1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Constrintern
open Closure
open RedFlags
open Declarations
open Entries
open Libobject
open Pattern
open Matching
open Pp
open Glob_term
open Sign
open Tacred
open Util
open Names
open Nameops
open Libnames
open Nametab
open Smartlocate
open Pfedit
open Proof_type
open Refiner
open Tacmach
open Tactic_debug
open Topconstr
open Term
open Termops
open Tacexpr
open Safe_typing
open Typing
open Hiddentac
open Genarg
open Decl_kinds
open Mod_subst
open Printer
open Inductiveops
open Syntax_def
open Pretyping
open Pretyping.Default
open Extrawit
open Pcoq
open Compat
open Evd
let safe_msgnl s =
try msgnl s with e when Errors.noncritical e ->
msgnl
(str "bug in the debugger: " ++
str "an exception is raised while printing debug information")
let error_syntactic_metavariables_not_allowed loc =
user_err_loc
(loc,"out_ident",
str "Syntactic metavariables allowed only in quotations.")
let error_tactic_expected loc =
user_err_loc (loc,"",str "Tactic expected.")
let error_global_not_found_loc (loc,qid) = error_global_not_found_loc loc qid
let skip_metaid = function
| AI x -> x
| MetaId (loc,_) -> error_syntactic_metavariables_not_allowed loc
(* Values for interpretation *)
type value =
| VRTactic of (goal list sigma) (* For Match results *)
(* Not a true value *)
| VFun of ltac_trace * (identifier*value) list *
identifier option list * glob_tactic_expr
| VVoid
| VInteger of int
| VIntroPattern of intro_pattern_expr (* includes idents which are not *)
(* bound as in "Intro H" but which may be bound *)
(* later, as in "tac" in "Intro H; tac" *)
| VConstr of constr_under_binders
(* includes idents known to be bound and references *)
| VConstr_context of constr
| VList of value list
| VRec of (identifier*value) list ref * glob_tactic_expr
let dloc = dummy_loc
let catch_error call_trace tac g =
if call_trace = [] then tac g else try tac g with
| LtacLocated _ as e -> raise e
| Loc.Exc_located (_,LtacLocated _) as e -> raise e
| e when Errors.noncritical e ->
let (nrep,loc',c),tail = list_sep_last call_trace in
let loc,e' = match e with Loc.Exc_located(loc,e) -> loc,e | _ ->dloc,e in
if tail = [] then
let loc = if loc = dloc then loc' else loc in
raise (Loc.Exc_located(loc,e'))
else
raise (Loc.Exc_located(loc',LtacLocated((nrep,c,tail,loc),e')))
(* Signature for interpretation: val_interp and interpretation functions *)
type interp_sign =
{ lfun : (identifier * value) list;
avoid_ids : identifier list; (* ids inherited from the call context
(needed to get fresh ids) *)
debug : debug_info;
trace : ltac_trace }
let check_is_value = function
| VRTactic _ -> (* These are goals produced by Match *)
error "Immediate match producing tactics not allowed in local definitions."
| _ -> ()
(* Gives the constr corresponding to a Constr_context tactic_arg *)
let constr_of_VConstr_context = function
| VConstr_context c -> c
| _ ->
errorlabstrm "constr_of_VConstr_context" (str "Not a context variable.")
(* Displays a value *)
let rec pr_value env = function
| VVoid -> str "()"
| VInteger n -> int n
| VIntroPattern ipat -> pr_intro_pattern (dloc,ipat)
| VConstr c ->
(match env with Some env ->
pr_lconstr_under_binders_env env c | _ -> str "a term")
| VConstr_context c ->
(match env with Some env -> pr_lconstr_env env c | _ -> str "a term")
| (VRTactic _ | VFun _ | VRec _) -> str "a tactic"
| VList [] -> str "an empty list"
| VList (a::_) ->
str "a list (first element is " ++ pr_value env a ++ str")"
(* Transforms an id into a constr if possible, or fails with Not_found *)
let constr_of_id env id =
Term.mkVar (let _ = Environ.lookup_named id env in id)
(* To embed tactics *)
let ((tactic_in : (interp_sign -> glob_tactic_expr) -> Dyn.t),
(tactic_out : Dyn.t -> (interp_sign -> glob_tactic_expr))) =
Dyn.create "tactic"
let ((value_in : value -> Dyn.t),
(value_out : Dyn.t -> value)) = Dyn.create "value"
let valueIn t = TacDynamic (dummy_loc,value_in t)
let valueOut = function
| TacDynamic (_,d) ->
if (Dyn.tag d) = "value" then
value_out d
else
anomalylabstrm "valueOut" (str "Dynamic tag should be value")
| ast ->
anomalylabstrm "valueOut" (str "Not a Dynamic ast: ")
(* Table of "pervasives" macros tactics (e.g. auto, simpl, etc.) *)
let atomic_mactab = ref Idmap.empty
let add_primitive_tactic s tac =
let id = id_of_string s in
atomic_mactab := Idmap.add id tac !atomic_mactab
let _ =
let nocl = {onhyps=Some[];concl_occs=all_occurrences_expr} in
List.iter
(fun (s,t) -> add_primitive_tactic s (TacAtom(dloc,t)))
[ "red", TacReduce(Red false,nocl);
"hnf", TacReduce(Hnf,nocl);
"simpl", TacReduce(Simpl None,nocl);
"compute", TacReduce(Cbv all_flags,nocl);
"intro", TacIntroMove(None,no_move);
"intros", TacIntroPattern [];
"assumption", TacAssumption;
"cofix", TacCofix None;
"trivial", TacTrivial (Off,[],None);
"auto", TacAuto(Off,None,[],None);
"left", TacLeft(false,NoBindings);
"eleft", TacLeft(true,NoBindings);
"right", TacRight(false,NoBindings);
"eright", TacRight(true,NoBindings);
"split", TacSplit(false,false,[NoBindings]);
"esplit", TacSplit(true,false,[NoBindings]);
"constructor", TacAnyConstructor (false,None);
"econstructor", TacAnyConstructor (true,None);
"reflexivity", TacReflexivity;
"symmetry", TacSymmetry nocl
];
List.iter
(fun (s,t) -> add_primitive_tactic s t)
[ "idtac",TacId [];
"fail", TacFail(ArgArg 0,[]);
"fresh", TacArg(dloc,TacFreshId [])
]
let lookup_atomic id = Idmap.find id !atomic_mactab
let is_atomic_kn kn =
let (_,_,l) = repr_kn kn in
Idmap.mem (id_of_label l) !atomic_mactab
(* Summary and Object declaration *)
let mactab = ref Gmap.empty
let lookup r = Gmap.find r !mactab
let _ =
let init () = mactab := Gmap.empty in
let freeze () = !mactab in
let unfreeze fs = mactab := fs in
Summary.declare_summary "tactic-definition"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init }
(* Tactics table (TacExtend). *)
let tac_tab = Hashtbl.create 17
let add_tactic s t =
if Hashtbl.mem tac_tab s then
errorlabstrm ("Refiner.add_tactic: ")
(str ("Cannot redeclare tactic "^s^"."));
Hashtbl.add tac_tab s t
let overwriting_add_tactic s t =
if Hashtbl.mem tac_tab s then begin
Hashtbl.remove tac_tab s;
msg_warn ("Overwriting definition of tactic "^s)
end;
Hashtbl.add tac_tab s t
let lookup_tactic s =
try
Hashtbl.find tac_tab s
with Not_found ->
errorlabstrm "Refiner.lookup_tactic"
(str"The tactic " ++ str s ++ str" is not installed.")
(*
let vernac_tactic (s,args) =
let tacfun = lookup_tactic s args in
abstract_extended_tactic s args tacfun
*)
(* Interpretation of extra generic arguments *)
type glob_sign = {
ltacvars : identifier list * identifier list;
(* ltac variables and the subset of vars introduced by Intro/Let/... *)
ltacrecvars : (identifier * ltac_constant) list;
(* ltac recursive names *)
gsigma : Evd.evar_map;
genv : Environ.env }
type interp_genarg_type =
(glob_sign -> raw_generic_argument -> glob_generic_argument) *
(interp_sign -> goal sigma -> glob_generic_argument ->
Evd.evar_map * typed_generic_argument) *
(substitution -> glob_generic_argument -> glob_generic_argument)
let extragenargtab =
ref (Gmap.empty : (string,interp_genarg_type) Gmap.t)
let add_interp_genarg id f =
extragenargtab := Gmap.add id f !extragenargtab
let lookup_genarg id =
try Gmap.find id !extragenargtab
with Not_found ->
let msg = "No interpretation function found for entry " ^ id in
msg_warn msg;
let f = (fun _ _ -> failwith msg), (fun _ _ _ -> failwith msg), (fun _ a -> a) in
add_interp_genarg id f;
f
let lookup_genarg_glob id = let (f,_,_) = lookup_genarg id in f
let lookup_interp_genarg id = let (_,f,_) = lookup_genarg id in f
let lookup_genarg_subst id = let (_,_,f) = lookup_genarg id in f
let push_trace (loc,ck) = function
| (n,loc',ck')::trl when ck=ck' -> (n+1,loc,ck)::trl
| trl -> (1,loc,ck)::trl
let propagate_trace ist loc id = function
| VFun (_,lfun,it,b) ->
let t = if it=[] then b else TacFun (it,b) in
VFun (push_trace(loc,LtacVarCall (id,t)) ist.trace,lfun,it,b)
| x -> x
(* Dynamically check that an argument is a tactic *)
let coerce_to_tactic loc id = function
| VFun _ | VRTactic _ as a -> a
| _ -> user_err_loc
(loc, "", str "Variable " ++ pr_id id ++ str " should be bound to a tactic.")
(*****************)
(* Globalization *)
(*****************)
(* We have identifier <| global_reference <| constr *)
let find_ident id ist =
List.mem id (fst ist.ltacvars) or
List.mem id (ids_of_named_context (Environ.named_context ist.genv))
let find_recvar qid ist = List.assoc qid ist.ltacrecvars
(* a "var" is a ltac var or a var introduced by an intro tactic *)
let find_var id ist = List.mem id (fst ist.ltacvars)
(* a "ctxvar" is a var introduced by an intro tactic (Intro/LetTac/...) *)
let find_ctxvar id ist = List.mem id (snd ist.ltacvars)
(* a "ltacvar" is an ltac var (Let-In/Fun/...) *)
let find_ltacvar id ist = find_var id ist & not (find_ctxvar id ist)
let find_hyp id ist =
List.mem id (ids_of_named_context (Environ.named_context ist.genv))
(* Globalize a name introduced by Intro/LetTac/... ; it is allowed to *)
(* be fresh in which case it is binding later on *)
let intern_ident l ist id =
(* We use identifier both for variables and new names; thus nothing to do *)
if not (find_ident id ist) then l:=(id::fst !l,id::snd !l);
id
let intern_name l ist = function
| Anonymous -> Anonymous
| Name id -> Name (intern_ident l ist id)
let strict_check = ref false
let adjust_loc loc = if !strict_check then dloc else loc
(* Globalize a name which must be bound -- actually just check it is bound *)
let intern_hyp ist (loc,id as locid) =
if not !strict_check then
locid
else if find_ident id ist then
(dloc,id)
else
Pretype_errors.error_var_not_found_loc loc id
let intern_hyp_or_metaid ist id = intern_hyp ist (skip_metaid id)
let intern_or_var ist = function
| ArgVar locid -> ArgVar (intern_hyp ist locid)
| ArgArg _ as x -> x
let intern_inductive_or_by_notation = smart_global_inductive
let intern_inductive ist = function
| AN (Ident (loc,id)) when find_var id ist -> ArgVar (loc,id)
| r -> ArgArg (intern_inductive_or_by_notation r)
let intern_global_reference ist = function
| Ident (loc,id) when find_var id ist -> ArgVar (loc,id)
| r ->
let loc,_ as lqid = qualid_of_reference r in
try ArgArg (loc,locate_global_with_alias lqid)
with Not_found ->
error_global_not_found_loc lqid
let intern_ltac_variable ist = function
| Ident (loc,id) ->
if find_ltacvar id ist then
(* A local variable of any type *)
ArgVar (loc,id)
else
(* A recursive variable *)
ArgArg (loc,find_recvar id ist)
| _ ->
raise Not_found
let intern_constr_reference strict ist = function
| Ident (_,id) as r when not strict & find_hyp id ist ->
GVar (dloc,id), Some (CRef r)
| Ident (_,id) as r when find_ctxvar id ist ->
GVar (dloc,id), if strict then None else Some (CRef r)
| r ->
let loc,_ as lqid = qualid_of_reference r in
GRef (loc,locate_global_with_alias lqid), if strict then None else Some (CRef r)
let intern_move_location ist = function
| MoveAfter id -> MoveAfter (intern_hyp_or_metaid ist id)
| MoveBefore id -> MoveBefore (intern_hyp_or_metaid ist id)
| MoveToEnd toleft as x -> x
(* Internalize an isolated reference in position of tactic *)
let intern_isolated_global_tactic_reference r =
let (loc,qid) = qualid_of_reference r in
try TacCall (loc,ArgArg (loc,locate_tactic qid),[])
with Not_found ->
match r with
| Ident (_,id) -> Tacexp (lookup_atomic id)
| _ -> raise Not_found
let intern_isolated_tactic_reference strict ist r =
(* An ltac reference *)
try Reference (intern_ltac_variable ist r)
with Not_found ->
(* A global tactic *)
try intern_isolated_global_tactic_reference r
with Not_found ->
(* Tolerance for compatibility, allow not to use "constr:" *)
try ConstrMayEval (ConstrTerm (intern_constr_reference strict ist r))
with Not_found ->
(* Reference not found *)
error_global_not_found_loc (qualid_of_reference r)
(* Internalize an applied tactic reference *)
let intern_applied_global_tactic_reference r =
