1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Ring_tac BinList Ring_polynom InitialRing.
Require Export Field_theory.
(* syntaxification *)
Ltac mkFieldexpr C Cst CstPow radd rmul rsub ropp rdiv rinv rpow t fv :=
let rec mkP t :=
let f :=
match Cst t with
| InitialRing.NotConstant =>
match t with
| (radd ?t1 ?t2) =>
fun _ =>
let e1 := mkP t1 in
let e2 := mkP t2 in constr:(FEadd e1 e2)
| (rmul ?t1 ?t2) =>
fun _ =>
let e1 := mkP t1 in
let e2 := mkP t2 in constr:(FEmul e1 e2)
| (rsub ?t1 ?t2) =>
fun _ =>
let e1 := mkP t1 in
let e2 := mkP t2 in constr:(FEsub e1 e2)
| (ropp ?t1) =>
fun _ => let e1 := mkP t1 in constr:(FEopp e1)
| (rdiv ?t1 ?t2) =>
fun _ =>
let e1 := mkP t1 in
let e2 := mkP t2 in constr:(FEdiv e1 e2)
| (rinv ?t1) =>
fun _ => let e1 := mkP t1 in constr:(FEinv e1)
| (rpow ?t1 ?n) =>
match CstPow n with
| InitialRing.NotConstant =>
fun _ =>
let p := Find_at t fv in
constr:(@FEX C p)
| ?c => fun _ => let e1 := mkP t1 in constr:(FEpow e1 c)
end
| _ =>
fun _ =>
let p := Find_at t fv in
constr:(@FEX C p)
end
| ?c => fun _ => constr:(FEc c)
end in
f ()
in mkP t.
Ltac FFV Cst CstPow add mul sub opp div inv pow t fv :=
let rec TFV t fv :=
match Cst t with
| InitialRing.NotConstant =>
match t with
| (add ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
| (mul ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
| (sub ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
| (opp ?t1) => TFV t1 fv
| (div ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
| (inv ?t1) => TFV t1 fv
| (pow ?t1 ?n) =>
match CstPow n with
| InitialRing.NotConstant =>
AddFvTail t fv
| _ => TFV t1 fv
end
| _ => AddFvTail t fv
end
| _ => fv
end
in TFV t fv.
(* packaging the field structure *)
(* TODO: inline PackField into field_lookup *)
Ltac PackField F req Cst_tac Pow_tac L1 L2 L3 L4 cond_ok pre post :=
let FLD :=
match type of L1 with
| context [req (@FEeval ?R ?rO ?radd ?rmul ?rsub ?ropp ?rdiv ?rinv
?C ?phi ?Cpow ?Cp_phi ?rpow _ _) _ ] =>
(fun proj =>
proj Cst_tac Pow_tac pre post
req radd rmul rsub ropp rdiv rinv rpow C L1 L2 L3 L4 cond_ok)
| _ => fail 1 "field anomaly: bad correctness lemma (parse)"
end in
F FLD.
Ltac get_FldPre FLD :=
FLD ltac:
(fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
L1 L2 L3 L4 cond_ok =>
pre).
Ltac get_FldPost FLD :=
FLD ltac:
(fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
L1 L2 L3 L4 cond_ok =>
post).
Ltac get_L1 FLD :=
FLD ltac:
(fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
L1 L2 L3 L4 cond_ok =>
L1).
Ltac get_SimplifyEqLemma FLD :=
FLD ltac:
(fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
L1 L2 L3 L4 cond_ok =>
L2).
Ltac get_SimplifyLemma FLD :=
FLD ltac:
(fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
L1 L2 L3 L4 cond_ok =>
L3).
Ltac get_L4 FLD :=
FLD ltac:
(fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
L1 L2 L3 L4 cond_ok =>
L4).
Ltac get_CondLemma FLD :=
FLD ltac:
(fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
L1 L2 L3 L4 cond_ok =>
cond_ok).
Ltac get_FldEq FLD :=
FLD ltac:
(fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
L1 L2 L3 L4 cond_ok =>
req).
Ltac get_FldCarrier FLD :=
let req := get_FldEq FLD in
relation_carrier req.
