep e lp H)
| unfold valid_list_hyps; simpl; intros; left;
apply (constant_neg_valid n ep e lp H)
| unfold valid_list_hyps, valid_hyps;
intros k1 k2 body n t' Ht' m ep e lp H; apply Ht';
apply
(apply_oper_1_valid m (divide_and_approx k1 k2 body n)
(divide_and_approx_valid k1 k2 body n) ep e lp H)
| unfold valid_list_hyps; simpl; intros; left;
apply (not_exact_divide_valid _ _ _ _ _ ep e lp H)
| unfold valid_list_hyps, valid_hyps;
intros k body n t' Ht' m ep e lp H; apply Ht';
apply
(apply_oper_1_valid m (exact_divide k body n)
(exact_divide_valid k body n) ep e lp H)
| unfold valid_list_hyps, valid_hyps;
intros k1 i1 k2 i2 trace t' Ht' ep e lp H; apply Ht';
apply
(apply_oper_2_valid i1 i2 (sum k1 k2 trace) (sum_valid k1 k2 trace) ep e
lp H)
| unfold valid_list_hyps; simpl; intros; left;
apply (contradiction_valid n n0 n1 ep e lp H)
| unfold valid_list_hyps, valid_hyps;
intros trace i1 i2 t' Ht' ep e lp H; apply Ht';
apply
(apply_oper_2_valid i1 i2 (merge_eq trace) (merge_eq_valid trace) ep e
lp H)
| intros t' i k1 H1 k2 H2; unfold valid_list_hyps; simpl;
intros ep e lp H;
apply
(split_ineq_valid i t' (execute_omega k1) (execute_omega k2) H1 H2 ep e
lp H)
| unfold valid_list_hyps; simpl; intros i ep e lp H; left;
apply (constant_nul_valid i ep e lp H)
| unfold valid_list_hyps; simpl; intros i j ep e lp H; left;
apply (negate_contradict_valid i j ep e lp H)
| unfold valid_list_hyps; simpl; intros n i j ep e lp H;
left; apply (negate_contradict_inv_valid n i j ep e lp H)
| unfold valid_list_hyps, valid_hyps;
intros m s i1 i2 t' Ht' ep e lp H; apply Ht';
apply (apply_oper_2_valid i1 i2 (state m s) (state_valid m s) ep e lp H) ].
Qed.
(* \subsection{Les opérations globales sur le but}
\subsubsection{Normalisation} *)
Definition move_right (s : step) (p : proposition) :=
match p with
| EqTerm t1 t2 => EqTerm (Tint 0) (t_rewrite s (t1 + - t2)%term)
| LeqTerm t1 t2 => LeqTerm (Tint 0) (t_rewrite s (t2 + - t1)%term)
| GeqTerm t1 t2 => LeqTerm (Tint 0) (t_rewrite s (t1 + - t2)%term)
| LtTerm t1 t2 => LeqTerm (Tint 0) (t_rewrite s (t2 + Tint (-(1)) + - t1)%term)
| GtTerm t1 t2 => LeqTerm (Tint 0) (t_rewrite s (t1 + Tint (-(1)) + - t2)%term)
| NeqTerm t1 t2 => NeqTerm (Tint 0) (t_rewrite s (t1 + - t2)%term)
| p => p
end.
Theorem move_right_valid : forall s : step, valid1 (move_right s).
Proof.
unfold valid1, move_right; intros s ep e p; Simplify; simpl;
elim (t_rewrite_stable s e); simpl;
[ symmetry ; apply egal_left; assumption
| intro; apply le_left; assumption
| intro; apply le_left; rewrite <- ge_le_iff; assumption
| intro; apply lt_left; rewrite <- gt_lt_iff; assumption
| intro; apply lt_left; assumption
| intro; apply ne_left_2; assumption ].
Qed.
Definition do_normalize (i : nat) (s : step) := apply_oper_1 i (move_right s).