let (loc,qid) = qualid_of_reference r in
ArgArg (loc,locate_tactic qid)
let intern_applied_tactic_reference ist r =
(* An ltac reference *)
try intern_ltac_variable ist r
with Not_found ->
(* A global tactic *)
try intern_applied_global_tactic_reference r
with Not_found ->
(* Reference not found *)
error_global_not_found_loc (qualid_of_reference r)
(* Intern a reference parsed in a non-tactic entry *)
let intern_non_tactic_reference strict ist r =
(* An ltac reference *)
try Reference (intern_ltac_variable ist r)
with Not_found ->
(* A constr reference *)
try ConstrMayEval (ConstrTerm (intern_constr_reference strict ist r))
with Not_found ->
(* Tolerance for compatibility, allow not to use "ltac:" *)
try intern_isolated_global_tactic_reference r
with Not_found ->
(* By convention, use IntroIdentifier for unbound ident, when not in a def *)
match r with
| Ident (loc,id) when not strict -> IntroPattern (loc,IntroIdentifier id)
| _ ->
(* Reference not found *)
error_global_not_found_loc (qualid_of_reference r)
let intern_message_token ist = function
| (MsgString _ | MsgInt _ as x) -> x
| MsgIdent id -> MsgIdent (intern_hyp_or_metaid ist id)
let intern_message ist = List.map (intern_message_token ist)
let rec intern_intro_pattern lf ist = function
| loc, IntroOrAndPattern l ->
loc, IntroOrAndPattern (intern_or_and_intro_pattern lf ist l)
| loc, IntroIdentifier id ->
loc, IntroIdentifier (intern_ident lf ist id)
| loc, IntroFresh id ->
loc, IntroFresh (intern_ident lf ist id)
| loc, (IntroWildcard | IntroAnonymous | IntroRewrite _ | IntroForthcoming _)
as x -> x
and intern_or_and_intro_pattern lf ist =
List.map (List.map (intern_intro_pattern lf ist))
let intern_quantified_hypothesis ist = function
| AnonHyp n -> AnonHyp n
| NamedHyp id ->
(* Uncomment to disallow "intros until n" in ltac when n is not bound *)
NamedHyp ((*snd (intern_hyp ist (dloc,*)id(* ))*))
let intern_binding_name ist x =
(* We use identifier both for variables and binding names *)
(* Todo: consider the body of the lemma to which the binding refer
and if a term w/o ltac vars, check the name is indeed quantified *)
x
let intern_constr_gen allow_patvar isarity {ltacvars=lfun; gsigma=sigma; genv=env} c =
let warn = if !strict_check then fun x -> x else Constrintern.for_grammar in
let c' =
warn (Constrintern.intern_gen isarity ~allow_patvar ~ltacvars:(fst lfun,[]) sigma env) c
in
(c',if !strict_check then None else Some c)
let intern_constr = intern_constr_gen false false
let intern_type = intern_constr_gen false true
(* Globalize bindings *)
let intern_binding ist (loc,b,c) =
(loc,intern_binding_name ist b,intern_constr ist c)
let intern_bindings ist = function
| NoBindings -> NoBindings
| ImplicitBindings l -> ImplicitBindings (List.map (intern_constr ist) l)
| ExplicitBindings l -> ExplicitBindings (List.map (intern_binding ist) l)
let intern_constr_with_bindings ist (c,bl) =
(intern_constr ist c, intern_bindings ist bl)
(* TODO: catch ltac vars *)
let intern_induction_arg ist = function
| ElimOnConstr c -> ElimOnConstr (intern_constr_with_bindings ist c)
| ElimOnAnonHyp n as x -> x
| ElimOnIdent (loc,id) ->
if !strict_check then
(* If in a defined tactic, no intros-until *)
match intern_constr ist (CRef (Ident (dloc,id))) with
| GVar (loc,id),_ -> ElimOnIdent (loc,id)
| c -> ElimOnConstr (c,NoBindings)
else
ElimOnIdent (loc,id)
let short_name = function
| AN (Ident (loc,id)) when not !strict_check -> Some (loc,id)
| _ -> None
let intern_evaluable_global_reference ist r =
let lqid = qualid_of_reference r in
try evaluable_of_global_reference ist.genv (locate_global_with_alias lqid)
with Not_found ->
match r with
| Ident (loc,id) when not !strict_check -> EvalVarRef id
| _ -> error_global_not_found_loc lqid
let intern_evaluable_reference_or_by_notation ist = function
| AN r -> intern_evaluable_global_reference ist r
| ByNotation (loc,ntn,sc) ->
evaluable_of_global_reference ist.genv
(Notation.interp_notation_as_global_reference loc
(function ConstRef _ | VarRef _ -> true | _ -> false) ntn sc)
(* Globalize a reduction expression *)
let intern_evaluable ist = function
| AN (Ident (loc,id)) when find_ltacvar id ist -> ArgVar (loc,id)
| AN (Ident (loc,id)) when not !strict_check & find_hyp id ist ->
ArgArg (EvalVarRef id, Some (loc,id))
| AN (Ident (loc,id)) when find_ctxvar id ist ->
ArgArg (EvalVarRef id, if !strict_check then None else Some (loc,id))
| r ->
let e = intern_evaluable_reference_or_by_notation ist r in
let na = short_name r in
ArgArg (e,na)
let intern_unfold ist (l,qid) = (l,intern_evaluable ist qid)
let intern_flag ist red =
{ red with rConst = List.map (intern_evaluable ist) red.rConst }
let intern_constr_with_occurrences ist (l,c) = (l,intern_constr ist c)
let intern_constr_pattern ist ltacvars pc =
let metas,pat =
Constrintern.intern_constr_pattern ist.gsigma ist.genv ~ltacvars pc in
let c = intern_constr_gen true false ist pc in
metas,(c,pat)
let intern_typed_pattern ist p =
let dummy_pat = PRel 0 in
(* we cannot ensure in non strict mode that the pattern is closed *)
(* keeping a constr_expr copy is too complicated and we want anyway to *)
(* type it, so we remember the pattern as a glob_constr only *)
(intern_constr_gen true false ist p,dummy_pat)
let intern_typed_pattern_with_occurrences ist (l,p) =
(l,intern_typed_pattern ist p)
(* This seems fairly hacky, but it's the first way I've found to get proper
globalization of [unfold]. --adamc *)
let dump_glob_red_expr = function
| Unfold occs -> List.iter (fun (_, r) ->
try
Dumpglob.add_glob (loc_of_or_by_notation Libnames.loc_of_reference r)
(Smartlocate.smart_global r)
with e when Errors.noncritical e -> ()) occs
| Cbv grf | Lazy grf ->
List.iter (fun r ->
try
Dumpglob.add_glob (loc_of_or_by_notation Libnames.loc_of_reference r)
(Smartlocate.smart_global r)
with e when Errors.noncritical e -> ()) grf.rConst
| _ -> ()
let intern_red_expr ist = function
| Unfold l -> Unfold (List.map (intern_unfold ist) l)
| Fold l -> Fold (List.map (intern_constr ist) l)
| Cbv f -> Cbv (intern_flag ist f)
| Lazy f -> Lazy (intern_flag ist f)
| Pattern l -> Pattern (List.map (intern_constr_with_occurrences ist) l)
| Simpl o -> Simpl (Option.map (intern_typed_pattern_with_occurrences ist) o)
| (Red _ | Hnf | ExtraRedExpr _ | CbvVm as r ) -> r
let intern_in_hyp_as ist lf (id,ipat) =
(intern_hyp_or_metaid ist id, Option.map (intern_intro_pattern lf ist) ipat)
let intern_hyp_list ist = List.map (intern_hyp_or_metaid ist)
let intern_inversion_strength lf ist = function
| NonDepInversion (k,idl,ids) ->
NonDepInversion (k,intern_hyp_list ist idl,
Option.map (intern_intro_pattern lf ist) ids)
| DepInversion (k,copt,ids) ->
DepInversion (k, Option.map (intern_constr ist) copt,
Option.map (intern_intro_pattern lf ist) ids)
| InversionUsing (c,idl) ->
InversionUsing (intern_constr ist c, intern_hyp_list ist idl)
(* Interprets an hypothesis name *)
let intern_hyp_location ist (((b,occs),id),hl) =
(((b,List.map (intern_or_var ist) occs),intern_hyp_or_metaid ist id), hl)
(* Reads a pattern *)
let intern_pattern ist ?(as_type=false) lfun = function
| Subterm (b,ido,pc) ->
let ltacvars = (lfun,[]) in
let (metas,pc) = intern_constr_pattern ist ltacvars pc in
ido, metas, Subterm (b,ido,pc)
| Term pc ->
let ltacvars = (lfun,[]) in
let (metas,pc) = intern_constr_pattern ist ltacvars pc in
None, metas, Term pc
let intern_constr_may_eval ist = function
| ConstrEval (r,c) -> ConstrEval (intern_red_expr ist r,intern_constr ist c)
| ConstrContext (locid,c) ->
ConstrContext (intern_hyp ist locid,intern_constr ist c)
| ConstrTypeOf c -> ConstrTypeOf (intern_constr ist c)
| ConstrTerm c -> ConstrTerm (intern_constr ist c)
(* External tactics *)
let print_xml_term = ref (fun _ -> failwith "print_xml_term unset")
let declare_xml_printer f = print_xml_term := f
let internalise_tacarg ch = G_xml.parse_tactic_arg ch
let extern_tacarg ch env sigma = function
| VConstr ([],c) -> !print_xml_term ch env sigma c
| VRTactic _ | VFun _ | VVoid | VInteger _ | VConstr_context _
| VIntroPattern _ | VRec _ | VList _ | VConstr _ ->
error "Only externing of closed terms is implemented."
let extern_request ch req gl la =
output_string ch "<REQUEST req=\""; output_string ch req;
output_string ch "\">\n";
List.iter (pf_apply (extern_tacarg ch) gl) la;
output_string ch "</REQUEST>\n"
let value_of_ident id = VIntroPattern (IntroIdentifier id)
let extend_values_with_bindings (ln,lm) lfun =
let lnames = List.map (fun (id,id') ->(id,value_of_ident id')) ln in
let lmatch = List.map (fun (id,(ids,c)) -> (id,VConstr (ids,c))) lm in
(* For compatibility, bound variables are visible only if no other
binding of the same name exists *)
lmatch@lfun@lnames
(* Reads the hypotheses of a "match goal" rule *)
let rec intern_match_goal_hyps ist lfun = function
| (Hyp ((_,na) as locna,mp))::tl ->
let ido, metas1, pat = intern_pattern ist ~as_type:true lfun mp in
let lfun, metas2, hyps = intern_match_goal_hyps ist lfun tl in
let lfun' = name_cons na (Option.List.cons ido lfun) in
lfun', metas1@metas2, Hyp (locna,pat)::hyps
| (Def ((_,na) as locna,mv,mp))::tl ->
let ido, metas1, patv = intern_pattern ist ~as_type:false lfun mv in
let ido', metas2, patt = intern_pattern ist ~as_type:true lfun mp in
let lfun, metas3, hyps = intern_match_goal_hyps ist lfun tl in
let lfun' = name_cons na (Option.List.cons ido' (Option.List.cons ido lfun)) in
lfun', metas1@metas2@metas3, Def (locna,patv,patt)::hyps
| [] -> lfun, [], []
(* Utilities *)
let extract_let_names lrc =
List.fold_right
(fun ((loc,name),_) l ->
if List.mem name l then
user_err_loc
(loc, "glob_tactic", str "This variable is bound several times.");
name::l)
lrc []
let clause_app f = function
{ onhyps=None; concl_occs=nl } ->
{ onhyps=None; concl_occs=nl }
| { onhyps=Some l; concl_occs=nl } ->
{ onhyps=Some(List.map f l); concl_occs=nl}
(* Globalizes tactics : raw_tactic_expr -> glob_tactic_expr *)
let rec intern_atomic lf ist x =
match (x:raw_atomic_tactic_expr) with
(* Basic tactics *)
| TacIntroPattern l ->
TacIntroPattern (List.map (intern_intro_pattern lf ist) l)
| TacIntrosUntil hyp -> TacIntrosUntil (intern_quantified_hypothesis ist hyp)
| TacIntroMove (ido,hto) ->
TacIntroMove (Option.map (intern_ident lf ist) ido,
intern_move_location ist hto)
| TacAssumption -> TacAssumption
| TacExact c -> TacExact (intern_constr ist c)
| TacExactNoCheck c -> TacExactNoCheck (intern_constr ist c)
| TacVmCastNoCheck c -> TacVmCastNoCheck (intern_constr ist c)
| TacApply (a,ev,cb,inhyp) ->
TacApply (a,ev,List.map (intern_constr_with_bindings ist) cb,
Option.map (intern_in_hyp_as ist lf) inhyp)
| TacElim (ev,cb,cbo) ->
TacElim (ev,intern_constr_with_bindings ist cb,
Option.map (intern_constr_with_bindings ist) cbo)
| TacElimType c -> TacElimType (intern_type ist c)
| TacCase (ev,cb) -> TacCase (ev,intern_constr_with_bindings ist cb)
| TacCaseType c -> TacCaseType (intern_type ist c)
| TacFix (idopt,n) -> TacFix (Option.map (intern_ident lf ist) idopt,n)
| TacMutualFix (b,id,n,l) ->
let f (id,n,c) = (intern_ident lf ist id,n,intern_type ist c) in
TacMutualFix (b,intern_ident lf ist id, n, List.map f l)
| TacCofix idopt -> TacCofix (Option.map (intern_ident lf ist) idopt)
| TacMutualCofix (b,id,l) ->
let f (id,c) = (intern_ident lf ist id,intern_type ist c) in
TacMutualCofix (b,intern_ident lf ist id, List.map f l)
| TacCut c -> TacCut (intern_type ist c)
| TacAssert (otac,ipat,c) ->
TacAssert (Option.map (intern_pure_tactic ist) otac,
Option.map (intern_intro_pattern lf ist) ipat,
intern_constr_gen false (otac<>None) ist c)
| TacGeneralize cl ->
TacGeneralize (List.map (fun (c,na) ->
intern_constr_with_occurrences ist c,
intern_name lf ist na) cl)
| TacGeneralizeDep c -> TacGeneralizeDep (intern_constr ist c)
| TacLetTac (na,c,cls,b,eqpat) ->
let na = intern_name lf ist na in
TacLetTac (na,intern_constr ist c,
(clause_app (intern_hyp_location ist) cls),b,
(Option.map (intern_intro_pattern lf ist) eqpat))