Ltac get_RingFV FLD :=
FLD ltac:
(fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
L1 L2 L3 L4 cond_ok =>
FV Cst_tac Pow_tac radd rmul rsub ropp rpow).
Ltac get_FFV FLD :=
FLD ltac:
(fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
L1 L2 L3 L4 cond_ok =>
FFV Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow).
Ltac get_RingMeta FLD :=
FLD ltac:
(fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
L1 L2 L3 L4 cond_ok =>
mkPolexpr C Cst_tac Pow_tac radd rmul rsub ropp rpow).
Ltac get_Meta FLD :=
FLD ltac:
(fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
L1 L2 L3 L4 cond_ok =>
mkFieldexpr C Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow).
Ltac get_Hyp_tac FLD :=
FLD ltac:
(fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
L1 L2 L3 L4 cond_ok =>
let mkPol := mkPolexpr C Cst_tac Pow_tac radd rmul rsub ropp rpow in
fun fv lH => mkHyp_tac C req ltac:(fun t => mkPol t fv) lH).
Ltac get_FEeval FLD :=
let L1 := get_L1 FLD in
match type of L1 with
| context
[(@FEeval
?R ?r0 ?add ?mul ?sub ?opp ?div ?inv ?C ?phi ?Cpow ?powphi ?pow _ _)] =>
constr:(@FEeval R r0 add mul sub opp div inv C phi Cpow powphi pow)
| _ => fail 1 "field anomaly: bad correctness lemma (get_FEeval)"
end.
(* simplifying the non-zero condition... *)
Ltac fold_field_cond req :=
let rec fold_concl t :=
match t with
?x /\ ?y =>
let fx := fold_concl x in let fy := fold_concl y in constr:(fx/\fy)
| req ?x ?y -> False => constr:(~ req x y)
| _ => t
end in
let ft := fold_concl Get_goal in
change ft.
Ltac simpl_PCond FLD :=
let req := get_FldEq FLD in
let lemma := get_CondLemma FLD in
try (apply lemma; intros lock lock_def; vm_compute; rewrite lock_def;
clear lock_def lock);
protect_fv "field_cond";
fold_field_cond req;
try exact I.
Ltac simpl_PCond_BEURK FLD :=
let req := get_FldEq FLD in
let lemma := get_CondLemma FLD in
try (apply lemma; intros lock lock_def; vm_compute; rewrite lock_def;
clear lock_def lock);
protect_fv "field_cond";
fold_field_cond req.
(* Rewriting (field_simplify) *)
Ltac Field_norm_gen f n FLD lH rl :=
let mkFV := get_RingFV FLD in
let mkFFV := get_FFV FLD in
let mkFE := get_Meta FLD in
let fv0 := FV_hypo_tac mkFV ltac:(get_FldEq FLD) lH in
let lemma_tac fv kont :=
let lemma := get_SimplifyLemma FLD in
(* reify equations of the context *)
let lpe := get_Hyp_tac FLD fv lH in
let vlpe := fresh "hyps" in
pose (vlpe := lpe);
let prh := proofHyp_tac lH in
(* compute the normal form of the reified hyps *)
let vlmp := fresh "hyps'" in
let vlmp_eq := fresh "hyps_eq" in
let mk_monpol := get_MonPol lemma in
compute_assertion vlmp_eq vlmp (mk_monpol vlpe);
(* partially instantiate the lemma *)
let lem := fresh "f_rw_lemma" in
(assert (lem := lemma n vlpe fv prh vlmp vlmp_eq)
|| fail "type error when building the rewriting lemma");
(* continuation will call main_tac for all reified terms *)
kont lem;
(* at the end, cleanup *)
(clear lem vlmp_eq vlmp vlpe||idtac"Field_norm_gen:cleanup failed") in
(* each instance of the lemma is simplified then passed to f *)
let main_tac H := protect_fv "field" in H; f H in
(* generate and use equations for each expression *)
ReflexiveRewriteTactic mkFFV mkFE lemma_tac main_tac fv0 rl;
try simpl_PCond FLD.
Ltac Field_simplify_gen f FLD lH rl :=
get_FldPre FLD ();
Field_norm_gen f ring_subst_niter FLD lH rl;
get_FldPost FLD ().
Ltac Field_simplify :=
Field_simplify_gen ltac:(fun H => rewrite H).