Theorem do_normalize_valid :
forall (i : nat) (s : step), valid_hyps (do_normalize i s).
Proof.
intros; unfold do_normalize; apply apply_oper_1_valid;
apply move_right_valid.
Qed.
Fixpoint do_normalize_list (l : list step) (i : nat)
(h : hyps) {struct l} : hyps :=
match l with
| s :: l' => do_normalize_list l' (S i) (do_normalize i s h)
| nil => h
end.
Theorem do_normalize_list_valid :
forall (l : list step) (i : nat), valid_hyps (do_normalize_list l i).
Proof.
simple induction l; simpl; unfold valid_hyps;
[ auto
| intros a l' Hl' i ep e lp H; unfold valid_hyps in Hl'; apply Hl';
apply (do_normalize_valid i a ep e lp); assumption ].
Qed.
Theorem normalize_goal :
forall (s : list step) (ep : list Prop) (env : list int) (l : hyps),
interp_goal ep env (do_normalize_list s 0 l) -> interp_goal ep env l.
Proof.
intros; apply valid_goal with (2 := H); apply do_normalize_list_valid.
Qed.
(* \subsubsection{Exécution de la trace} *)
Theorem execute_goal :
forall (tr : t_omega) (ep : list Prop) (env : list int) (l : hyps),
interp_list_goal ep env (execute_omega tr l) -> interp_goal ep env l.
Proof.
intros; apply (goal_valid (execute_omega tr) (omega_valid tr) ep env l H).
Qed.
Theorem append_goal :
forall (ep : list Prop) (e : list int) (l1 l2 : lhyps),
interp_list_goal ep e l1 /\ interp_list_goal ep e l2 ->
interp_list_goal ep e (l1 ++ l2).
Proof.
intros ep e; simple induction l1;
[ simpl; intros l2 (H1, H2); assumption
| simpl; intros h1 t1 HR l2 ((H1, H2), H3); split; auto ].
Qed.
(* A simple decidability checker : if the proposition belongs to the
simple grammar describe below then it is decidable. Proof is by
induction and uses well known theorem about arithmetic and propositional
calculus *)
Fixpoint decidability (p : proposition) : bool :=
match p with
| EqTerm _ _ => true
| LeqTerm _ _ => true
| GeqTerm _ _ => true
| GtTerm _ _ => true
| LtTerm _ _ => true
| NeqTerm _ _ => true
| FalseTerm => true
| TrueTerm => true
| Tnot t => decidability t
| Tand t1 t2 => decidability t1 && decidability t2
| Timp t1 t2 => decidability t1 && decidability t2
| Tor t1 t2 => decidability t1 && decidability t2
| Tprop _ => false
end.
Theorem decidable_correct :
forall (ep : list Prop) (e : list int) (p : proposition),
decidability p = true -> decidable (interp_proposition ep e p).
Proof.
simple induction p; simpl; intros;
[ apply dec_eq
| apply dec_le
| left; auto
| right; unfold not; auto
| apply dec_not; auto
| apply dec_ge
| apply dec_gt
| apply dec_lt
| apply dec_ne
| apply dec_or; elim andb_prop with (1 := H1); auto
| apply dec_and; elim andb_prop with (1 := H1); auto
| apply dec_imp; elim andb_prop with (1 := H1); auto
| discriminate H ].
Qed.
(* An interpretation function for a complete goal with an explicit
conclusion. We use an intermediate fixpoint. *)
Fixpoint interp_full_goal (envp : list Prop) (env : list int)
(c : proposition) (l : hyps) {struct l} : Prop :=
match l with
| nil => interp_proposition envp env c
| p' :: l' =>
interp_proposition envp env p' -> interp_full_goal envp env c l'
end.
Definition interp_full (ep : list Prop) (e : list int)
(lc : hyps * proposition) : Prop :=
match lc with
| (l, c) => interp_full_goal ep e c l
end.