(* Automation tactics *)
| TacTrivial (d,lems,l) -> TacTrivial (d,List.map (intern_constr ist) lems,l)
| TacAuto (d,n,lems,l) ->
TacAuto (d,Option.map (intern_or_var ist) n,
List.map (intern_constr ist) lems,l)
(* Derived basic tactics *)
| TacSimpleInductionDestruct (isrec,h) ->
TacSimpleInductionDestruct (isrec,intern_quantified_hypothesis ist h)
| TacInductionDestruct (ev,isrec,(l,el,cls)) ->
TacInductionDestruct (ev,isrec,(List.map (fun (c,(ipato,ipats)) ->
(intern_induction_arg ist c,
(Option.map (intern_intro_pattern lf ist) ipato,
Option.map (intern_intro_pattern lf ist) ipats))) l,
Option.map (intern_constr_with_bindings ist) el,
Option.map (clause_app (intern_hyp_location ist)) cls))
| TacDoubleInduction (h1,h2) ->
let h1 = intern_quantified_hypothesis ist h1 in
let h2 = intern_quantified_hypothesis ist h2 in
TacDoubleInduction (h1,h2)
| TacDecomposeAnd c -> TacDecomposeAnd (intern_constr ist c)
| TacDecomposeOr c -> TacDecomposeOr (intern_constr ist c)
| TacDecompose (l,c) -> let l = List.map (intern_inductive ist) l in
TacDecompose (l,intern_constr ist c)
| TacSpecialize (n,l) -> TacSpecialize (n,intern_constr_with_bindings ist l)
| TacLApply c -> TacLApply (intern_constr ist c)
(* Context management *)
| TacClear (b,l) -> TacClear (b,List.map (intern_hyp_or_metaid ist) l)
| TacClearBody l -> TacClearBody (List.map (intern_hyp_or_metaid ist) l)
| TacMove (dep,id1,id2) ->
TacMove (dep,intern_hyp_or_metaid ist id1,intern_move_location ist id2)
| TacRename l ->
TacRename (List.map (fun (id1,id2) ->
intern_hyp_or_metaid ist id1,
intern_hyp_or_metaid ist id2) l)
| TacRevert l -> TacRevert (List.map (intern_hyp_or_metaid ist) l)
(* Constructors *)
| TacLeft (ev,bl) -> TacLeft (ev,intern_bindings ist bl)
| TacRight (ev,bl) -> TacRight (ev,intern_bindings ist bl)
| TacSplit (ev,b,bll) -> TacSplit (ev,b,List.map (intern_bindings ist) bll)
| TacAnyConstructor (ev,t) -> TacAnyConstructor (ev,Option.map (intern_pure_tactic ist) t)
| TacConstructor (ev,n,bl) -> TacConstructor (ev,intern_or_var ist n,intern_bindings ist bl)
(* Conversion *)
| TacReduce (r,cl) ->
dump_glob_red_expr r;
TacReduce (intern_red_expr ist r, clause_app (intern_hyp_location ist) cl)
| TacChange (None,c,cl) ->
TacChange (None,
(if (cl.onhyps = None or cl.onhyps = Some []) &
(cl.concl_occs = all_occurrences_expr or
cl.concl_occs = no_occurrences_expr)
then intern_type ist c else intern_constr ist c),
clause_app (intern_hyp_location ist) cl)
| TacChange (Some p,c,cl) ->
TacChange (Some (intern_typed_pattern ist p),intern_constr ist c,
clause_app (intern_hyp_location ist) cl)
(* Equivalence relations *)
| TacReflexivity -> TacReflexivity
| TacSymmetry idopt ->
TacSymmetry (clause_app (intern_hyp_location ist) idopt)
| TacTransitivity c -> TacTransitivity (Option.map (intern_constr ist) c)
(* Equality and inversion *)
| TacRewrite (ev,l,cl,by) ->
TacRewrite
(ev,
List.map (fun (b,m,c) -> (b,m,intern_constr_with_bindings ist c)) l,
clause_app (intern_hyp_location ist) cl,
Option.map (intern_pure_tactic ist) by)
| TacInversion (inv,hyp) ->
TacInversion (intern_inversion_strength lf ist inv,
intern_quantified_hypothesis ist hyp)
(* For extensions *)
| TacExtend (loc,opn,l) ->
let _ = lookup_tactic opn in
TacExtend (adjust_loc loc,opn,List.map (intern_genarg ist) l)
| TacAlias (loc,s,l,(dir,body)) ->
let l = List.map (fun (id,a) -> (id,intern_genarg ist a)) l in
TacAlias (loc,s,l,(dir,body))
and intern_tactic onlytac ist tac = snd (intern_tactic_seq onlytac ist tac)
and intern_tactic_seq onlytac ist = function
| TacAtom (loc,t) ->
let lf = ref ist.ltacvars in
let t = intern_atomic lf ist t in
!lf, TacAtom (adjust_loc loc, t)
| TacFun tacfun -> ist.ltacvars, TacFun (intern_tactic_fun ist tacfun)
| TacLetIn (isrec,l,u) ->
let (l1,l2) = ist.ltacvars in
let ist' = { ist with ltacvars = (extract_let_names l @ l1, l2) } in
let l = List.map (fun (n,b) ->
(n,intern_tacarg !strict_check false (if isrec then ist' else ist) b)) l in
ist.ltacvars, TacLetIn (isrec,l,intern_tactic onlytac ist' u)
| TacMatchGoal (lz,lr,lmr) ->
ist.ltacvars, TacMatchGoal(lz,lr, intern_match_rule onlytac ist lmr)
| TacMatch (lz,c,lmr) ->
ist.ltacvars,
TacMatch (lz,intern_tactic_or_tacarg ist c,intern_match_rule onlytac ist lmr)
| TacId l -> ist.ltacvars, TacId (intern_message ist l)
| TacFail (n,l) ->
ist.ltacvars, TacFail (intern_or_var ist n,intern_message ist l)
| TacProgress tac -> ist.ltacvars, TacProgress (intern_pure_tactic ist tac)
| TacAbstract (tac,s) ->
ist.ltacvars, TacAbstract (intern_pure_tactic ist tac,s)
| TacThen (t1,[||],t2,[||]) ->
let lfun', t1 = intern_tactic_seq onlytac ist t1 in
let lfun'', t2 = intern_tactic_seq onlytac { ist with ltacvars = lfun' } t2 in
lfun'', TacThen (t1,[||],t2,[||])
| TacThen (t1,tf,t2,tl) ->
let lfun', t1 = intern_tactic_seq onlytac ist t1 in
let ist' = { ist with ltacvars = lfun' } in
(* Que faire en cas de (tac complexe avec Match et Thens; tac2) ?? *)
lfun', TacThen (t1,Array.map (intern_pure_tactic ist') tf,intern_pure_tactic ist' t2,
Array.map (intern_pure_tactic ist') tl)
| TacThens (t,tl) ->
let lfun', t = intern_tactic_seq true ist t in
let ist' = { ist with ltacvars = lfun' } in
(* Que faire en cas de (tac complexe avec Match et Thens; tac2) ?? *)
lfun', TacThens (t, List.map (intern_pure_tactic ist') tl)
| TacDo (n,tac) ->
ist.ltacvars, TacDo (intern_or_var ist n,intern_pure_tactic ist tac)
| TacTry tac -> ist.ltacvars, TacTry (intern_pure_tactic ist tac)
| TacInfo tac -> ist.ltacvars, TacInfo (intern_pure_tactic ist tac)
| TacRepeat tac -> ist.ltacvars, TacRepeat (intern_pure_tactic ist tac)
| TacTimeout (n,tac) ->
ist.ltacvars, TacTimeout (intern_or_var ist n,intern_tactic onlytac ist tac)
| TacOrelse (tac1,tac2) ->
ist.ltacvars, TacOrelse (intern_pure_tactic ist tac1,intern_pure_tactic ist tac2)
| TacFirst l -> ist.ltacvars, TacFirst (List.map (intern_pure_tactic ist) l)
| TacSolve l -> ist.ltacvars, TacSolve (List.map (intern_pure_tactic ist) l)
| TacComplete tac -> ist.ltacvars, TacComplete (intern_pure_tactic ist tac)
| TacArg (loc,a) -> ist.ltacvars, intern_tactic_as_arg loc onlytac ist a
and intern_tactic_as_arg loc onlytac ist a =
match intern_tacarg !strict_check onlytac ist a with
| TacCall _ | TacExternal _ | Reference _ | TacDynamic _ as a -> TacArg (loc,a)
| Tacexp a -> a
| TacVoid | IntroPattern _ | Integer _
| ConstrMayEval _ | TacFreshId _ as a ->
if onlytac then error_tactic_expected loc else TacArg (loc,a)
| MetaIdArg _ -> assert false
and intern_tactic_or_tacarg ist = intern_tactic false ist
and intern_pure_tactic ist = intern_tactic true ist
and intern_tactic_fun ist (var,body) =
let (l1,l2) = ist.ltacvars in
let lfun' = List.rev_append (Option.List.flatten var) l1 in
(var,intern_tactic_or_tacarg { ist with ltacvars = (lfun',l2) } body)
and intern_tacarg strict onlytac ist = function
| TacVoid -> TacVoid
| Reference r -> intern_non_tactic_reference strict ist r
| IntroPattern ipat ->
let lf = ref([],[]) in (*How to know what names the intropattern binds?*)
IntroPattern (intern_intro_pattern lf ist ipat)
| Integer n -> Integer n
| ConstrMayEval c -> ConstrMayEval (intern_constr_may_eval ist c)
| MetaIdArg (loc,istac,s) ->
(* $id can occur in Grammar tactic... *)
let id = id_of_string s in
if find_ltacvar id ist then
if istac then Reference (ArgVar (adjust_loc loc,id))
else ConstrMayEval (ConstrTerm (GVar (adjust_loc loc,id), None))
else error_syntactic_metavariables_not_allowed loc
| TacCall (loc,f,[]) -> intern_isolated_tactic_reference strict ist f
| TacCall (loc,f,l) ->
TacCall (loc,
intern_applied_tactic_reference ist f,
List.map (intern_tacarg !strict_check false ist) l)
| TacExternal (loc,com,req,la) ->
TacExternal (loc,com,req,List.map (intern_tacarg !strict_check false ist) la)
| TacFreshId x -> TacFreshId (List.map (intern_or_var ist) x)
| Tacexp t -> Tacexp (intern_tactic onlytac ist t)
| TacDynamic(loc,t) as x ->
(match Dyn.tag t with
| "tactic" | "value" -> x
| "constr" -> if onlytac then error_tactic_expected loc else x
| s -> anomaly_loc (loc, "",
str "Unknown dynamic: <" ++ str s ++ str ">"))
(* Reads the rules of a Match Context or a Match *)
and intern_match_rule onlytac ist = function
| (All tc)::tl ->
All (intern_tactic onlytac ist tc) :: (intern_match_rule onlytac ist tl)
| (Pat (rl,mp,tc))::tl ->
let {ltacvars=(lfun,l2); gsigma=sigma; genv=env} = ist in
let lfun',metas1,hyps = intern_match_goal_hyps ist lfun rl in
let ido,metas2,pat = intern_pattern ist lfun mp in
let metas = list_uniquize (metas1@metas2) in
let ist' = { ist with ltacvars = (metas@(Option.List.cons ido lfun'),l2) } in
Pat (hyps,pat,intern_tactic onlytac ist' tc) :: (intern_match_rule onlytac ist tl)
| [] -> []
and intern_genarg ist x =
match genarg_tag x with
| BoolArgType -> in_gen globwit_bool (out_gen rawwit_bool x)
| IntArgType -> in_gen globwit_int (out_gen rawwit_int x)
| IntOrVarArgType ->
in_gen globwit_int_or_var
(intern_or_var ist (out_gen rawwit_int_or_var x))
| StringArgType ->
in_gen globwit_string (out_gen rawwit_string x)
| PreIdentArgType ->
in_gen globwit_pre_ident (out_gen rawwit_pre_ident x)
| IntroPatternArgType ->
let lf = ref ([],[]) in
(* how to know which names are bound by the intropattern *)
in_gen globwit_intro_pattern
(intern_intro_pattern lf ist (out_gen rawwit_intro_pattern x))
| IdentArgType b ->
let lf = ref ([],[]) in
in_gen (globwit_ident_gen b)
(intern_ident lf ist (out_gen (rawwit_ident_gen b) x))
| VarArgType ->
in_gen globwit_var (intern_hyp ist (out_gen rawwit_var x))
| RefArgType ->
in_gen globwit_ref (intern_global_reference ist (out_gen rawwit_ref x))
| SortArgType ->
in_gen globwit_sort (out_gen rawwit_sort x)
| ConstrArgType ->
in_gen globwit_constr (intern_constr ist (out_gen rawwit_constr x))
| ConstrMayEvalArgType ->
in_gen globwit_constr_may_eval
(intern_constr_may_eval ist (out_gen rawwit_constr_may_eval x))
| QuantHypArgType ->
in_gen globwit_quant_hyp
(intern_quantified_hypothesis ist (out_gen rawwit_quant_hyp x))
| RedExprArgType ->
in_gen globwit_red_expr (intern_red_expr ist (out_gen rawwit_red_expr x))
| OpenConstrArgType (b1,b2) ->
in_gen (globwit_open_constr_gen (b1,b2))
((),intern_constr ist (snd (out_gen (rawwit_open_constr_gen (b1,b2)) x)))
| ConstrWithBindingsArgType ->
in_gen globwit_constr_with_bindings
(intern_constr_with_bindings ist (out_gen rawwit_constr_with_bindings x))
| BindingsArgType ->
in_gen globwit_bindings
(intern_bindings ist (out_gen rawwit_bindings x))
| List0ArgType _ -> app_list0 (intern_genarg ist) x
| List1ArgType _ -> app_list1 (intern_genarg ist) x
| OptArgType _ -> app_opt (intern_genarg ist) x
| PairArgType _ -> app_pair (intern_genarg ist) (intern_genarg ist) x
| ExtraArgType s ->
match tactic_genarg_level s with
| Some n ->
(* Special treatment of tactic arguments *)
in_gen (globwit_tactic n) (intern_tactic_or_tacarg ist
(out_gen (rawwit_tactic n) x))
| None ->
lookup_genarg_glob s ist x
(************* End globalization ************)
(***************************************************************************)
(* Evaluation/interpretation *)
let is_variable env id =
List.mem id (ids_of_named_context (Environ.named_context env))
(* Debug reference *)
let debug = ref DebugOff
(* Sets the debugger mode *)
let set_debug pos = debug := pos
(* Gives the state of debug *)
let get_debug () = !debug
let debugging_step ist pp =
match ist.debug with
| DebugOn lev ->
safe_msgnl (str "Level " ++ int lev ++ str": " ++ pp () ++ fnl())
| _ -> ()
let debugging_exception_step ist signal_anomaly e pp =
let explain_exc =
if signal_anomaly then explain_logic_error
else explain_logic_error_no_anomaly in
debugging_step ist (fun () ->
pp() ++ spc() ++ str "raised the exception" ++ fnl() ++ !explain_exc e)
let error_ltac_variable loc id env v s =
user_err_loc (loc, "", str "Ltac variable " ++ pr_id id ++
strbrk " is bound to" ++ spc () ++ pr_value env v ++ spc () ++
strbrk "which cannot be coerced to " ++ str s ++ str".")