Tactic Notation (at level 0) "field_simplify" constr_list(rl) :=
let G := Get_goal in
field_lookup (PackField Field_simplify) [] rl G.
Tactic Notation (at level 0)
"field_simplify" "[" constr_list(lH) "]" constr_list(rl) :=
let G := Get_goal in
field_lookup (PackField Field_simplify) [lH] rl G.
Tactic Notation "field_simplify" constr_list(rl) "in" hyp(H):=
let G := Get_goal in
let t := type of H in
let g := fresh "goal" in
set (g:= G);
revert H;
field_lookup (PackField Field_simplify) [] rl t;
intro H;
unfold g;clear g.
Tactic Notation "field_simplify"
"["constr_list(lH) "]" constr_list(rl) "in" hyp(H):=
let G := Get_goal in
let t := type of H in
let g := fresh "goal" in
set (g:= G);
revert H;
field_lookup (PackField Field_simplify) [lH] rl t;
intro H;
unfold g;clear g.
(*
Ltac Field_simplify_in hyp:=
Field_simplify_gen ltac:(fun H => rewrite H in hyp).
Tactic Notation (at level 0)
"field_simplify" constr_list(rl) "in" hyp(h) :=
let t := type of h in
field_lookup (Field_simplify_in h) [] rl t.
Tactic Notation (at level 0)
"field_simplify" "[" constr_list(lH) "]" constr_list(rl) "in" hyp(h) :=
let t := type of h in
field_lookup (Field_simplify_in h) [lH] rl t.
*)
(** Generic tactic for solving equations *)
Ltac Field_Scheme Simpl_tac n lemma FLD lH :=
let req := get_FldEq FLD in
let mkFV := get_RingFV FLD in
let mkFFV := get_FFV FLD in
let mkFE := get_Meta FLD in
let Main_eq t1 t2 :=
let fv := FV_hypo_tac mkFV req lH in
let fv := mkFFV t1 fv in
let fv := mkFFV t2 fv in
let lpe := get_Hyp_tac FLD fv lH in
let prh := proofHyp_tac lH in
let vlpe := fresh "list_hyp" in
let fe1 := mkFE t1 fv in
let fe2 := mkFE t2 fv in
pose (vlpe := lpe);
let nlemma := fresh "field_lemma" in
(assert (nlemma := lemma n fv vlpe fe1 fe2 prh)
|| fail "field anomaly:failed to build lemma");
ProveLemmaHyps nlemma
ltac:(fun ilemma =>
apply ilemma
|| fail "field anomaly: failed in applying lemma";
[ Simpl_tac | simpl_PCond FLD]);
clear nlemma;
subst vlpe in
OnEquation req Main_eq.
(* solve completely a field equation, leaving non-zero conditions to be
proved (field) *)
Ltac FIELD FLD lH rl :=
let Simpl := vm_compute; reflexivity || fail "not a valid field equation" in
let lemma := get_L1 FLD in
get_FldPre FLD ();
Field_Scheme Simpl Ring_tac.ring_subst_niter lemma FLD lH;
try exact I;
get_FldPost FLD().
Tactic Notation (at level 0) "field" :=
let G := Get_goal in
field_lookup (PackField FIELD) [] G.
Tactic Notation (at level 0) "field" "[" constr_list(lH) "]" :=
let G := Get_goal in
field_lookup (PackField FIELD) [lH] G.
(* transforms a field equation to an equivalent (simplified) ring equation,
and leaves non-zero conditions to be proved (field_simplify_eq) *)
Ltac FIELD_SIMPL FLD lH rl :=
let Simpl := (protect_fv "field") in
let lemma := get_SimplifyEqLemma FLD in
get_FldPre FLD ();
Field_Scheme Simpl Ring_tac.ring_subst_niter lemma FLD lH;
get_FldPost FLD ().
Tactic Notation (at level 0) "field_simplify_eq" :=
let G := Get_goal in
field_lookup (PackField FIELD_SIMPL) [] G.
Tactic Notation (at level 0) "field_simplify_eq" "[" constr_list(lH) "]" :=
let G := Get_goal in
field_lookup (PackField FIELD_SIMPL) [lH] G.
