1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
|
open Closure
open RedFlags
open Declarations
open Entries
open Libobject
open Pattern
open Matching
open Pp
open Glob_term
open Sign
open Tacred
open Util
open Names
open Nameops
open Libnames
open Nametab
open Pfedit
open Proof_type
open Refiner
open Tacmach
open Tactic_debug
open Topconstr
open Term
open Tacexpr
open Safe_typing
open Typing
open Hiddentac
open Genarg
open Decl_kinds
open Mod_subst
open Printer
open Inductiveops
open Syntax_def
open Environ
open Tactics
open Tacticals
open Tacinterp
open Vernacexpr
open Notation
open Evd
open Evarutil
module SPretyping = Subtac_pretyping.Pretyping
open Subtac_utils
open Pretyping
open Subtac_obligations
(*********************************************************************)
(* Functions to parse and interpret constructions *)
let evar_nf isevars c =
Evarutil.nf_evar !isevars c
let interp_gen kind isevars env
?(impls=Constrintern.empty_internalization_env) ?(allow_patvar=false) ?(ltacvars=([],[]))
c =
let c' = Constrintern.intern_gen (kind=IsType) ~impls ~allow_patvar ~ltacvars ( !isevars) env c in
let c' = SPretyping.understand_tcc_evars isevars env kind c' in
evar_nf isevars c'
let interp_constr isevars env c =
interp_gen (OfType None) isevars env c
let interp_type_evars isevars env ?(impls=Constrintern.empty_internalization_env) c =
interp_gen IsType isevars env ~impls c
let interp_casted_constr isevars env ?(impls=Constrintern.empty_internalization_env) c typ =
interp_gen (OfType (Some typ)) isevars env ~impls c
let interp_casted_constr_evars isevars env ?(impls=Constrintern.empty_internalization_env) c typ =
interp_gen (OfType (Some typ)) isevars env ~impls c
let interp_open_constr isevars env c =
msgnl (str "Pretyping " ++ my_print_constr_expr c);
let c = Constrintern.intern_constr ( !isevars) env c in
let c' = SPretyping.understand_tcc_evars isevars env (OfType None) c in
evar_nf isevars c'
let interp_constr_judgment isevars env c =
let j =
SPretyping.understand_judgment_tcc isevars env
(Constrintern.intern_constr ( !isevars) env c)
in
{ uj_val = evar_nf isevars j.uj_val; uj_type = evar_nf isevars j.uj_type }
let locate_if_isevar loc na = function
| GHole _ ->
(try match na with
| Name id -> glob_constr_of_aconstr loc (Reserve.find_reserved_type id)
| Anonymous -> raise Not_found
with Not_found -> GHole (loc, Evd.BinderType na))
| x -> x
let interp_binder sigma env na t =
let t = Constrintern.intern_gen true ( !sigma) env t in
SPretyping.understand_tcc_evars sigma env IsType (locate_if_isevar (loc_of_glob_constr t) na t)
let interp_context_evars evdref env params =
let int_env, bl = Constrintern.intern_context false !evdref env Constrintern.empty_internalization_env params in
let (env, par, _, impls) =
List.fold_left
(fun (env,params,n,impls) (na, k, b, t) ->
match b with
None ->
let t' = locate_if_isevar (loc_of_glob_constr t) na t in
let t = SPretyping.understand_tcc_evars evdref env IsType t' in
let d = (na,None,t) in
let impls =
if k = Implicit then
let na = match na with Name n -> Some n | Anonymous -> None in
(ExplByPos (n, na), (true, true, true)) :: impls
else impls
in
(push_rel d env, d::params, succ n, impls)
| Some b ->
let c = SPretyping.understand_judgment_tcc evdref env b in
let d = (na, Some c.uj_val, c.uj_type) in
(push_rel d env,d::params, succ n, impls))
(env,[],1,[]) (List.rev bl)
in (env, par), impls
(* try to find non recursive definitions *)
let list_chop_hd i l = match list_chop i l with
| (l1,x::l2) -> (l1,x,l2)
| (x :: [], l2) -> ([], x, [])
| _ -> assert(false)
let collect_non_rec env =
let rec searchrec lnonrec lnamerec ldefrec larrec nrec =
try
let i =
list_try_find_i