exception CannotCoerceTo of string
(* Raise Not_found if not in interpretation sign *)
let try_interp_ltac_var coerce ist env (loc,id) =
let v = List.assoc id ist.lfun in
try coerce v with CannotCoerceTo s -> error_ltac_variable loc id env v s
let interp_ltac_var coerce ist env locid =
try try_interp_ltac_var coerce ist env locid
with Not_found -> anomaly ("Detected '" ^ (string_of_id (snd locid)) ^ "' as ltac var at interning time")
(* Interprets an identifier which must be fresh *)
let coerce_to_ident fresh env = function
| VIntroPattern (IntroIdentifier id) -> id
| VConstr ([],c) when isVar c & not (fresh & is_variable env (destVar c)) ->
(* We need it fresh for intro e.g. in "Tac H = clear H; intro H" *)
destVar c
| v -> raise (CannotCoerceTo "a fresh identifier")
let interp_ident_gen fresh ist env id =
try try_interp_ltac_var (coerce_to_ident fresh env) ist (Some env) (dloc,id)
with Not_found -> id
let interp_ident = interp_ident_gen false
let interp_fresh_ident = interp_ident_gen true
let pf_interp_ident id gl = interp_ident_gen false id (pf_env gl)
let pf_interp_fresh_ident id gl = interp_ident_gen true id (pf_env gl)
(* Interprets an optional identifier which must be fresh *)
let interp_fresh_name ist env = function
| Anonymous -> Anonymous
| Name id -> Name (interp_fresh_ident ist env id)
let coerce_to_intro_pattern env = function
| VIntroPattern ipat -> ipat
| VConstr ([],c) when isVar c ->
(* This happens e.g. in definitions like "Tac H = clear H; intro H" *)
(* but also in "destruct H as (H,H')" *)
IntroIdentifier (destVar c)
| v -> raise (CannotCoerceTo "an introduction pattern")
let interp_intro_pattern_var loc ist env id =
try try_interp_ltac_var (coerce_to_intro_pattern env) ist (Some env) (loc,id)
with Not_found -> IntroIdentifier id
let coerce_to_hint_base = function
| VIntroPattern (IntroIdentifier id) -> string_of_id id
| _ -> raise (CannotCoerceTo "a hint base name")
let interp_hint_base ist s =
try try_interp_ltac_var coerce_to_hint_base ist None (dloc,id_of_string s)
with Not_found -> s
let coerce_to_int = function
| VInteger n -> n
| v -> raise (CannotCoerceTo "an integer")
let interp_int ist locid =
try try_interp_ltac_var coerce_to_int ist None locid
with Not_found ->
user_err_loc(fst locid,"interp_int",
str "Unbound variable " ++ pr_id (snd locid) ++ str".")
let interp_int_or_var ist = function
| ArgVar locid -> interp_int ist locid
| ArgArg n -> n
let int_or_var_list_of_VList = function
| VList l -> List.map (fun n -> ArgArg (coerce_to_int n)) l
| _ -> raise Not_found
let interp_int_or_var_as_list ist = function
| ArgVar (_,id as locid) ->
(try int_or_var_list_of_VList (List.assoc id ist.lfun)
with Not_found | CannotCoerceTo _ -> [ArgArg (interp_int ist locid)])
| ArgArg n as x -> [x]
let interp_int_or_var_list ist l =
List.flatten (List.map (interp_int_or_var_as_list ist) l)
let constr_of_value env = function
| VConstr csr -> csr
| VIntroPattern (IntroIdentifier id) -> ([],constr_of_id env id)
| _ -> raise Not_found
let closed_constr_of_value env v =
let ids,c = constr_of_value env v in
if ids <> [] then raise Not_found;
c
let coerce_to_hyp env = function
| VConstr ([],c) when isVar c -> destVar c
| VIntroPattern (IntroIdentifier id) when is_variable env id -> id
| _ -> raise (CannotCoerceTo "a variable")
(* Interprets a bound variable (especially an existing hypothesis) *)
let interp_hyp ist gl (loc,id as locid) =
let env = pf_env gl in
(* Look first in lfun for a value coercible to a variable *)
try try_interp_ltac_var (coerce_to_hyp env) ist (Some env) locid
with Not_found ->
(* Then look if bound in the proof context at calling time *)
if is_variable env id then id
else user_err_loc (loc,"eval_variable",
str "No such hypothesis: " ++ pr_id id ++ str ".")
let hyp_list_of_VList env = function
| VList l -> List.map (coerce_to_hyp env) l
| _ -> raise Not_found
let interp_hyp_list_as_list ist gl (loc,id as x) =
try hyp_list_of_VList (pf_env gl) (List.assoc id ist.lfun)
with Not_found | CannotCoerceTo _ -> [interp_hyp ist gl x]
let interp_hyp_list ist gl l =
List.flatten (List.map (interp_hyp_list_as_list ist gl) l)
let interp_move_location ist gl = function
| MoveAfter id -> MoveAfter (interp_hyp ist gl id)
| MoveBefore id -> MoveBefore (interp_hyp ist gl id)
| MoveToEnd toleft as x -> x
(* Interprets a qualified name *)
let coerce_to_reference env v =
try match v with
| VConstr ([],c) -> global_of_constr c (* may raise Not_found *)
| _ -> raise Not_found
with Not_found -> raise (CannotCoerceTo "a reference")
let interp_reference ist env = function
| ArgArg (_,r) -> r
| ArgVar locid ->
interp_ltac_var (coerce_to_reference env) ist (Some env) locid
let pf_interp_reference ist gl = interp_reference ist (pf_env gl)
let coerce_to_inductive = function
| VConstr ([],c) when isInd c -> destInd c
| _ -> raise (CannotCoerceTo "an inductive type")
let interp_inductive ist = function
| ArgArg r -> r
| ArgVar locid -> interp_ltac_var coerce_to_inductive ist None locid
let coerce_to_evaluable_ref env v =
let ev = match v with
| VConstr ([],c) when isConst c -> EvalConstRef (destConst c)
| VConstr ([],c) when isVar c -> EvalVarRef (destVar c)
| VIntroPattern (IntroIdentifier id) when List.mem id (ids_of_context env)
-> EvalVarRef id
| _ -> raise (CannotCoerceTo "an evaluable reference")
in
if not (Tacred.is_evaluable env ev) then
raise (CannotCoerceTo "an evaluable reference")
else
ev
let interp_evaluable ist env = function
| ArgArg (r,Some (loc,id)) ->
(* Maybe [id] has been introduced by Intro-like tactics *)
(try match Environ.lookup_named id env with
| (_,Some _,_) -> EvalVarRef id
| _ -> error_not_evaluable (VarRef id)
with Not_found ->
match r with
| EvalConstRef _ -> r
| _ -> error_global_not_found_loc (loc,qualid_of_ident id))
| ArgArg (r,None) -> r
| ArgVar locid ->
interp_ltac_var (coerce_to_evaluable_ref env) ist (Some env) locid
(* Interprets an hypothesis name *)
let interp_occurrences ist (b,occs) =
(b,interp_int_or_var_list ist occs)
let interp_hyp_location ist gl ((occs,id),hl) =
((interp_occurrences ist occs,interp_hyp ist gl id),hl)
let interp_clause ist gl { onhyps=ol; concl_occs=occs } =
{ onhyps=Option.map(List.map (interp_hyp_location ist gl)) ol;
concl_occs=interp_occurrences ist occs }
(* Interpretation of constructions *)
(* Extract the constr list from lfun *)
let extract_ltac_constr_values ist env =
let rec aux = function
| (id,v)::tl ->
let (l1,l2) = aux tl in
(try ((id,constr_of_value env v)::l1,l2)
with Not_found ->
let ido = match v with
| VIntroPattern (IntroIdentifier id0) -> Some id0
| _ -> None in
(l1,(id,ido)::l2))
| [] -> ([],[]) in
aux ist.lfun
(* Extract the identifier list from lfun: join all branches (what to do else?)*)
let rec intropattern_ids (loc,pat) = match pat with
| IntroIdentifier id -> [id]
| IntroOrAndPattern ll ->
List.flatten (List.map intropattern_ids (List.flatten ll))
| IntroWildcard | IntroAnonymous | IntroFresh _ | IntroRewrite _
| IntroForthcoming _ -> []
let rec extract_ids ids = function
| (id,VIntroPattern ipat)::tl when not (List.mem id ids) ->
intropattern_ids (dloc,ipat) @ extract_ids ids tl
| _::tl -> extract_ids ids tl
| [] -> []
let default_fresh_id = id_of_string "H"
let interp_fresh_id ist env l =
let ids = map_succeed (function ArgVar(_,id) -> id | _ -> failwith "") l in
let avoid = (extract_ids ids ist.lfun) @ ist.avoid_ids in
let id =
if l = [] then default_fresh_id
else
let s =
String.concat "" (List.map (function
| ArgArg s -> s
| ArgVar (_,id) -> string_of_id (interp_ident ist env id)) l) in
let s = if Lexer.is_keyword s then s^"0" else s in
id_of_string s in
Tactics.fresh_id_in_env avoid id env
let pf_interp_fresh_id ist gl = interp_fresh_id ist (pf_env gl)
let interp_gen kind ist allow_patvar expand_evar fail_evar use_classes env sigma (c,ce) =
let (ltacvars,unbndltacvars as vars) = extract_ltac_constr_values ist env in
let c = match ce with
| None -> c
(* If at toplevel (ce<>None), the error can be due to an incorrect
context at globalization time: we retype with the now known
intros/lettac/inversion hypothesis names *)
| Some c ->
let ltacdata = (List.map fst ltacvars,unbndltacvars) in
intern_gen (kind = IsType) ~allow_patvar ~ltacvars:ltacdata sigma env c
in
let trace = push_trace (dloc,LtacConstrInterp (c,vars)) ist.trace in
let evdc =
catch_error trace
(understand_ltac ~resolve_classes:use_classes expand_evar sigma env vars kind) c in
let (evd,c) =
if expand_evar then
solve_remaining_evars fail_evar use_classes
solve_by_implicit_tactic env sigma evdc
else
evdc in
db_constr ist.debug env c;
(evd,c)
(* Interprets a constr; expects evars to be solved *)
let interp_constr_gen kind ist env sigma c =
interp_gen kind ist false true true true env sigma c
let interp_constr = interp_constr_gen (OfType None)
let interp_type = interp_constr_gen IsType
(* Interprets an open constr *)
let interp_open_constr_gen kind ist =
interp_gen kind ist false true false false
(* wTC is for retrocompatibility: TC resolution started only if needed *)
let interp_open_constr ccl wTC ist e s t =
try interp_gen (OfType ccl) ist false true false (ccl<>None) e s t
with ex when Pretype_errors.precatchable_exception ex && ccl = None && wTC ->
interp_gen (OfType ccl) ist false true false true e s t
let interp_pure_open_constr ist =
interp_gen (OfType None) ist false false false false
let interp_typed_pattern ist env sigma (c,_) =
let sigma, c =
interp_gen (OfType None) ist true false false false env sigma c in
pattern_of_constr sigma c
(* Interprets a constr expression casted by the current goal *)
let pf_interp_casted_constr ist gl c =
interp_constr_gen (OfType (Some (pf_concl gl))) ist (pf_env gl) (project gl) c
(* Interprets a constr expression *)
let pf_interp_constr ist gl =
interp_constr ist (pf_env gl) (project gl)
let constr_list_of_VList env = function
| VList l -> List.map (closed_constr_of_value env) l
| _ -> raise Not_found
let interp_constr_in_compound_list inj_fun dest_fun interp_fun ist env sigma l =
let try_expand_ltac_var sigma x =
try match dest_fun x with
| GVar (_,id), _ ->
sigma,
List.map inj_fun (constr_list_of_VList env (List.assoc id ist.lfun))
| _ ->
raise Not_found
with Not_found ->
(*all of dest_fun, List.assoc, constr_list_of_VList may raise Not_found*)
let sigma, c = interp_fun ist env sigma x in
sigma, [c] in
let sigma, l = list_fold_map try_expand_ltac_var sigma l in
sigma, List.flatten l
let interp_constr_list ist env sigma c =
interp_constr_in_compound_list (fun x -> x) (fun x -> x) interp_constr ist env sigma c
let interp_open_constr_list =
interp_constr_in_compound_list (fun x -> x) (fun x -> x)
(interp_open_constr None false)
let interp_auto_lemmas ist env sigma lems =
let local_sigma, lems = interp_open_constr_list ist env sigma lems in
List.map (fun lem -> (local_sigma,lem)) lems
(* Interprets a type expression *)
let pf_interp_type ist gl =
interp_type ist (pf_env gl) (project gl)
(* Interprets a reduction expression *)
let interp_unfold ist env (occs,qid) =
(interp_occurrences ist occs,interp_evaluable ist env qid)
let interp_flag ist env red =
{ red with rConst = List.map (interp_evaluable ist env) red.rConst }
let interp_constr_with_occurrences ist sigma env (occs,c) =
let (sigma,c_interp) = interp_constr ist sigma env c in
sigma , (interp_occurrences ist occs, c_interp)
let interp_typed_pattern_with_occurrences ist env sigma (occs,c) =
let sign,p = interp_typed_pattern ist env sigma c in
sign, (interp_occurrences ist occs, p)
let interp_closed_typed_pattern_with_occurrences ist env sigma occl =
snd (interp_typed_pattern_with_occurrences ist env sigma occl)
let interp_constr_with_occurrences_and_name_as_list =
interp_constr_in_compound_list
(fun c -> ((all_occurrences_expr,c),Anonymous))
(function ((occs,c),Anonymous) when occs = all_occurrences_expr -> c
| _ -> raise Not_found)
(fun ist env sigma (occ_c,na) ->
let (sigma,c_interp) = interp_constr_with_occurrences ist env sigma occ_c in
sigma, (c_interp,
interp_fresh_name ist env na))
let interp_red_expr ist sigma env = function
| Unfold l -> sigma , Unfold (List.map (interp_unfold ist env) l)
| Fold l ->
let (sigma,l_interp) = interp_constr_list ist env sigma l in
sigma , Fold l_interp
| Cbv f -> sigma , Cbv (interp_flag ist env f)
| Lazy f -> sigma , Lazy (interp_flag ist env f)
| Pattern l ->
let (sigma,l_interp) =
List.fold_right begin fun c (sigma,acc) ->
let (sigma,c_interp) = interp_constr_with_occurrences ist env sigma c in
sigma , c_interp :: acc
end l (sigma,[])
in
sigma , Pattern l_interp
| Simpl o ->
sigma , Simpl(Option.map (interp_closed_typed_pattern_with_occurrences ist env sigma) o)
| (Red _ | Hnf | ExtraRedExpr _ | CbvVm as r) -> sigma , r
let pf_interp_red_expr ist gl = interp_red_expr ist (project gl) (pf_env gl)
let interp_may_eval f ist gl = function
| ConstrEval (r,c) ->
let (sigma,redexp) = pf_interp_red_expr ist gl r in
let (sigma,c_interp) = f ist { gl with sigma=sigma } c in
sigma , pf_reduction_of_red_expr gl redexp c_interp
| ConstrContext ((loc,s),c) ->
(try
let (sigma,ic) = f ist gl c
and ctxt = constr_of_VConstr_context (List.assoc s ist.lfun) in
sigma , subst_meta [special_meta,ic] ctxt
with
| Not_found ->
user_err_loc (loc, "interp_may_eval",
str "Unbound context identifier" ++ pr_id s ++ str"."))