(* Relates the interpretation of a complete goal with the interpretation
of its hypothesis and conclusion *)
Theorem interp_full_false :
forall (ep : list Prop) (e : list int) (l : hyps) (c : proposition),
(interp_hyps ep e l -> interp_proposition ep e c) -> interp_full ep e (l, c).
Proof.
simple induction l; unfold interp_full; simpl;
[ auto | intros a l1 H1 c H2 H3; apply H1; auto ].
Qed.
(* Push the conclusion in the list of hypothesis using a double negation
If the decidability cannot be "proven", then just forget about the
conclusion (equivalent of replacing it with false) *)
Definition to_contradict (lc : hyps * proposition) :=
match lc with
| (l, c) => if decidability c then Tnot c :: l else l
end.
(* The previous operation is valid in the sense that the new list of
hypothesis implies the original goal *)
Theorem to_contradict_valid :
forall (ep : list Prop) (e : list int) (lc : hyps * proposition),
interp_goal ep e (to_contradict lc) -> interp_full ep e lc.
Proof.
intros ep e lc; case lc; intros l c; simpl;
pattern (decidability c); apply bool_eq_ind;
[ simpl; intros H H1; apply interp_full_false; intros H2;
apply not_not;
[ apply decidable_correct; assumption
| unfold not at 1; intro H3; apply hyps_to_goal with (2 := H2);
auto ]
| intros H1 H2; apply interp_full_false; intro H3;
elim hyps_to_goal with (1 := H2); assumption ].
Qed.
(* [map_cons x l] adds [x] at the head of each list in [l] (which is a list
of lists *)
Fixpoint map_cons (A : Set) (x : A) (l : list (list A)) {struct l} :
list (list A) :=
match l with
| nil => nil
| l :: ll => (x :: l) :: map_cons A x ll
end.
(* This function breaks up a list of hypothesis in a list of simpler
list of hypothesis that together implie the original one. The goal
of all this is to transform the goal in a list of solvable problems.
Note that :
- we need a way to drive the analysis as some hypotheis may not
require a split.
- this procedure must be perfectly mimicked by the ML part otherwise
hypothesis will get desynchronised and this will be a mess.
*)
Fixpoint destructure_hyps (nn : nat) (ll : hyps) {struct nn} : lhyps :=
match nn with
| O => ll :: nil
| S n =>
match ll with
| nil => nil :: nil
| Tor p1 p2 :: l =>
destructure_hyps n (p1 :: l) ++ destructure_hyps n (p2 :: l)
| Tand p1 p2 :: l => destructure_hyps n (p1 :: p2 :: l)
| Timp p1 p2 :: l =>
if decidability p1
then
destructure_hyps n (Tnot p1 :: l) ++ destructure_hyps n (p2 :: l)
else map_cons _ (Timp p1 p2) (destructure_hyps n l)
| Tnot p :: l =>
match p with
| Tnot p1 =>
if decidability p1
then destructure_hyps n (p1 :: l)
else map_cons _ (Tnot (Tnot p1)) (destructure_hyps n l)
| Tor p1 p2 => destructure_hyps n (Tnot p1 :: Tnot p2 :: l)
| Tand p1 p2 =>
if decidability p1
then
destructure_hyps n (Tnot p1 :: l) ++
destructure_hyps n (Tnot p2 :: l)
else map_cons _ (Tnot p) (destructure_hyps n l)
| _ => map_cons _ (Tnot p) (destructure_hyps n l)
end
| x :: l => map_cons _ x (destructure_hyps n l)
end
end.
Theorem map_cons_val :
forall (ep : list Prop) (e : list int) (p : proposition) (l : lhyps),
interp_proposition ep e p ->
interp_list_hyps ep e l -> interp_list_hyps ep e (map_cons _ p l).
Proof.
simple induction l; simpl; [ auto | intros; elim H1; intro H2; auto ].
Qed.
Hint Resolve map_cons_val append_valid decidable_correct.