(fun i f ->
if List.for_all (fun (_, def) -> not (Termops.occur_var env f def)) ldefrec
then i else failwith "try_find_i")
0 lnamerec
in
let (lf1,f,lf2) = list_chop_hd i lnamerec in
let (ldef1,def,ldef2) = list_chop_hd i ldefrec in
let (lar1,ar,lar2) = list_chop_hd i larrec in
let newlnv =
try
match list_chop i nrec with
| (lnv1,_::lnv2) -> (lnv1@lnv2)
| _ -> [] (* nrec=[] for cofixpoints *)
with Failure "list_chop" -> []
in
searchrec ((f,def,ar)::lnonrec)
(lf1@lf2) (ldef1@ldef2) (lar1@lar2) newlnv
with Failure "try_find_i" ->
(List.rev lnonrec,
(Array.of_list lnamerec, Array.of_list ldefrec,
Array.of_list larrec, Array.of_list nrec))
in
searchrec []
let list_of_local_binders l =
let rec aux acc = function
Topconstr.LocalRawDef (n, c) :: tl -> aux ((n, Some c, None) :: acc) tl
| Topconstr.LocalRawAssum (nl, k, c) :: tl ->
aux (List.fold_left (fun acc n -> (n, None, Some c) :: acc) acc nl) tl
| [] -> List.rev acc
in aux [] l
let lift_binders k n l =
let rec aux n = function
| (id, t, c) :: tl -> (id, Option.map (liftn k n) t, liftn k n c) :: aux (pred n) tl
| [] -> []
in aux n l
let rec gen_rels = function
0 -> []
| n -> mkRel n :: gen_rels (pred n)
let split_args n rel = match list_chop ((List.length rel) - n) rel with
(l1, x :: l2) -> l1, x, l2
| _ -> assert(false)
open Coqlib
let sigT = Lazy.lazy_from_fun build_sigma_type
let sigT_info = lazy
{ ci_ind = destInd (Lazy.force sigT).typ;
ci_npar = 2;
ci_cstr_ndecls = [|2|];
ci_pp_info = { ind_nargs = 0; style = LetStyle }
}
let rec telescope = function
| [] -> assert false
| [(n, None, t)] -> t, [n, Some (mkRel 1), t], mkRel 1
| (n, None, t) :: tl ->
let ty, tys, (k, constr) =
List.fold_left
(fun (ty, tys, (k, constr)) (n, b, t) ->
let pred = mkLambda (n, t, ty) in
let sigty = mkApp ((Lazy.force sigT).typ, [|t; pred|]) in
let intro = mkApp ((Lazy.force sigT).intro, [|lift k t; lift k pred; mkRel k; constr|]) in
(sigty, pred :: tys, (succ k, intro)))
(t, [], (2, mkRel 1)) tl
in
let (last, subst) = List.fold_right2
(fun pred (n, b, t) (prev, subst) ->
let proj1 = applistc (Lazy.force sigT).proj1 [t; pred; prev] in
let proj2 = applistc (Lazy.force sigT).proj2 [t; pred; prev] in
(lift 1 proj2, (n, Some proj1, t) :: subst))
(List.rev tys) tl (mkRel 1, [])
in ty, ((n, Some last, t) :: subst), constr
| (n, Some b, t) :: tl -> let ty, subst, term = telescope tl in
ty, ((n, Some b, t) :: subst), lift 1 term
let nf_evar_context isevars ctx =
List.map (fun (n, b, t) ->
(n, Option.map (Evarutil.nf_evar isevars) b, Evarutil.nf_evar isevars t)) ctx
let build_wellfounded (recname,n,bl,arityc,body) r measure notation =
Coqlib.check_required_library ["Coq";"Program";"Wf"];
let sigma = Evd.empty in
let isevars = ref (Evd.create_evar_defs sigma) in
let env = Global.env() in
let _pr c = my_print_constr env c in
let _prr = Printer.pr_rel_context env in
let _prn = Printer.pr_named_context env in
let _pr_rel env = Printer.pr_rel_context env in
let (env', binders_rel), impls = interp_context_evars isevars env bl in
let len = List.length binders_rel in
let top_env = push_rel_context binders_rel env in
let top_arity = interp_type_evars isevars top_env arityc in
let full_arity = it_mkProd_or_LetIn top_arity binders_rel in
let argtyp, letbinders, make = telescope binders_rel in
let argname = id_of_string "recarg" in
let arg = (Name argname, None, argtyp) in
let binders = letbinders @ [arg] in
let binders_env = push_rel_context binders_rel env in
let rel = interp_constr isevars env r in
let relty = type_of env !isevars rel in
let relargty =
let error () =
user_err_loc (constr_loc r,
"Subtac_command.build_wellfounded",
my_print_constr env rel ++ str " is not an homogeneous binary relation.")