| ConstrTypeOf c ->
let (sigma,c_interp) = f ist gl c in
sigma , pf_type_of gl c_interp
| ConstrTerm c ->
try
f ist gl c
with reraise ->
debugging_exception_step ist false reraise (fun () ->
str"interpretation of term " ++ pr_glob_constr_env (pf_env gl) (fst c));
raise reraise
(* Interprets a constr expression possibly to first evaluate *)
let interp_constr_may_eval ist gl c =
let (sigma,csr) =
try
interp_may_eval pf_interp_constr ist gl c
with reraise ->
debugging_exception_step ist false reraise (fun () ->
str"evaluation of term");
raise reraise
in
begin
db_constr ist.debug (pf_env gl) csr;
sigma , csr
end
let rec message_of_value gl = function
| VVoid -> str "()"
| VInteger n -> int n
| VIntroPattern ipat -> pr_intro_pattern (dloc,ipat)
| VConstr_context c -> pr_constr_env (pf_env gl) c
| VConstr c -> pr_constr_under_binders_env (pf_env gl) c
| VRec _ | VRTactic _ | VFun _ -> str "<tactic>"
| VList l -> prlist_with_sep spc (message_of_value gl) l
let rec interp_message_token ist gl = function
| MsgString s -> str s
| MsgInt n -> int n
| MsgIdent (loc,id) ->
let v =
try List.assoc id ist.lfun
with Not_found -> user_err_loc (loc,"",pr_id id ++ str" not found.") in
message_of_value gl v
let rec interp_message_nl ist gl = function
| [] -> mt()
| l -> prlist_with_sep spc (interp_message_token ist gl) l ++ fnl()
let interp_message ist gl l =
(* Force evaluation of interp_message_token so that potential errors
are raised now and not at printing time *)
prlist (fun x -> spc () ++ x) (List.map (interp_message_token ist gl) l)
let intro_pattern_list_of_Vlist loc env = function
| VList l -> List.map (fun a -> loc,coerce_to_intro_pattern env a) l
| _ -> raise Not_found
let rec interp_intro_pattern ist gl = function
| loc, IntroOrAndPattern l ->
loc, IntroOrAndPattern (interp_or_and_intro_pattern ist gl l)
| loc, IntroIdentifier id ->
loc, interp_intro_pattern_var loc ist (pf_env gl) id
| loc, IntroFresh id ->
loc, IntroFresh (interp_fresh_ident ist (pf_env gl) id)
| loc, (IntroWildcard | IntroAnonymous | IntroRewrite _ | IntroForthcoming _)
as x -> x
and interp_or_and_intro_pattern ist gl =
List.map (interp_intro_pattern_list_as_list ist gl)
and interp_intro_pattern_list_as_list ist gl = function
| [loc,IntroIdentifier id] as l ->
(try intro_pattern_list_of_Vlist loc (pf_env gl) (List.assoc id ist.lfun)
with Not_found | CannotCoerceTo _ ->
List.map (interp_intro_pattern ist gl) l)
| l -> List.map (interp_intro_pattern ist gl) l
let interp_in_hyp_as ist gl (id,ipat) =
(interp_hyp ist gl id,Option.map (interp_intro_pattern ist gl) ipat)
(* Quantified named or numbered hypothesis or hypothesis in context *)
(* (as in Inversion) *)
let coerce_to_quantified_hypothesis = function
| VInteger n -> AnonHyp n
| VIntroPattern (IntroIdentifier id) -> NamedHyp id
| v -> raise (CannotCoerceTo "a quantified hypothesis")
let interp_quantified_hypothesis ist = function
| AnonHyp n -> AnonHyp n
| NamedHyp id ->
try try_interp_ltac_var coerce_to_quantified_hypothesis ist None(dloc,id)
with Not_found -> NamedHyp id
let interp_binding_name ist = function
| AnonHyp n -> AnonHyp n
| NamedHyp id ->
(* If a name is bound, it has to be a quantified hypothesis *)
(* user has to use other names for variables if these ones clash with *)
(* a name intented to be used as a (non-variable) identifier *)
try try_interp_ltac_var coerce_to_quantified_hypothesis ist None(dloc,id)
with Not_found -> NamedHyp id
(* Quantified named or numbered hypothesis or hypothesis in context *)
(* (as in Inversion) *)
let coerce_to_decl_or_quant_hyp env = function
| VInteger n -> AnonHyp n
| v ->
try NamedHyp (coerce_to_hyp env v)
with CannotCoerceTo _ ->
raise (CannotCoerceTo "a declared or quantified hypothesis")
let interp_declared_or_quantified_hypothesis ist gl = function
| AnonHyp n -> AnonHyp n
| NamedHyp id ->
let env = pf_env gl in
try try_interp_ltac_var
(coerce_to_decl_or_quant_hyp env) ist (Some env) (dloc,id)
with Not_found -> NamedHyp id
let interp_binding ist env sigma (loc,b,c) =
let sigma, c = interp_open_constr None false ist env sigma c in
sigma, (loc,interp_binding_name ist b,c)
let interp_bindings ist env sigma = function
| NoBindings ->
sigma, NoBindings
| ImplicitBindings l ->
let sigma, l = interp_open_constr_list ist env sigma l in
sigma, ImplicitBindings l
| ExplicitBindings l ->
let sigma, l = list_fold_map (interp_binding ist env) sigma l in
sigma, ExplicitBindings l
let interp_constr_with_bindings ist env sigma (c,bl) =
let sigma, bl = interp_bindings ist env sigma bl in
let sigma, c = interp_open_constr None false ist env sigma c in
sigma, (c,bl)
let interp_open_constr_with_bindings wTC ist env sigma (c,bl) =
let sigma, bl = interp_bindings ist env sigma bl in
let sigma, c = interp_open_constr None wTC ist env sigma c in
sigma, (c, bl)
let loc_of_bindings = function
| NoBindings -> dummy_loc
| ImplicitBindings l -> loc_of_glob_constr (fst (list_last l))
| ExplicitBindings l -> pi1 (list_last l)
let interp_open_constr_with_bindings_loc wTC ist env sigma ((c,_),bl as cb) =
let loc1 = loc_of_glob_constr c in
let loc2 = loc_of_bindings bl in
let loc = if loc2 = dummy_loc then loc1 else join_loc loc1 loc2 in
let sigma, cb = interp_open_constr_with_bindings wTC ist env sigma cb in
sigma, (loc,cb)
let interp_induction_arg ist gl arg =
let env = pf_env gl and sigma = project gl in
match arg with
| ElimOnConstr c ->
ElimOnConstr (interp_constr_with_bindings ist env sigma c)
| ElimOnAnonHyp n as x -> x
| ElimOnIdent (loc,id) ->
try
match List.assoc id ist.lfun with
| VInteger n ->
ElimOnAnonHyp n
| VIntroPattern (IntroIdentifier id') ->
if Tactics.is_quantified_hypothesis id' gl
then ElimOnIdent (loc,id')
else
(try ElimOnConstr (sigma,(constr_of_id env id',NoBindings))
with Not_found ->
user_err_loc (loc,"",
pr_id id ++ strbrk " binds to " ++ pr_id id' ++ strbrk " which is neither a declared or a quantified hypothesis."))
| VConstr ([],c) ->
ElimOnConstr (sigma,(c,NoBindings))
| _ -> user_err_loc (loc,"",
strbrk "Cannot coerce " ++ pr_id id ++
strbrk " neither to a quantified hypothesis nor to a term.")
with Not_found ->
(* We were in non strict (interactive) mode *)
if Tactics.is_quantified_hypothesis id gl then
ElimOnIdent (loc,id)
else
let c = (GVar (loc,id),Some (CRef (Ident (loc,id)))) in
let (sigma,c) = interp_constr ist env sigma c in
ElimOnConstr (sigma,(c,NoBindings))
(* Associates variables with values and gives the remaining variables and
values *)
let head_with_value (lvar,lval) =
let rec head_with_value_rec lacc = function
| ([],[]) -> (lacc,[],[])
| (vr::tvr,ve::tve) ->
(match vr with
| None -> head_with_value_rec lacc (tvr,tve)
| Some v -> head_with_value_rec ((v,ve)::lacc) (tvr,tve))
| (vr,[]) -> (lacc,vr,[])
| ([],ve) -> (lacc,[],ve)
in
head_with_value_rec [] (lvar,lval)
(* Gives a context couple if there is a context identifier *)
let give_context ctxt = function
| None -> []
| Some id -> [id,VConstr_context ctxt]
(* Reads a pattern by substituting vars of lfun *)
let use_types = false
let eval_pattern lfun ist env sigma (_,pat as c) =
if use_types then
snd (interp_typed_pattern ist env sigma c)
else
instantiate_pattern sigma lfun pat
let read_pattern lfun ist env sigma = function
| Subterm (b,ido,c) -> Subterm (b,ido,eval_pattern lfun ist env sigma c)
| Term c -> Term (eval_pattern lfun ist env sigma c)
(* Reads the hypotheses of a Match Context rule *)
let cons_and_check_name id l =
if List.mem id l then
user_err_loc (dloc,"read_match_goal_hyps",
strbrk ("Hypothesis pattern-matching variable "^(string_of_id id)^
" used twice in the same pattern."))
else id::l
let rec read_match_goal_hyps lfun ist env sigma lidh = function
| (Hyp ((loc,na) as locna,mp))::tl ->
let lidh' = name_fold cons_and_check_name na lidh in
Hyp (locna,read_pattern lfun ist env sigma mp)::
(read_match_goal_hyps lfun ist env sigma lidh' tl)
| (Def ((loc,na) as locna,mv,mp))::tl ->
let lidh' = name_fold cons_and_check_name na lidh in
Def (locna,read_pattern lfun ist env sigma mv, read_pattern lfun ist env sigma mp)::
(read_match_goal_hyps lfun ist env sigma lidh' tl)
| [] -> []
(* Reads the rules of a Match Context or a Match *)
let rec read_match_rule lfun ist env sigma = function
| (All tc)::tl -> (All tc)::(read_match_rule lfun ist env sigma tl)
| (Pat (rl,mp,tc))::tl ->
Pat (read_match_goal_hyps lfun ist env sigma [] rl, read_pattern lfun ist env sigma mp,tc)
:: read_match_rule lfun ist env sigma tl
| [] -> []
(* For Match Context and Match *)
exception Not_coherent_metas
exception Eval_fail of std_ppcmds
let is_match_catchable = function
| PatternMatchingFailure | Eval_fail _ -> true
| e -> Logic.catchable_exception e
let equal_instances gl (ctx',c') (ctx,c) =
(* How to compare instances? Do we want the terms to be convertible?
unifiable? Do we want the universe levels to be relevant?