(* Same as FIELD_SIMPL but in hypothesis *)
Ltac Field_simplify_eq n FLD lH :=
let req := get_FldEq FLD in
let mkFV := get_RingFV FLD in
let mkFFV := get_FFV FLD in
let mkFE := get_Meta FLD in
let lemma := get_L4 FLD in
let hyp := fresh "hyp" in
intro hyp;
OnEquationHyp req hyp ltac:(fun t1 t2 =>
let fv := FV_hypo_tac mkFV req lH in
let fv := mkFFV t1 fv in
let fv := mkFFV t2 fv in
let lpe := get_Hyp_tac FLD fv lH in
let prh := proofHyp_tac lH in
let fe1 := mkFE t1 fv in
let fe2 := mkFE t2 fv in
let vlpe := fresh "vlpe" in
ProveLemmaHyps (lemma n fv lpe fe1 fe2 prh)
ltac:(fun ilemma =>
match type of ilemma with
| req _ _ -> _ -> ?EQ =>
let tmp := fresh "tmp" in
assert (tmp : EQ);
[ apply ilemma; [ exact hyp | simpl_PCond_BEURK FLD]
| protect_fv "field" in tmp; revert tmp ];
clear hyp
end)).
Ltac FIELD_SIMPL_EQ FLD lH rl :=
get_FldPre FLD ();
Field_simplify_eq Ring_tac.ring_subst_niter FLD lH;
get_FldPost FLD ().
Tactic Notation (at level 0) "field_simplify_eq" "in" hyp(H) :=
let t := type of H in
generalize H;
field_lookup (PackField FIELD_SIMPL_EQ) [] t;
[ try exact I
| clear H;intro H].
Tactic Notation (at level 0)
"field_simplify_eq" "[" constr_list(lH) "]" "in" hyp(H) :=
let t := type of H in
generalize H;
field_lookup (PackField FIELD_SIMPL_EQ) [lH] t;
[ try exact I
|clear H;intro H].
(* More generic tactics to build variants of field *)
(* This tactic reifies c and pass to F:
- the FLD structure gathering all info in the field DB
- the atom list
- the expression (FExpr)
*)
Ltac gen_with_field F c :=
let MetaExpr FLD _ rl :=
let R := get_FldCarrier FLD in
let mkFFV := get_FFV FLD in
let mkFE := get_Meta FLD in
let csr :=
match rl with
| List.cons ?r _ => r
| _ => fail 1 "anomaly: ill-formed list"
end in
let fv := mkFFV csr (@List.nil R) in
let expr := mkFE csr fv in
F FLD fv expr in
field_lookup (PackField MetaExpr) [] (c=c).
(* pushes the equation expr = ope(expr) in the goal, and
discharge it with field *)
Ltac prove_field_eqn ope FLD fv expr :=
let res := ope expr in
let expr' := fresh "input_expr" in
pose (expr' := expr);
let res' := fresh "result" in
pose (res' := res);
let lemma := get_L1 FLD in
let lemma :=
constr:(lemma O fv List.nil expr' res' I List.nil (eq_refl _)) in
let ty := type of lemma in
let lhs := match ty with
forall _, ?lhs=_ -> _ => lhs
end in
let rhs := match ty with
forall _, _=_ -> forall _, ?rhs=_ -> _ => rhs
end in
let lhs' := fresh "lhs" in let lhs_eq := fresh "lhs_eq" in
let rhs' := fresh "rhs" in let rhs_eq := fresh "rhs_eq" in
compute_assertion lhs_eq lhs' lhs;
compute_assertion rhs_eq rhs' rhs;
let H := fresh "fld_eqn" in
refine (_ (lemma lhs' lhs_eq rhs' rhs_eq _ _));
(* main goal *)
[intro H;protect_fv "field" in H; revert H
(* ring-nf(lhs') = ring-nf(rhs') *)
| vm_compute; reflexivity || fail "field cannot prove this equality"
(* denominator condition *)
| simpl_PCond FLD];
clear lhs_eq rhs_eq; subst lhs' rhs'.
Ltac prove_with_field ope c :=
gen_with_field ltac:(prove_field_eqn ope) c.
(* Prove an equation x=ope(x) and rewrite with it *)
Ltac prove_rw ope x :=
prove_with_field ope x;
[ let H := fresh "Heq_maple" in
intro H; rewrite H; clear H
|..].