in
try
let ctx, ar = Reductionops.splay_prod_n env !isevars 2 relty in
match ctx, kind_of_term ar with
| [(_, None, t); (_, None, u)], Sort (Prop Null)
when Reductionops.is_conv env !isevars t u -> t
| _, _ -> error ()
with e when Errors.noncritical e -> error ()
in
let measure = interp_casted_constr isevars binders_env measure relargty in
let wf_rel, wf_rel_fun, measure_fn =
let measure_body, measure =
it_mkLambda_or_LetIn measure letbinders,
it_mkLambda_or_LetIn measure binders
in
let comb = constr_of_global (delayed_force measure_on_R_ref) in
let wf_rel = mkApp (comb, [| argtyp; relargty; rel; measure |]) in
let wf_rel_fun x y =
mkApp (rel, [| subst1 x measure_body;
subst1 y measure_body |])
in wf_rel, wf_rel_fun, measure
in
let wf_proof = mkApp (delayed_force well_founded, [| argtyp ; wf_rel |]) in
let argid' = id_of_string (string_of_id argname ^ "'") in
let wfarg len = (Name argid', None,
mkSubset (Name argid') argtyp
(wf_rel_fun (mkRel 1) (mkRel (len + 1))))
in
let intern_bl = wfarg 1 :: [arg] in
let _intern_env = push_rel_context intern_bl env in
let proj = (delayed_force sig_).Coqlib.proj1 in
let wfargpred = mkLambda (Name argid', argtyp, wf_rel_fun (mkRel 1) (mkRel 3)) in
let projection = (* in wfarg :: arg :: before *)
mkApp (proj, [| argtyp ; wfargpred ; mkRel 1 |])
in
let top_arity_let = it_mkLambda_or_LetIn top_arity letbinders in
let intern_arity = substl [projection] top_arity_let in
(* substitute the projection of wfarg for something,
now intern_arity is in wfarg :: arg *)
let intern_fun_arity_prod = it_mkProd_or_LetIn intern_arity [wfarg 1] in
let intern_fun_binder = (Name (add_suffix recname "'"), None, intern_fun_arity_prod) in
let curry_fun =
let wfpred = mkLambda (Name argid', argtyp, wf_rel_fun (mkRel 1) (mkRel (2 * len + 4))) in
let arg = mkApp ((delayed_force sig_).intro, [| argtyp; wfpred; lift 1 make; mkRel 1 |]) in
let app = mkApp (mkRel (2 * len + 2 (* recproof + orig binders + current binders *)), [| arg |]) in
let rcurry = mkApp (rel, [| measure; lift len measure |]) in
let lam = (Name (id_of_string "recproof"), None, rcurry) in
let body = it_mkLambda_or_LetIn app (lam :: binders_rel) in
let ty = it_mkProd_or_LetIn (lift 1 top_arity) (lam :: binders_rel) in
(Name recname, Some body, ty)
in
let fun_bl = intern_fun_binder :: [arg] in
let lift_lets = Termops.lift_rel_context 1 letbinders in
let intern_body =
let ctx = (Name recname, None, pi3 curry_fun) :: binders_rel in
let (r, l, impls, scopes) =
Constrintern.compute_internalization_data env
Constrintern.Recursive full_arity impls
in
let newimpls = Idmap.singleton recname
(r, l, impls @ [(Some (id_of_string "recproof", Impargs.Manual, (true, false)))],
scopes @ [None]) in
interp_casted_constr isevars ~impls:newimpls
(push_rel_context ctx env) body (lift 1 top_arity)
in
let intern_body_lam = it_mkLambda_or_LetIn intern_body (curry_fun :: lift_lets @ fun_bl) in
let prop = mkLambda (Name argname, argtyp, top_arity_let) in
let def =
mkApp (constr_of_global (delayed_force fix_sub_ref),
[| argtyp ; wf_rel ;
make_existential dummy_loc ~opaque:(Define false) env isevars wf_proof ;
prop ; intern_body_lam |])
in
let _ = isevars := Evarutil.nf_evar_map !isevars in
let binders_rel = nf_evar_context !isevars binders_rel in
let binders = nf_evar_context !isevars binders in
let top_arity = Evarutil.nf_evar !isevars top_arity in
let hook, recname, typ =
if List.length binders_rel > 1 then
let name = add_suffix recname "_func" in