(historically, conv_x is used) *)
ctx = ctx' & pf_conv_x gl c' c
(* Verifies if the matched list is coherent with respect to lcm *)
(* While non-linear matching is modulo eq_constr in matches, merge of *)
(* different instances of the same metavars is here modulo conversion... *)
let verify_metas_coherence gl (ln1,lcm) (ln,lm) =
let rec aux = function
| (id,c as x)::tl ->
if List.for_all (fun (id',c') -> id'<>id or equal_instances gl c' c) lcm
then
x :: aux tl
else
raise Not_coherent_metas
| [] -> lcm in
(ln@ln1,aux lm)
let adjust (l,lc) = (l,List.map (fun (id,c) -> (id,([],c))) lc)
(* Tries to match one hypothesis pattern with a list of hypotheses *)
let apply_one_mhyp_context ist env gl lmatch (hypname,patv,pat) lhyps =
let get_id_couple id = function
| Name idpat -> [idpat,VConstr ([],mkVar id)]
| Anonymous -> [] in
let match_pat lmatch hyp pat =
match pat with
| Term t ->
let lmeta = extended_matches t hyp in
(try
let lmeta = verify_metas_coherence gl lmatch lmeta in
([],lmeta,(fun () -> raise PatternMatchingFailure))
with
| Not_coherent_metas -> raise PatternMatchingFailure);
| Subterm (b,ic,t) ->
let rec match_next_pattern find_next () =
let (lmeta,ctxt,find_next') = find_next () in
try
let lmeta = verify_metas_coherence gl lmatch (adjust lmeta) in
(give_context ctxt ic,lmeta,match_next_pattern find_next')
with
| Not_coherent_metas -> match_next_pattern find_next' () in
match_next_pattern (fun () -> match_subterm_gen b t hyp) () in
let rec apply_one_mhyp_context_rec = function
| (id,b,hyp as hd)::tl ->
(match patv with
| None ->
let rec match_next_pattern find_next () =
try
let (ids, lmeta, find_next') = find_next () in
(get_id_couple id hypname@ids, lmeta, hd,
match_next_pattern find_next')
with
| PatternMatchingFailure -> apply_one_mhyp_context_rec tl in
match_next_pattern (fun () ->
let hyp = if b<>None then refresh_universes_strict hyp else hyp in
match_pat lmatch hyp pat) ()
| Some patv ->
match b with
| Some body ->
let rec match_next_pattern_in_body next_in_body () =
try
let (ids,lmeta,next_in_body') = next_in_body() in
let rec match_next_pattern_in_typ next_in_typ () =
try
let (ids',lmeta',next_in_typ') = next_in_typ() in
(get_id_couple id hypname@ids@ids', lmeta', hd,
match_next_pattern_in_typ next_in_typ')
with
| PatternMatchingFailure ->
match_next_pattern_in_body next_in_body' () in
match_next_pattern_in_typ
(fun () ->
let hyp = refresh_universes_strict hyp in
match_pat lmeta hyp pat) ()
with PatternMatchingFailure -> apply_one_mhyp_context_rec tl
in
match_next_pattern_in_body
(fun () -> match_pat lmatch body patv) ()
| None -> apply_one_mhyp_context_rec tl)
| [] ->
db_hyp_pattern_failure ist.debug env (hypname,pat);
raise PatternMatchingFailure
in
apply_one_mhyp_context_rec lhyps
(* misc *)
let mk_constr_value ist gl c =
let (sigma,c_interp) = pf_interp_constr ist gl c in
sigma,VConstr ([],c_interp)
let mk_open_constr_value wTC ist gl c =
let (sigma,c_interp) = pf_apply (interp_open_constr None wTC ist) gl c in
sigma,VConstr ([],c_interp)
let mk_hyp_value ist gl c = VConstr ([],mkVar (interp_hyp ist gl c))
let mk_int_or_var_value ist c = VInteger (interp_int_or_var ist c)
let pack_sigma (sigma,c) = {it=c;sigma=sigma}
let extend_gl_hyps { it=gl ; sigma=sigma } sign =
Goal.V82.new_goal_with sigma gl sign
(* Interprets an l-tac expression into a value *)
let rec val_interp ist gl (tac:glob_tactic_expr) =
let value_interp ist = match tac with
(* Immediate evaluation *)
| TacFun (it,body) -> project gl , VFun (ist.trace,ist.lfun,it,body)
| TacLetIn (true,l,u) -> interp_letrec ist gl l u
| TacLetIn (false,l,u) -> interp_letin ist gl l u
| TacMatchGoal (lz,lr,lmr) -> interp_match_goal ist gl lz lr lmr
| TacMatch (lz,c,lmr) -> interp_match ist gl lz c lmr
| TacArg (loc,a) -> interp_tacarg ist gl a
(* Delayed evaluation *)
| t -> project gl , VFun (ist.trace,ist.lfun,[],t)
in check_for_interrupt ();
match ist.debug with
| DebugOn lev ->
debug_prompt lev gl tac (fun v -> value_interp {ist with debug=v})
| _ -> value_interp ist
and eval_tactic ist = function
| TacAtom (loc,t) ->
fun gl ->
let box = ref None in abstract_tactic_box := box;
let call = LtacAtomCall (t,box) in
let tac = (* catch error in the interpretation *)
catch_error (push_trace(dloc,call)ist.trace)
(interp_atomic ist gl) t in
(* catch error in the evaluation *)
catch_error (push_trace(loc,call)ist.trace) tac gl
| TacFun _ | TacLetIn _ -> assert false
| TacMatchGoal _ | TacMatch _ -> assert false
| TacId s -> fun gl ->
let res = tclIDTAC_MESSAGE (interp_message_nl ist gl s) gl in
db_breakpoint ist.debug s; res
| TacFail (n,s) -> fun gl -> tclFAIL (interp_int_or_var ist n) (interp_message ist gl s) gl
| TacProgress tac -> tclPROGRESS (interp_tactic ist tac)
| TacAbstract (tac,ido) ->
fun gl -> Tactics.tclABSTRACT
(Option.map (pf_interp_ident ist gl) ido) (interp_tactic ist tac) gl
| TacThen (t1,tf,t,tl) ->
tclTHENS3PARTS (interp_tactic ist t1)
(Array.map (interp_tactic ist) tf) (interp_tactic ist t) (Array.map (interp_tactic ist) tl)
| TacThens (t1,tl) -> tclTHENS (interp_tactic ist t1) (List.map (interp_tactic ist) tl)
| TacDo (n,tac) -> tclDO (interp_int_or_var ist n) (interp_tactic ist tac)
| TacTimeout (n,tac) -> tclTIMEOUT (interp_int_or_var ist n) (interp_tactic ist tac)
| TacTry tac -> tclTRY (interp_tactic ist tac)
| TacRepeat tac -> tclREPEAT (interp_tactic ist tac)
| TacOrelse (tac1,tac2) ->
tclORELSE (interp_tactic ist tac1) (interp_tactic ist tac2)
| TacFirst l -> tclFIRST (List.map (interp_tactic ist) l)
| TacSolve l -> tclSOLVE (List.map (interp_tactic ist) l)
| TacComplete tac -> tclCOMPLETE (interp_tactic ist tac)
| TacArg a -> interp_tactic ist (TacArg a)
| TacInfo tac ->
msg_warning
(str "The general \"info\" tactic is currently not working.\n" ++
str "Some specific verbose tactics may exist instead, such as\n" ++
str "info_trivial, info_auto, info_eauto.");
eval_tactic ist tac
and force_vrec ist gl = function
| VRec (lfun,body) -> val_interp {ist with lfun = !lfun} gl body
| v -> project gl , v
and interp_ltac_reference loc' mustbetac ist gl = function
| ArgVar (loc,id) ->
let v = List.assoc id ist.lfun in
let (sigma,v) = force_vrec ist gl v in
let v = propagate_trace ist loc id v in
sigma , if mustbetac then coerce_to_tactic loc id v else v
| ArgArg (loc,r) ->
let ids = extract_ids [] ist.lfun in
let loc_info = ((if loc' = dloc then loc else loc'),LtacNameCall r) in
let ist =
{ lfun=[]; debug=ist.debug; avoid_ids=ids;
trace = push_trace loc_info ist.trace } in
val_interp ist gl (lookup r)
and interp_tacarg ist gl arg =
let evdref = ref (project gl) in
let v = match arg with
| TacVoid -> VVoid
| Reference r ->
let (sigma,v) = interp_ltac_reference dloc false ist gl r in
evdref := sigma;
v
| Integer n -> VInteger n
| IntroPattern ipat -> VIntroPattern (snd (interp_intro_pattern ist gl ipat))
| ConstrMayEval c ->
let (sigma,c_interp) = interp_constr_may_eval ist gl c in
evdref := sigma;
VConstr ([],c_interp)
| MetaIdArg (loc,_,id) -> assert false
| TacCall (loc,r,[]) ->
let (sigma,v) = interp_ltac_reference loc true ist gl r in
evdref := sigma;
v
| TacCall (loc,f,l) ->
let (sigma,fv) = interp_ltac_reference loc true ist gl f in
let (sigma,largs) =
List.fold_right begin fun a (sigma',acc) ->
let (sigma', a_interp) = interp_tacarg ist gl a in
sigma' , a_interp::acc
end l (sigma,[])
in
List.iter check_is_value largs;
let (sigma,v) = interp_app loc ist { gl with sigma=sigma } fv largs in
evdref:= sigma;
v
| TacExternal (loc,com,req,la) ->
let (sigma,la_interp) =
List.fold_right begin fun a (sigma,acc) ->
let (sigma,a_interp) = interp_tacarg ist {gl with sigma=sigma} a in
sigma , a_interp::acc
end la (project gl,[])
in
let (sigma,v) = interp_external loc ist { gl with sigma=sigma } com req la_interp in
evdref := sigma;
v
| TacFreshId l ->
let id = pf_interp_fresh_id ist gl l in
VIntroPattern (IntroIdentifier id)
| Tacexp t ->
let (sigma,v) = val_interp ist gl t in
evdref := sigma;
v
| TacDynamic(_,t) ->
let tg = (Dyn.tag t) in
if tg = "tactic" then
let (sigma,v) = val_interp ist gl (tactic_out t ist) in
evdref := sigma;
v
else if tg = "value" then
value_out t
else if tg = "constr" then
VConstr ([],constr_out t)
else
anomaly_loc (dloc, "Tacinterp.val_interp",
(str "Unknown dynamic: <" ++ str (Dyn.tag t) ++ str ">"))
in
!evdref , v
(* Interprets an application node *)
and interp_app loc ist gl fv largs =
match fv with
(* if var=[] and body has been delayed by val_interp, then body
is not a tactic that expects arguments.
Otherwise Ltac goes into an infinite loop (val_interp puts
a VFun back on body, and then interp_app is called again...) *)
| (VFun(trace,olfun,(_::_ as var),body)
|VFun(trace,olfun,([] as var),
(TacFun _|TacLetIn _|TacMatchGoal _|TacMatch _| TacArg _ as body))) ->
let (newlfun,lvar,lval)=head_with_value (var,largs) in
if lvar=[] then
let (sigma,v) =
try
catch_error trace
(val_interp {ist with lfun=newlfun@olfun; trace=trace} gl) body
with reraise ->
debugging_exception_step ist false reraise
(fun () -> str "evaluation");
raise reraise
in
let gl = { gl with sigma=sigma } in
debugging_step ist
(fun () ->
str"evaluation returns"++fnl()++pr_value (Some (pf_env gl)) v);
if lval=[] then sigma,v else interp_app loc ist gl v lval
else
project gl , VFun(trace,newlfun@olfun,lvar,body)
| _ ->
user_err_loc (loc, "Tacinterp.interp_app",
(str"Illegal tactic application."))
(* Gives the tactic corresponding to the tactic value *)
and tactic_of_value ist vle g =
match vle with
| VRTactic res -> res
| VFun (trace,lfun,[],t) ->
let tac = eval_tactic {ist with lfun=lfun; trace=trace} t in
catch_error trace tac g
| (VFun _|VRec _) -> error "A fully applied tactic is expected."
| VConstr _ -> errorlabstrm "" (str"Value is a term. Expected a tactic.")
| VConstr_context _ ->
errorlabstrm "" (str"Value is a term context. Expected a tactic.")
| VIntroPattern _ ->
errorlabstrm "" (str"Value is an intro pattern. Expected a tactic.")
| _ -> errorlabstrm "" (str"Expression does not evaluate to a tactic.")