Theorem destructure_hyps_valid :
forall n : nat, valid_list_hyps (destructure_hyps n).
Proof.
simple induction n;
[ unfold valid_list_hyps; simpl; auto
| unfold valid_list_hyps at 2; intros n1 H ep e lp; case lp;
[ simpl; auto
| intros p l; case p;
try
(simpl; intros; apply map_cons_val; simpl; elim H0;
auto);
[ intro p'; case p';
try
(simpl; intros; apply map_cons_val; simpl; elim H0;
auto);
[ simpl; intros p1 (H1, H2);
pattern (decidability p1); apply bool_eq_ind;
intro H3;
[ apply H; simpl; split;
[ apply not_not; auto | assumption ]
| auto ]
| simpl; intros p1 p2 (H1, H2); apply H; simpl;
elim not_or with (1 := H1); auto
| simpl; intros p1 p2 (H1, H2);
pattern (decidability p1); apply bool_eq_ind;
intro H3;
[ apply append_valid; elim not_and with (2 := H1);
[ intro; left; apply H; simpl; auto
| intro; right; apply H; simpl; auto
| auto ]
| auto ] ]
| simpl; intros p1 p2 (H1, H2); apply append_valid;
(elim H1; intro H3; simpl; [ left | right ]);
apply H; simpl; auto
| simpl; intros; apply H; simpl; tauto
| simpl; intros p1 p2 (H1, H2);
pattern (decidability p1); apply bool_eq_ind;
intro H3;
[ apply append_valid; elim imp_simp with (2 := H1);
[ intro H4; left; simpl; apply H; simpl; auto
| intro H4; right; simpl; apply H; simpl; auto
| auto ]
| auto ] ] ] ].
Qed.
Definition prop_stable (f : proposition -> proposition) :=
forall (ep : list Prop) (e : list int) (p : proposition),
interp_proposition ep e p <-> interp_proposition ep e (f p).
Definition p_apply_left (f : proposition -> proposition)
(p : proposition) :=
match p with
| Timp x y => Timp (f x) y
| Tor x y => Tor (f x) y
| Tand x y => Tand (f x) y
| Tnot x => Tnot (f x)
| x => x
end.
Theorem p_apply_left_stable :
forall f : proposition -> proposition,
prop_stable f -> prop_stable (p_apply_left f).
Proof.
unfold prop_stable; intros f H ep e p; split;
(case p; simpl; auto; intros p1; elim (H ep e p1); tauto).
Qed.
Definition p_apply_right (f : proposition -> proposition)
(p : proposition) :=
match p with
| Timp x y => Timp x (f y)
| Tor x y => Tor x (f y)
| Tand x y => Tand x (f y)
| Tnot x => Tnot (f x)
| x => x
end.
Theorem p_apply_right_stable :
forall f : proposition -> proposition,
prop_stable f -> prop_stable (p_apply_right f).
Proof.
unfold prop_stable; intros f H ep e p; split;
(case p; simpl; auto;
[ intros p1; elim (H ep e p1); tauto
| intros p1 p2; elim (H ep e p2); tauto
| intros p1 p2; elim (H ep e p2); tauto
| intros p1 p2; elim (H ep e p2); tauto ]).
Qed.
Definition p_invert (f : proposition -> proposition)
(p : proposition) :=
match p with
| EqTerm x y => Tnot (f (NeqTerm x y))
| LeqTerm x y => Tnot (f (GtTerm x y))
| GeqTerm x y => Tnot (f (LtTerm x y))
| GtTerm x y => Tnot (f (LeqTerm x y))
| LtTerm x y => Tnot (f (GeqTerm x y))
| NeqTerm x y => Tnot (f (EqTerm x y))
| x => x
end.
Theorem p_invert_stable :
forall f : proposition -> proposition,
prop_stable f -> prop_stable (p_invert f).