let hook l gr =
let body = it_mkLambda_or_LetIn (mkApp (constr_of_global gr, [|make|])) binders_rel in
let ty = it_mkProd_or_LetIn top_arity binders_rel in
let ce =
{ const_entry_body = Evarutil.nf_evar !isevars body;
const_entry_secctx = None;
const_entry_type = Some ty;
const_entry_opaque = false }
in
let c = Declare.declare_constant recname (DefinitionEntry ce, IsDefinition Definition) in
let gr = ConstRef c in
if Impargs.is_implicit_args () || impls <> [] then
Impargs.declare_manual_implicits false gr [impls]
in
let typ = it_mkProd_or_LetIn top_arity binders in
hook, name, typ
else
let typ = it_mkProd_or_LetIn top_arity binders_rel in
let hook l gr =
if Impargs.is_implicit_args () || impls <> [] then
Impargs.declare_manual_implicits false gr [impls]
in hook, recname, typ
in
let fullcoqc = Evarutil.nf_evar !isevars def in
let fullctyp = Evarutil.nf_evar !isevars typ in
let evm = evars_of_term !isevars Evd.empty fullctyp in
let evm = evars_of_term !isevars evm fullcoqc in
let evm = non_instanciated_map env isevars evm in
let evars, _, evars_def, evars_typ =
Eterm.eterm_obligations env recname !isevars evm 0 fullcoqc fullctyp
in
Subtac_obligations.add_definition recname ~term:evars_def evars_typ evars ~hook
let interp_fix_context evdref env fix =
interp_context_evars evdref env fix.Command.fix_binders
let interp_fix_ccl evdref (env,_) fix =
interp_type_evars evdref env fix.Command.fix_type
let interp_fix_body evdref env_rec impls (_,ctx) fix ccl =
let env = push_rel_context ctx env_rec in
let body = Option.map (fun c -> interp_casted_constr_evars evdref env ~impls c ccl) fix.Command.fix_body in
Option.map (fun c -> it_mkLambda_or_LetIn c ctx) body
let build_fix_type (_,ctx) ccl = it_mkProd_or_LetIn ccl ctx
let prepare_recursive_declaration fixnames fixtypes fixdefs =
let defs = List.map (subst_vars (List.rev fixnames)) fixdefs in
let names = List.map (fun id -> Name id) fixnames in
(Array.of_list names, Array.of_list fixtypes, Array.of_list defs)
let rel_index n ctx =
list_index0 (Name n) (List.rev_map pi1 (List.filter (fun x -> pi2 x = None) ctx))
let rec unfold f b =
match f b with
| Some (x, b') -> x :: unfold f b'
| None -> []
let find_annot loc id ctx =
try rel_index id ctx
with Not_found ->
user_err_loc(loc,"",
str "No parameter named " ++ Nameops.pr_id id ++ str".")
let compute_possible_guardness_evidences (n,_) (_, fixctx) fixtype =
match n with
| Some (loc, id) -> [find_annot loc id fixctx]
| None ->
(* If recursive argument was not given by user, we try all args.
An earlier approach was to look only for inductive arguments,
but doing it properly involves delta-reduction, and it finally
doesn't seem to worth the effort (except for huge mutual
fixpoints ?) *)
let len = List.length fixctx in
unfold (function x when x = len -> None
| n -> Some (n, succ n)) 0
let push_named_context = List.fold_right push_named
let check_evars env initial_sigma evd c =
let sigma = evd in
let c = nf_evar sigma c in
let rec proc_rec c =
match kind_of_term c with
| Evar (evk,args) ->
assert (Evd.mem sigma evk);
if not (Evd.mem initial_sigma evk) then
let (loc,k) = evar_source evk evd in
(match k with
| QuestionMark _
| ImplicitArg (_, _, false) -> ()
| _ ->
let evi = nf_evar_info sigma (Evd.find sigma evk) in
Pretype_errors.error_unsolvable_implicit loc env sigma evi k None)
| _ -> iter_constr proc_rec c
in proc_rec c
let out_def = function
| Some def -> def
| None -> error "Program Fixpoint needs defined bodies."