(* Evaluation with FailError catching *)
and eval_with_fail ist is_lazy goal tac =
try
let (sigma,v) = val_interp ist goal tac in
sigma ,
(match v with
| VFun (trace,lfun,[],t) when not is_lazy ->
let tac = eval_tactic {ist with lfun=lfun; trace=trace} t in
VRTactic (catch_error trace tac { goal with sigma=sigma })
| a -> a)
with
| FailError (0,s) | Loc.Exc_located(_, FailError (0,s))
| Loc.Exc_located(_,LtacLocated (_,FailError (0,s))) ->
raise (Eval_fail (Lazy.force s))
| FailError (lvl,s) -> raise (FailError (lvl - 1, s))
| Loc.Exc_located(s,FailError (lvl,s')) ->
raise (Loc.Exc_located(s,FailError (lvl - 1, s')))
| Loc.Exc_located(s,LtacLocated (s'',FailError (lvl,s'))) ->
raise (Loc.Exc_located(s,LtacLocated (s'',FailError (lvl - 1, s'))))
(* Interprets the clauses of a recursive LetIn *)
and interp_letrec ist gl llc u =
let lref = ref ist.lfun in
let lve = list_map_left (fun ((_,id),b) -> (id,VRec (lref,TacArg (dloc,b)))) llc in
lref := lve@ist.lfun;
let ist = { ist with lfun = lve@ist.lfun } in
val_interp ist gl u
(* Interprets the clauses of a LetIn *)
and interp_letin ist gl llc u =
let (sigma,lve) =
List.fold_right begin fun ((_,id),body) (sigma,acc) ->
let (sigma,v) = interp_tacarg ist { gl with sigma=sigma } body in
check_is_value v;
sigma, (id,v)::acc
end llc (project gl,[])
in
let ist = { ist with lfun = lve@ist.lfun } in
val_interp ist { gl with sigma=sigma } u
(* Interprets the Match Context expressions *)
and interp_match_goal ist goal lz lr lmr =
let (gl,sigma) = Goal.V82.nf_evar (project goal) (sig_it goal) in
let goal = { it = gl ; sigma = sigma } in
let hyps = pf_hyps goal in
let hyps = if lr then List.rev hyps else hyps in
let concl = pf_concl goal in
let env = pf_env goal in
let rec apply_goal_sub app ist (id,c) csr mt mhyps hyps =
let rec match_next_pattern find_next () =
let (lgoal,ctxt,find_next') = find_next () in
let lctxt = give_context ctxt id in
try apply_hyps_context ist env lz goal mt lctxt (adjust lgoal) mhyps hyps
with e when is_match_catchable e -> match_next_pattern find_next' () in
match_next_pattern (fun () -> match_subterm_gen app c csr) () in
let rec apply_match_goal ist env goal nrs lex lpt =
begin
if lex<>[] then db_pattern_rule ist.debug nrs (List.hd lex);
match lpt with
| (All t)::tl ->
begin
db_mc_pattern_success ist.debug;
try eval_with_fail ist lz goal t
with e when is_match_catchable e ->
apply_match_goal ist env goal (nrs+1) (List.tl lex) tl
end
| (Pat (mhyps,mgoal,mt))::tl ->
let mhyps = List.rev mhyps (* Sens naturel *) in
(match mgoal with
| Term mg ->
(try
let lmatch = extended_matches mg concl in
db_matched_concl ist.debug env concl;
apply_hyps_context ist env lz goal mt [] lmatch mhyps hyps
with e when is_match_catchable e ->
(match e with
| PatternMatchingFailure -> db_matching_failure ist.debug
| Eval_fail s -> db_eval_failure ist.debug s
| _ -> db_logic_failure ist.debug e);
apply_match_goal ist env goal (nrs+1) (List.tl lex) tl)
| Subterm (b,id,mg) ->
(try apply_goal_sub b ist (id,mg) concl mt mhyps hyps
with
| PatternMatchingFailure ->
apply_match_goal ist env goal (nrs+1) (List.tl lex) tl))
| _ ->
errorlabstrm "Tacinterp.apply_match_goal"
(v 0 (str "No matching clauses for match goal" ++
(if ist.debug=DebugOff then
fnl() ++ str "(use \"Set Ltac Debug\" for more info)"
else mt()) ++ str"."))
end in
apply_match_goal ist env goal 0 lmr
(read_match_rule (fst (extract_ltac_constr_values ist env))
ist env (project goal) lmr)
(* Tries to match the hypotheses in a Match Context *)
and apply_hyps_context ist env lz goal mt lctxt lgmatch mhyps hyps =
let rec apply_hyps_context_rec lfun lmatch lhyps_rest = function
| hyp_pat::tl ->
let (hypname, _, _ as hyp_pat) =
match hyp_pat with
| Hyp ((_,hypname),mhyp) -> hypname, None, mhyp
| Def ((_,hypname),mbod,mhyp) -> hypname, Some mbod, mhyp
in
let rec match_next_pattern find_next =
let (lids,lm,hyp_match,find_next') = find_next () in
db_matched_hyp ist.debug (pf_env goal) hyp_match hypname;
try
let id_match = pi1 hyp_match in
let nextlhyps = list_remove_assoc_in_triple id_match lhyps_rest in
apply_hyps_context_rec (lfun@lids) lm nextlhyps tl
with e when is_match_catchable e ->
match_next_pattern find_next' in
let init_match_pattern () =
apply_one_mhyp_context ist env goal lmatch hyp_pat lhyps_rest in
match_next_pattern init_match_pattern
| [] ->
let lfun = extend_values_with_bindings lmatch (lfun@ist.lfun) in
db_mc_pattern_success ist.debug;
eval_with_fail {ist with lfun=lfun} lz goal mt
in
apply_hyps_context_rec lctxt lgmatch hyps mhyps
and interp_external loc ist gl com req la =
let f ch = extern_request ch req gl la in
let g ch = internalise_tacarg ch in
interp_tacarg ist gl (System.connect f g com)
(* Interprets extended tactic generic arguments *)
and interp_genarg ist gl x =
let evdref = ref (project gl) in
let rec interp_genarg ist gl x =
let gl = { gl with sigma = !evdref } in
match genarg_tag x with
| BoolArgType -> in_gen wit_bool (out_gen globwit_bool x)
| IntArgType -> in_gen wit_int (out_gen globwit_int x)
| IntOrVarArgType ->
in_gen wit_int_or_var
(ArgArg (interp_int_or_var ist (out_gen globwit_int_or_var x)))
| StringArgType ->
in_gen wit_string (out_gen globwit_string x)
| PreIdentArgType ->
in_gen wit_pre_ident (out_gen globwit_pre_ident x)
| IntroPatternArgType ->
in_gen wit_intro_pattern
(interp_intro_pattern ist gl (out_gen globwit_intro_pattern x))
| IdentArgType b ->
in_gen (wit_ident_gen b)
(pf_interp_fresh_ident ist gl (out_gen (globwit_ident_gen b) x))
| VarArgType ->
in_gen wit_var (interp_hyp ist gl (out_gen globwit_var x))
| RefArgType ->
in_gen wit_ref (pf_interp_reference ist gl (out_gen globwit_ref x))
| SortArgType ->
let (sigma,c_interp) =
pf_interp_constr ist gl
(GSort (dloc,out_gen globwit_sort x), None)
in
evdref := sigma;
in_gen wit_sort
(destSort c_interp)
| ConstrArgType ->
let (sigma,c_interp) = pf_interp_constr ist gl (out_gen globwit_constr x) in
evdref := sigma;
in_gen wit_constr c_interp
| ConstrMayEvalArgType ->
let (sigma,c_interp) = interp_constr_may_eval ist gl (out_gen globwit_constr_may_eval x) in
evdref := sigma;
in_gen wit_constr_may_eval c_interp
| QuantHypArgType ->
in_gen wit_quant_hyp
(interp_declared_or_quantified_hypothesis ist gl
(out_gen globwit_quant_hyp x))
| RedExprArgType ->
let (sigma,r_interp) = pf_interp_red_expr ist gl (out_gen globwit_red_expr x) in
evdref := sigma;
in_gen wit_red_expr r_interp
| OpenConstrArgType (casted,wTC) ->
in_gen (wit_open_constr_gen (casted,wTC))
(interp_open_constr (if casted then Some (pf_concl gl) else None) wTC
ist (pf_env gl) (project gl)
(snd (out_gen (globwit_open_constr_gen (casted,wTC)) x)))
| ConstrWithBindingsArgType ->
in_gen wit_constr_with_bindings
(pack_sigma (interp_constr_with_bindings ist (pf_env gl) (project gl)
(out_gen globwit_constr_with_bindings x)))
| BindingsArgType ->
in_gen wit_bindings
(pack_sigma (interp_bindings ist (pf_env gl) (project gl) (out_gen globwit_bindings x)))
| List0ArgType ConstrArgType ->
let (sigma,v) = interp_genarg_constr_list0 ist gl x in
evdref := sigma;
v
| List1ArgType ConstrArgType ->
let (sigma,v) = interp_genarg_constr_list1 ist gl x in
evdref := sigma;
v
| List0ArgType VarArgType -> interp_genarg_var_list0 ist gl x
| List1ArgType VarArgType -> interp_genarg_var_list1 ist gl x
| List0ArgType _ -> app_list0 (interp_genarg ist gl) x
| List1ArgType _ -> app_list1 (interp_genarg ist gl) x
| OptArgType _ -> app_opt (interp_genarg ist gl) x
| PairArgType _ -> app_pair (interp_genarg ist gl) (interp_genarg ist gl) x
| ExtraArgType s ->
match tactic_genarg_level s with
| Some n ->
(* Special treatment of tactic arguments *)
in_gen (wit_tactic n)
(TacArg(dloc,valueIn(VFun(ist.trace,ist.lfun,[],
out_gen (globwit_tactic n) x))))
| None ->
let (sigma,v) = lookup_interp_genarg s ist gl x in
evdref:=sigma;
v
in
let v = interp_genarg ist gl x in
!evdref , v
and interp_genarg_constr_list0 ist gl x =
let lc = out_gen (wit_list0 globwit_constr) x in
let (sigma,lc) = pf_apply (interp_constr_list ist) gl lc in
sigma , in_gen (wit_list0 wit_constr) lc
and interp_genarg_constr_list1 ist gl x =
let lc = out_gen (wit_list1 globwit_constr) x in
let (sigma,lc) = pf_apply (interp_constr_list ist) gl lc in
sigma , in_gen (wit_list1 wit_constr) lc
and interp_genarg_var_list0 ist gl x =
let lc = out_gen (wit_list0 globwit_var) x in
let lc = interp_hyp_list ist gl lc in
in_gen (wit_list0 wit_var) lc
and interp_genarg_var_list1 ist gl x =
let lc = out_gen (wit_list1 globwit_var) x in
let lc = interp_hyp_list ist gl lc in
in_gen (wit_list1 wit_var) lc
(* Interprets the Match expressions *)
and interp_match ist g lz constr lmr =
let rec apply_match_subterm app ist (id,c) csr mt =
let rec match_next_pattern find_next () =
let (lmatch,ctxt,find_next') = find_next () in
let lctxt = give_context ctxt id in
let lfun = extend_values_with_bindings (adjust lmatch) (lctxt@ist.lfun) in
try eval_with_fail {ist with lfun=lfun} lz g mt
with e when is_match_catchable e ->
match_next_pattern find_next' () in
match_next_pattern (fun () -> match_subterm_gen app c csr) () in
let rec apply_match ist sigma csr = let g = { g with sigma=sigma } in function
| (All t)::tl ->
(try eval_with_fail ist lz g t
with e when is_match_catchable e -> apply_match ist sigma csr tl)
| (Pat ([],Term c,mt))::tl ->
(try
let lmatch =
try extended_matches c csr
with reraise ->
debugging_exception_step ist false reraise (fun () ->
str "matching with pattern" ++ fnl () ++
pr_constr_pattern_env (pf_env g) c);
raise reraise
in
try
let lfun = extend_values_with_bindings lmatch ist.lfun in
eval_with_fail { ist with lfun=lfun } lz g mt
with reraise ->
debugging_exception_step ist false reraise (fun () ->
str "rule body for pattern" ++
pr_constr_pattern_env (pf_env g) c);
raise reraise
with e when is_match_catchable e ->
debugging_step ist (fun () -> str "switching to the next rule");
apply_match ist sigma csr tl)
| (Pat ([],Subterm (b,id,c),mt))::tl ->
(try apply_match_subterm b ist (id,c) csr mt
with PatternMatchingFailure -> apply_match ist sigma csr tl)
| _ ->
errorlabstrm "Tacinterp.apply_match" (str
"No matching clauses for match.") in
let (sigma,csr) =
try interp_ltac_constr ist g constr with reraise ->
debugging_exception_step ist true reraise
(fun () -> str "evaluation of the matched expression");
raise reraise in
let ilr = read_match_rule (fst (extract_ltac_constr_values ist (pf_env g))) ist (pf_env g) sigma lmr in
let res =
try apply_match ist sigma csr ilr with reraise ->
debugging_exception_step ist true reraise
(fun () -> str "match expression");
raise reraise in
debugging_step ist (fun () ->
str "match expression returns " ++ pr_value (Some (pf_env g)) (snd res));
res
(* Interprets tactic expressions : returns a "constr" *)
and interp_ltac_constr ist gl e =
let (sigma, result) =
try val_interp ist gl e with Not_found ->
debugging_step ist (fun () ->
str "evaluation failed for" ++ fnl() ++
Pptactic.pr_glob_tactic (pf_env gl) e);
raise Not_found in
try
let cresult = constr_of_value (pf_env gl) result in
debugging_step ist (fun () ->
Pptactic.pr_glob_tactic (pf_env gl) e ++ fnl() ++
str " has value " ++ fnl() ++
pr_constr_under_binders_env (pf_env gl) cresult);
if fst cresult <> [] then raise Not_found;
sigma , snd cresult
with Not_found ->
errorlabstrm ""
(str "Must evaluate to a closed term" ++ fnl() ++
str "offending expression: " ++ fnl() ++
Pptactic.pr_glob_tactic (pf_env gl) e ++ fnl() ++ str "this is a " ++
(match result with
| VRTactic _ -> str "VRTactic"
| VFun (_,il,ul,b) ->
(str "VFun with body " ++ fnl() ++
Pptactic.pr_glob_tactic (pf_env gl) b ++ fnl() ++
str "instantiated arguments " ++ fnl() ++
List.fold_right
(fun p s ->
let (i,v) = p in str (string_of_id i) ++ str ", " ++ s)
il (str "") ++
str "uninstantiated arguments " ++ fnl() ++
List.fold_right
(fun opt_id s ->
(match opt_id with
Some id -> str (string_of_id id)
| None -> str "_") ++ str ", " ++ s)
ul (mt()))
| VVoid -> str "VVoid"
| VInteger _ -> str "VInteger"
| VConstr _ -> str "VConstr"
| VIntroPattern _ -> str "VIntroPattern"
| VConstr_context _ -> str "VConstrr_context"
| VRec _ -> str "VRec"
| VList _ -> str "VList") ++ str".")