Proof.
unfold prop_stable; intros f H ep e p; split;
(case p; simpl; auto;
[ intros t1 t2; elim (H ep e (NeqTerm t1 t2)); simpl;
generalize (dec_eq (interp_term e t1) (interp_term e t2));
unfold decidable; tauto
| intros t1 t2; elim (H ep e (GtTerm t1 t2)); simpl;
generalize (dec_gt (interp_term e t1) (interp_term e t2));
unfold decidable; rewrite le_lt_iff, <- gt_lt_iff; tauto
| intros t1 t2; elim (H ep e (LtTerm t1 t2)); simpl;
generalize (dec_lt (interp_term e t1) (interp_term e t2));
unfold decidable; rewrite ge_le_iff, le_lt_iff; tauto
| intros t1 t2; elim (H ep e (LeqTerm t1 t2)); simpl;
generalize (dec_gt (interp_term e t1) (interp_term e t2));
unfold decidable; repeat rewrite le_lt_iff;
repeat rewrite gt_lt_iff; tauto
| intros t1 t2; elim (H ep e (GeqTerm t1 t2)); simpl;
generalize (dec_lt (interp_term e t1) (interp_term e t2));
unfold decidable; repeat rewrite ge_le_iff;
repeat rewrite le_lt_iff; tauto
| intros t1 t2; elim (H ep e (EqTerm t1 t2)); simpl;
generalize (dec_eq (interp_term e t1) (interp_term e t2));
unfold decidable; tauto ]).
Qed.
Theorem move_right_stable : forall s : step, prop_stable (move_right s).
Proof.
unfold move_right, prop_stable; intros s ep e p; split;
[ Simplify; simpl; elim (t_rewrite_stable s e); simpl;
[ symmetry ; apply egal_left; assumption
| intro; apply le_left; assumption
| intro; apply le_left; rewrite <- ge_le_iff; assumption
| intro; apply lt_left; rewrite <- gt_lt_iff; assumption
| intro; apply lt_left; assumption
| intro; apply ne_left_2; assumption ]
| case p; simpl; intros; auto; generalize H; elim (t_rewrite_stable s);
simpl; intro H1;
[ rewrite (plus_0_r_reverse (interp_term e t1)); rewrite H1;
rewrite plus_permute; rewrite plus_opp_r;
rewrite plus_0_r; trivial
| apply (fun a b => plus_le_reg_r a b (- interp_term e t0));
rewrite plus_opp_r; assumption
| rewrite ge_le_iff;
apply (fun a b => plus_le_reg_r a b (- interp_term e t1));
rewrite plus_opp_r; assumption
| rewrite gt_lt_iff; apply lt_left_inv; assumption
| apply lt_left_inv; assumption
| unfold not; intro H2; apply H1;
rewrite H2; rewrite plus_opp_r; trivial ] ].
Qed.
Fixpoint p_rewrite (s : p_step) : proposition -> proposition :=
match s with
| P_LEFT s => p_apply_left (p_rewrite s)
| P_RIGHT s => p_apply_right (p_rewrite s)
| P_STEP s => move_right s
| P_INVERT s => p_invert (move_right s)
| P_NOP => fun p : proposition => p
end.
Theorem p_rewrite_stable : forall s : p_step, prop_stable (p_rewrite s).
Proof.
simple induction s; simpl;
[ intros; apply p_apply_left_stable; trivial
| intros; apply p_apply_right_stable; trivial
| intros; apply p_invert_stable; apply move_right_stable
| apply move_right_stable
| unfold prop_stable; simpl; intros; split; auto ].
Qed.
Fixpoint normalize_hyps (l : list h_step) (lh : hyps) {struct l} : hyps :=
match l with
| nil => lh
| pair_step i s :: r => normalize_hyps r (apply_oper_1 i (p_rewrite s) lh)
end.
Theorem normalize_hyps_valid :
forall l : list h_step, valid_hyps (normalize_hyps l).