(* Apply ope (FExpr->FExpr) on an expression *)
Ltac reduce_field_expr ope kont FLD fv expr :=
let evfun := get_FEeval FLD in
let res := ope expr in
let c := (eval simpl_field_expr in (evfun fv res)) in
kont c.
(* Hack to let a Ltac return a term in the context of a primitive tactic *)
Ltac return_term x := generalize (eq_refl x).
Ltac get_term :=
match goal with
| |- ?x = _ -> _ => x
end.
(* Turn an operation on field expressions (FExpr) into a reduction
on terms (in the field carrier). Because of field_lookup,
the tactic cannot return a term directly, so it is returned
via the conclusion of the goal (return_term). *)
Ltac reduce_field_ope ope c :=
gen_with_field ltac:(reduce_field_expr ope return_term) c.
(* Adding a new field *)
Ltac ring_of_field f :=
match type of f with
| almost_field_theory _ _ _ _ _ _ _ _ _ => constr:(AF_AR f)
| field_theory _ _ _ _ _ _ _ _ _ => constr:(F_R f)
| semi_field_theory _ _ _ _ _ _ _ => constr:(SF_SR f)
end.
Ltac coerce_to_almost_field set ext f :=
match type of f with
| almost_field_theory _ _ _ _ _ _ _ _ _ => f
| field_theory _ _ _ _ _ _ _ _ _ => constr:(F2AF set ext f)
| semi_field_theory _ _ _ _ _ _ _ => constr:(SF2AF set f)
end.
Ltac field_elements set ext fspec pspec sspec dspec rk :=
let afth := coerce_to_almost_field set ext fspec in
let rspec := ring_of_field fspec in
ring_elements set ext rspec pspec sspec dspec rk
ltac:(fun arth ext_r morph p_spec s_spec d_spec f => f afth ext_r morph p_spec s_spec d_spec).
Ltac field_lemmas set ext inv_m fspec pspec sspec dspec rk :=
let get_lemma :=
match pspec with None => fun x y => x | _ => fun x y => y end in
let simpl_eq_lemma := get_lemma
Field_simplify_eq_correct Field_simplify_eq_pow_correct in
let simpl_eq_in_lemma := get_lemma
Field_simplify_eq_in_correct Field_simplify_eq_pow_in_correct in
let rw_lemma := get_lemma
Field_rw_correct Field_rw_pow_correct in
field_elements set ext fspec pspec sspec dspec rk
ltac:(fun afth ext_r morph p_spec s_spec d_spec =>
match morph with
| _ =>
let field_ok1 := constr:(Field_correct set ext_r inv_m afth morph) in
match p_spec with
| mkhypo ?pp_spec =>
let field_ok2 := constr:(field_ok1 _ _ _ pp_spec) in
match s_spec with
| mkhypo ?ss_spec =>
let field_ok3 := constr:(field_ok2 _ ss_spec) in
match d_spec with
| mkhypo ?dd_spec =>
let field_ok := constr:(field_ok3 _ dd_spec) in
let mk_lemma lemma :=
constr:(lemma _ _ _ _ _ _ _ _ _ _
set ext_r inv_m afth
_ _ _ _ _ _ _ _ _ morph
_ _ _ pp_spec _ ss_spec _ dd_spec) in
let field_simpl_eq_ok := mk_lemma simpl_eq_lemma in
let field_simpl_ok := mk_lemma rw_lemma in
let field_simpl_eq_in := mk_lemma simpl_eq_in_lemma in
let cond1_ok :=
constr:(Pcond_simpl_gen set ext_r afth morph pp_spec dd_spec) in
let cond2_ok :=
constr:(Pcond_simpl_complete set ext_r afth morph pp_spec dd_spec) in
(fun f =>
f afth ext_r morph field_ok field_simpl_ok field_simpl_eq_ok field_simpl_eq_in
cond1_ok cond2_ok)
| _ => fail 4 "field: bad coefficiant division specification"
end
| _ => fail 3 "field: bad sign specification"
end
| _ => fail 2 "field: bad power specification"
end
| _ => fail 1 "field internal error : field_lemmas, please report"
end).
|