let interp_recursive fixkind l =
let env = Global.env() in
let fixl, ntnl = List.split l in
let kind = fixkind <> IsCoFixpoint in
let fixnames = List.map (fun fix -> fix.Command.fix_name) fixl in
(* Interp arities allowing for unresolved types *)
let evdref = ref Evd.empty in
let fixctxs, fiximps = List.split (List.map (interp_fix_context evdref env) fixl) in
let fixccls = List.map2 (interp_fix_ccl evdref) fixctxs fixl in
let fixtypes = List.map2 build_fix_type fixctxs fixccls in
let rec_sign =
List.fold_left2 (fun env' id t ->
let sort = Retyping.get_type_of env !evdref t in
let fixprot =
try mkApp (delayed_force Subtac_utils.fix_proto, [|sort; t|])
with e when Errors.noncritical e -> t
in
(id,None,fixprot) :: env')
[] fixnames fixtypes
in
let env_rec = push_named_context rec_sign env in
(* Get interpretation metadatas *)
let impls = Constrintern.compute_internalization_env env
Constrintern.Recursive fixnames fixtypes fiximps
in
let notations = List.flatten ntnl in
(* Interp bodies with rollback because temp use of notations/implicit *)
let fixdefs =
States.with_state_protection (fun () ->
List.iter (Metasyntax.set_notation_for_interpretation impls) notations;
list_map3 (interp_fix_body evdref env_rec impls) fixctxs fixl fixccls)
() in
let fixdefs = List.map out_def fixdefs in
(* Instantiate evars and check all are resolved *)
let evd = Evarconv.consider_remaining_unif_problems env_rec !evdref in
let evd = Typeclasses.resolve_typeclasses
~filter:Typeclasses.no_goals ~split:true ~fail:false env_rec evd
in
let evd = Evarutil.nf_evar_map evd in
let fixdefs = List.map (nf_evar evd) fixdefs in
let fixtypes = List.map (nf_evar evd) fixtypes in
let rec_sign = nf_named_context_evar evd rec_sign in
let recdefs = List.length rec_sign in
List.iter (check_evars env_rec Evd.empty evd) fixdefs;
List.iter (check_evars env Evd.empty evd) fixtypes;
Command.check_mutuality env kind (List.combine fixnames fixdefs);
(* Russell-specific code *)
(* Get the interesting evars, those that were not instanciated *)
let isevars = Evd.undefined_evars evd in
let evm = isevars in
(* Solve remaining evars *)
let rec collect_evars id def typ imps =
(* Generalize by the recursive prototypes *)
let def =
Termops.it_mkNamedLambda_or_LetIn def rec_sign
and typ =
Termops.it_mkNamedProd_or_LetIn typ rec_sign
in
let evm' = Subtac_utils.evars_of_term evm Evd.empty def in
let evm' = Subtac_utils.evars_of_term evm evm' typ in
let evars, _, def, typ = Eterm.eterm_obligations env id isevars evm' recdefs def typ in
(id, def, typ, imps, evars)
in
let defs = list_map4 collect_evars fixnames fixdefs fixtypes fiximps in
(match fixkind with
| IsFixpoint wfl ->
let possible_indexes =
list_map3 compute_possible_guardness_evidences wfl fixctxs fixtypes in
let fixdecls = Array.of_list (List.map (fun x -> Name x) fixnames),
Array.of_list fixtypes,
Array.of_list (List.map (subst_vars (List.rev fixnames)) fixdefs)
in
let indexes = Pretyping.search_guard dummy_loc (Global.env ()) possible_indexes fixdecls in
list_iter_i (fun i _ -> Inductive.check_fix env ((indexes,i),fixdecls)) l
| IsCoFixpoint -> ());
Subtac_obligations.add_mutual_definitions defs notations fixkind
let out_n = function
Some n -> n
| None -> raise Not_found
let build_recursive l =
let g = List.map (fun ((_,wf,_,_,_),_) -> wf) l in
match g, l with
[(n, CWfRec r)], [(((_,id),_,bl,typ,def),ntn)] ->
ignore(build_wellfounded (id, n, bl, typ, out_def def) r
(match n with Some n -> mkIdentC (snd n) | None ->
errorlabstrm "Subtac_command.build_recursive"
(str "Recursive argument required for well-founded fixpoints"))
ntn)
| [(n, CMeasureRec (m, r))], [(((_,id),_,bl,typ,def),ntn)] ->
ignore(build_wellfounded (id, n, bl, typ, out_def def) (Option.default (CRef lt_ref) r)
m ntn)
| _, _ when List.for_all (fun (n, ro) -> ro = CStructRec) g ->
let fixl = List.map (fun (((_,id),(n,ro),bl,typ,def),ntn) ->
({Command.fix_name = id; Command.fix_binders = bl; Command.fix_annot = n;
Command.fix_body = def; Command.fix_type = typ},ntn)) l
in interp_recursive (IsFixpoint g) fixl
| _, _ ->
errorlabstrm "Subtac_command.build_recursive"
(str "Well-founded fixpoints not allowed in mutually recursive blocks")
let build_corecursive l =
let fixl = List.map (fun (((_,id),bl,typ,def),ntn) ->
({Command.fix_name = id; Command.fix_binders = bl; Command.fix_annot = None;
Command.fix_body = def; Command.fix_type = typ},ntn))
l in
interp_recursive IsCoFixpoint fixl
|