Proof.
simple induction l; unfold valid_hyps; simpl;
[ auto
| intros n_s r; case n_s; intros n s H ep e lp H1; apply H;
apply apply_oper_1_valid;
[ unfold valid1; intros ep1 e1 p1 H2;
elim (p_rewrite_stable s ep1 e1 p1); auto
| assumption ] ].
Qed.
Theorem normalize_hyps_goal :
forall (s : list h_step) (ep : list Prop) (env : list int) (l : hyps),
interp_goal ep env (normalize_hyps s l) -> interp_goal ep env l.
Proof.
intros; apply valid_goal with (2 := H); apply normalize_hyps_valid.
Qed.
Fixpoint extract_hyp_pos (s : list direction) (p : proposition) {struct s} :
proposition :=
match s with
| D_left :: l =>
match p with
| Tand x y => extract_hyp_pos l x
| _ => p
end
| D_right :: l =>
match p with
| Tand x y => extract_hyp_pos l y
| _ => p
end
| D_mono :: l => match p with
| Tnot x => extract_hyp_neg l x
| _ => p
end
| _ => p
end
with extract_hyp_neg (s : list direction) (p : proposition) {struct s} :
proposition :=
match s with
| D_left :: l =>
match p with
| Tor x y => extract_hyp_neg l x
| Timp x y => if decidability x then extract_hyp_pos l x else Tnot p
| _ => Tnot p
end
| D_right :: l =>
match p with
| Tor x y => extract_hyp_neg l y
| Timp x y => extract_hyp_neg l y
| _ => Tnot p
end
| D_mono :: l =>
match p with
| Tnot x => if decidability x then extract_hyp_pos l x else Tnot p
| _ => Tnot p
end
| _ =>
match p with
| Tnot x => if decidability x then x else Tnot p
| _ => Tnot p
end
end.
Definition co_valid1 (f : proposition -> proposition) :=
forall (ep : list Prop) (e : list int) (p1 : proposition),
interp_proposition ep e (Tnot p1) -> interp_proposition ep e (f p1).
Theorem extract_valid :
forall s : list direction,
valid1 (extract_hyp_pos s) /\ co_valid1 (extract_hyp_neg s).
Proof.
unfold valid1, co_valid1; simple induction s;
[ split;
[ simpl; auto
| intros ep e p1; case p1; simpl; auto; intro p;
pattern (decidability p); apply bool_eq_ind;
[ intro H; generalize (decidable_correct ep e p H);
unfold decidable; tauto
| simpl; auto ] ]
| intros a s' (H1, H2); simpl in H2; split; intros ep e p; case a; auto;
case p; auto; simpl; intros;
(apply H1; tauto) ||
(apply H2; tauto) ||
(pattern (decidability p0); apply bool_eq_ind;
[ intro H3; generalize (decidable_correct ep e p0 H3);
unfold decidable; intro H4; apply H1;
tauto
| intro; tauto ]) ].
Qed.
Fixpoint decompose_solve (s : e_step) (h : hyps) {struct s} : lhyps :=
match s with
| E_SPLIT i dl s1 s2 =>
match extract_hyp_pos dl (nth_hyps i h) with
| Tor x y => decompose_solve s1 (x :: h) ++ decompose_solve s2 (y :: h)
| Tnot (Tand x y) =>
if decidability x
then
decompose_solve s1 (Tnot x :: h) ++
decompose_solve s2 (Tnot y :: h)
else h :: nil
| Timp x y =>
if decidability x then
decompose_solve s1 (Tnot x :: h) ++ decompose_solve s2 (y :: h)
else h::nil
| _ => h :: nil
end
| E_EXTRACT i dl s1 =>
decompose_solve s1 (extract_hyp_pos dl (nth_hyps i h) :: h)
| E_SOLVE t => execute_omega t h
end.
Theorem decompose_solve_valid :
forall s : e_step, valid_list_goal (decompose_solve s).
Proof.
intro s; apply goal_valid; unfold valid_list_hyps; elim s;
simpl; intros;
[ cut (interp_proposition ep e1 (extract_hyp_pos l (nth_hyps n lp)));
[ case (extract_hyp_pos l (nth_hyps n lp)); simpl; auto;
[ intro p; case p; simpl; auto; intros p1 p2 H2;
pattern (decidability p1); apply bool_eq_ind;
[ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4;
apply append_valid; elim H4; intro H5;
[ right; apply H0; simpl; tauto
| left; apply H; simpl; tauto ]
| simpl; auto ]
| intros p1 p2 H2; apply append_valid; simpl; elim H2;
[ intros H3; left; apply H; simpl; auto
| intros H3; right; apply H0; simpl; auto ]
| intros p1 p2 H2;
pattern (decidability p1); apply bool_eq_ind;
[ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4;
apply append_valid; elim H4; intro H5;
[ right; apply H0; simpl; tauto
| left; apply H; simpl; tauto ]
| simpl; auto ] ]
| elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto ]
| intros; apply H; simpl; split;
[ elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto
| auto ]
| apply omega_valid with (1 := H) ].
Qed.
(* \subsection{La dernière étape qui élimine tous les séquents inutiles} *)
Definition valid_lhyps (f : lhyps -> lhyps) :=
forall (ep : list Prop) (e : list int) (lp : lhyps),
interp_list_hyps ep e lp -> interp_list_hyps ep e (f lp).
Fixpoint reduce_lhyps (lp : lhyps) : lhyps :=
match lp with
| (FalseTerm :: nil) :: lp' => reduce_lhyps lp'
| x :: lp' => x :: reduce_lhyps lp'
| nil => nil (A:=hyps)
end.
Theorem reduce_lhyps_valid : valid_lhyps reduce_lhyps.
Proof.
unfold valid_lhyps; intros ep e lp; elim lp;
[ simpl; auto
| intros a l HR; elim a;
[ simpl; tauto
| intros a1 l1; case l1; case a1; simpl; try tauto ] ].
Qed.
Theorem do_reduce_lhyps :
forall (envp : list Prop) (env : list int) (l : lhyps),
interp_list_goal envp env (reduce_lhyps l) -> interp_list_goal envp env l.
Proof.
intros envp env l H; apply list_goal_to_hyps; intro H1;
apply list_hyps_to_goal with (1 := H); apply reduce_lhyps_valid;
assumption.
Qed.
Definition concl_to_hyp (p : proposition) :=
if decidability p then Tnot p else TrueTerm.
Definition do_concl_to_hyp :
forall (envp : list Prop) (env : list int) (c : proposition) (l : hyps),
interp_goal envp env (concl_to_hyp c :: l) ->
interp_goal_concl c envp env l.
Proof.
simpl; intros envp env c l; induction l as [| a l Hrecl];
[ simpl; unfold concl_to_hyp;
pattern (decidability c); apply bool_eq_ind;
[ intro H; generalize (decidable_correct envp env c H);
unfold decidable; simpl; tauto
| simpl; intros H1 H2; elim H2; trivial ]
| simpl; tauto ].
Qed.
Definition omega_tactic (t1 : e_step) (t2 : list h_step)
(c : proposition) (l : hyps) :=
reduce_lhyps (decompose_solve t1 (normalize_hyps t2 (concl_to_hyp c :: l))).
Theorem do_omega :
forall (t1 : e_step) (t2 : list h_step) (envp : list Prop)
(env : list int) (c : proposition) (l : hyps),
interp_list_goal envp env (omega_tactic t1 t2 c l) ->
interp_goal_concl c envp env l.
Proof.
unfold omega_tactic; intros; apply do_concl_to_hyp;
apply (normalize_hyps_goal t2); apply (decompose_solve_valid t1);
apply do_reduce_lhyps; assumption.
Qed.
End IntOmega.
(* For now, the above modular construction is instanciated on Z,
in order to retrieve the initial ROmega. *)
Module ZOmega := IntOmega(Z_as_Int).
|