(* Interprets tactic expressions : returns a "tactic" *)
and interp_tactic ist tac gl =
let (sigma,v) = val_interp ist gl tac in
tactic_of_value ist v { gl with sigma=sigma }
(* Interprets a primitive tactic *)
and interp_atomic ist gl tac =
let env = pf_env gl and sigma = project gl in
match tac with
(* Basic tactics *)
| TacIntroPattern l ->
h_intro_patterns (interp_intro_pattern_list_as_list ist gl l)
| TacIntrosUntil hyp ->
h_intros_until (interp_quantified_hypothesis ist hyp)
| TacIntroMove (ido,hto) ->
h_intro_move (Option.map (interp_fresh_ident ist env) ido)
(interp_move_location ist gl hto)
| TacAssumption -> h_assumption
| TacExact c ->
let (sigma,c_interp) = pf_interp_casted_constr ist gl c in
tclTHEN
(tclEVARS sigma)
(h_exact c_interp)
| TacExactNoCheck c ->
let (sigma,c_interp) = pf_interp_constr ist gl c in
tclTHEN
(tclEVARS sigma)
(h_exact_no_check c_interp)
| TacVmCastNoCheck c ->
let (sigma,c_interp) = pf_interp_constr ist gl c in
tclTHEN
(tclEVARS sigma)
(h_vm_cast_no_check c_interp)
| TacApply (a,ev,cb,cl) ->
let sigma, l =
list_fold_map (interp_open_constr_with_bindings_loc true ist env) sigma cb
in
let tac = match cl with
| None -> h_apply a ev
| Some cl ->
(fun l -> h_apply_in a ev l (interp_in_hyp_as ist gl cl)) in
tclWITHHOLES ev tac sigma l
| TacElim (ev,cb,cbo) ->
let sigma, cb = interp_constr_with_bindings ist env sigma cb in
let sigma, cbo = Option.fold_map (interp_constr_with_bindings ist env) sigma cbo in
tclWITHHOLES ev (h_elim ev cb) sigma cbo
| TacElimType c ->
let (sigma,c_interp) = pf_interp_type ist gl c in
tclTHEN
(tclEVARS sigma)
(h_elim_type c_interp)
| TacCase (ev,cb) ->
let sigma, cb = interp_constr_with_bindings ist env sigma cb in
tclWITHHOLES ev (h_case ev) sigma cb
| TacCaseType c ->
let (sigma,c_interp) = pf_interp_type ist gl c in
tclTHEN
(tclEVARS sigma)
(h_case_type c_interp)
| TacFix (idopt,n) -> h_fix (Option.map (interp_fresh_ident ist env) idopt) n
| TacMutualFix (b,id,n,l) ->
let f sigma (id,n,c) =
let (sigma,c_interp) = pf_interp_type ist { gl with sigma=sigma } c in
sigma , (interp_fresh_ident ist env id,n,c_interp) in
let (sigma,l_interp) =
List.fold_right begin fun c (sigma,acc) ->
let (sigma,c_interp) = f sigma c in
sigma , c_interp::acc
end l (project gl,[])
in
tclTHEN
(tclEVARS sigma)
(h_mutual_fix b (interp_fresh_ident ist env id) n l_interp)
| TacCofix idopt -> h_cofix (Option.map (interp_fresh_ident ist env) idopt)
| TacMutualCofix (b,id,l) ->
let f sigma (id,c) =
let (sigma,c_interp) = pf_interp_type ist { gl with sigma=sigma } c in
sigma , (interp_fresh_ident ist env id,c_interp) in
let (sigma,l_interp) =
List.fold_right begin fun c (sigma,acc) ->
let (sigma,c_interp) = f sigma c in
sigma , c_interp::acc
end l (project gl,[])
in
tclTHEN
(tclEVARS sigma)
(h_mutual_cofix b (interp_fresh_ident ist env id) l_interp)
| TacCut c ->
let (sigma,c_interp) = pf_interp_type ist gl c in
tclTHEN
(tclEVARS sigma)
(h_cut c_interp)
| TacAssert (t,ipat,c) ->
let (sigma,c) = (if t=None then interp_constr else interp_type) ist env sigma c in
tclTHEN
(tclEVARS sigma)
(abstract_tactic (TacAssert (t,ipat,c))
(Tactics.forward (Option.map (interp_tactic ist) t)
(Option.map (interp_intro_pattern ist gl) ipat) c))
| TacGeneralize cl ->
let sigma, cl = interp_constr_with_occurrences_and_name_as_list ist env sigma cl in
tclWITHHOLES false (h_generalize_gen) sigma cl
| TacGeneralizeDep c ->
let (sigma,c_interp) = pf_interp_constr ist gl c in
tclTHEN
(tclEVARS sigma)
(h_generalize_dep c_interp)
| TacLetTac (na,c,clp,b,eqpat) ->
let clp = interp_clause ist gl clp in
let eqpat = Option.map (interp_intro_pattern ist gl) eqpat in
if clp = nowhere then
(* We try to fully-typecheck the term *)
let (sigma,c_interp) = pf_interp_constr ist gl c in
tclTHEN
(tclEVARS sigma)
(h_let_tac b (interp_fresh_name ist env na) c_interp clp eqpat)
else
(* We try to keep the pattern structure as much as possible *)
h_let_pat_tac b (interp_fresh_name ist env na)
(interp_pure_open_constr ist env sigma c) clp eqpat
(* Automation tactics *)
| TacTrivial (debug,lems,l) ->
Auto.h_trivial ~debug
(interp_auto_lemmas ist env sigma lems)
(Option.map (List.map (interp_hint_base ist)) l)
| TacAuto (debug,n,lems,l) ->
Auto.h_auto ~debug (Option.map (interp_int_or_var ist) n)
(interp_auto_lemmas ist env sigma lems)
(Option.map (List.map (interp_hint_base ist)) l)
(* Derived basic tactics *)
| TacSimpleInductionDestruct (isrec,h) ->
h_simple_induction_destruct isrec (interp_quantified_hypothesis ist h)
| TacInductionDestruct (isrec,ev,(l,el,cls)) ->
let sigma, l =
list_fold_map (fun sigma (c,(ipato,ipats)) ->
let c = interp_induction_arg ist gl c in
(sigma,(c,
(Option.map (interp_intro_pattern ist gl) ipato,
Option.map (interp_intro_pattern ist gl) ipats)))) sigma l in
let sigma,el =
Option.fold_map (interp_constr_with_bindings ist env) sigma el in
let cls = Option.map (interp_clause ist gl) cls in
tclWITHHOLES ev (h_induction_destruct isrec ev) sigma (l,el,cls)
| TacDoubleInduction (h1,h2) ->
let h1 = interp_quantified_hypothesis ist h1 in
let h2 = interp_quantified_hypothesis ist h2 in
Elim.h_double_induction h1 h2
| TacDecomposeAnd c ->
let (sigma,c_interp) = pf_interp_constr ist gl c in
tclTHEN
(tclEVARS sigma)
(Elim.h_decompose_and c_interp)
| TacDecomposeOr c ->
let (sigma,c_interp) = pf_interp_constr ist gl c in
tclTHEN
(tclEVARS sigma)
(Elim.h_decompose_or c_interp)
| TacDecompose (l,c) ->
let l = List.map (interp_inductive ist) l in
let (sigma,c_interp) = pf_interp_constr ist gl c in
tclTHEN
(tclEVARS sigma)
(Elim.h_decompose l c_interp)
| TacSpecialize (n,cb) ->
let sigma, cb = interp_constr_with_bindings ist env sigma cb in
tclWITHHOLES false (h_specialize n) sigma cb
| TacLApply c ->
let (sigma,c_interp) = pf_interp_constr ist gl c in
tclTHEN
(tclEVARS sigma)
(h_lapply c_interp)
(* Context management *)
| TacClear (b,l) -> h_clear b (interp_hyp_list ist gl l)
| TacClearBody l -> h_clear_body (interp_hyp_list ist gl l)
| TacMove (dep,id1,id2) ->
h_move dep (interp_hyp ist gl id1) (interp_move_location ist gl id2)
| TacRename l ->
h_rename (List.map (fun (id1,id2) ->
interp_hyp ist gl id1,
interp_fresh_ident ist env (snd id2)) l)
| TacRevert l -> h_revert (interp_hyp_list ist gl l)
(* Constructors *)
| TacLeft (ev,bl) ->
let sigma, bl = interp_bindings ist env sigma bl in
tclWITHHOLES ev (h_left ev) sigma bl
| TacRight (ev,bl) ->
let sigma, bl = interp_bindings ist env sigma bl in
tclWITHHOLES ev (h_right ev) sigma bl
| TacSplit (ev,_,bll) ->
let sigma, bll = list_fold_map (interp_bindings ist env) sigma bll in
tclWITHHOLES ev (h_split ev) sigma bll
| TacAnyConstructor (ev,t) ->
abstract_tactic (TacAnyConstructor (ev,t))
(Tactics.any_constructor ev (Option.map (interp_tactic ist) t))
| TacConstructor (ev,n,bl) ->
let sigma, bl = interp_bindings ist env sigma bl in
tclWITHHOLES ev (h_constructor ev (interp_int_or_var ist n)) sigma bl
(* Conversion *)
| TacReduce (r,cl) ->
let (sigma,r_interp) = pf_interp_red_expr ist gl r in
tclTHEN
(tclEVARS sigma)
(h_reduce r_interp (interp_clause ist gl cl))
| TacChange (None,c,cl) ->
let (sigma,c_interp) =
if (cl.onhyps = None or cl.onhyps = Some []) &
(cl.concl_occs = all_occurrences_expr or
cl.concl_occs = no_occurrences_expr)
then pf_interp_type ist gl c
else pf_interp_constr ist gl c
in
tclTHEN
(tclEVARS sigma)
(h_change None c_interp (interp_clause ist gl cl))
| TacChange (Some op,c,cl) ->
let sign,op = interp_typed_pattern ist env sigma op in
(* spiwack: (2012/04/18) the evar_map output by pf_interp_constr
is dropped as the evar_map taken as input (from
extend_gl_hyps) is incorrect. This means that evar
instantiated by pf_interp_constr may be lost, there. *)
let (_,c_interp) =
try pf_interp_constr ist (extend_gl_hyps gl sign) c
with Not_found | Anomaly _ (* Hack *) ->
errorlabstrm "" (strbrk "Failed to get enough information from the left-hand side to type the right-hand side.")
in
tclTHEN
(tclEVARS sigma)
(h_change (Some op) c_interp (interp_clause ist { gl with sigma=sigma } cl))
(* Equivalence relations *)
| TacReflexivity -> h_reflexivity
| TacSymmetry c -> h_symmetry (interp_clause ist gl c)
| TacTransitivity c ->
begin match c with
| None -> h_transitivity None
| Some c ->
let (sigma,c_interp) = pf_interp_constr ist gl c in
tclTHEN
(tclEVARS sigma)
(h_transitivity (Some c_interp))
end
(* Equality and inversion *)
| TacRewrite (ev,l,cl,by) ->
let l = List.map (fun (b,m,c) ->
let f env sigma = interp_open_constr_with_bindings false ist env sigma c in
(b,m,f)) l in
let cl = interp_clause ist gl cl in
Equality.general_multi_multi_rewrite ev l cl
(Option.map (fun by -> tclCOMPLETE (interp_tactic ist by), Equality.Naive) by)
| TacInversion (DepInversion (k,c,ids),hyp) ->
let (sigma,c_interp) =
match c with
| None -> sigma , None
| Some c ->
let (sigma,c_interp) = pf_interp_constr ist gl c in
sigma , Some c_interp
in
Inv.dinv k c_interp
(Option.map (interp_intro_pattern ist gl) ids)
(interp_declared_or_quantified_hypothesis ist gl hyp)
| TacInversion (NonDepInversion (k,idl,ids),hyp) ->
Inv.inv_clause k
(Option.map (interp_intro_pattern ist gl) ids)
(interp_hyp_list ist gl idl)
(interp_declared_or_quantified_hypothesis ist gl hyp)
| TacInversion (InversionUsing (c,idl),hyp) ->
let (sigma,c_interp) = pf_interp_constr ist gl c in
Leminv.lemInv_clause (interp_declared_or_quantified_hypothesis ist gl hyp)
c_interp
(interp_hyp_list ist gl idl)
(* For extensions *)
| TacExtend (loc,opn,l) ->
let tac = lookup_tactic opn in
let (sigma,args) =
List.fold_right begin fun a (sigma,acc) ->
let (sigma,a_interp) = interp_genarg ist { gl with sigma=sigma } a in
sigma , a_interp::acc
end l (project gl,[])
in
abstract_extended_tactic opn args (tac args)
| TacAlias (loc,s,l,(_,body)) -> fun gl ->
let evdref = ref gl.sigma in
let rec f x = match genarg_tag x with
| IntArgType ->
VInteger (out_gen globwit_int x)
| IntOrVarArgType ->
mk_int_or_var_value ist (out_gen globwit_int_or_var x)
| PreIdentArgType ->
failwith "pre-identifiers cannot be bound"
| IntroPatternArgType ->
VIntroPattern
(snd (interp_intro_pattern ist gl (out_gen globwit_intro_pattern x)))
| IdentArgType b ->
value_of_ident (interp_fresh_ident ist env
(out_gen (globwit_ident_gen b) x))
| VarArgType ->
mk_hyp_value ist gl (out_gen globwit_var x)
| RefArgType ->
VConstr ([],constr_of_global
(pf_interp_reference ist gl (out_gen globwit_ref x)))
| SortArgType ->
VConstr ([],mkSort (interp_sort (out_gen globwit_sort x)))
| ConstrArgType ->
let (sigma,v) = mk_constr_value ist gl (out_gen globwit_constr x) in
evdref := sigma;
v
| OpenConstrArgType (false,true) ->
let (sigma,v) = mk_open_constr_value true ist gl (snd (out_gen globwit_open_constr_wTC x)) in
evdref := sigma;
v
| OpenConstrArgType (false,false) ->
let (sigma,v) = mk_open_constr_value false ist gl (snd (out_gen globwit_open_constr x)) in
evdref := sigma;
v
| ConstrMayEvalArgType ->
let (sigma,c_interp) = interp_constr_may_eval ist gl (out_gen globwit_constr_may_eval x) in
evdref := sigma;
VConstr ([],c_interp)
| ExtraArgType s when tactic_genarg_level s <> None ->
(* Special treatment of tactic arguments *)
let (sigma,v) = val_interp ist gl
(out_gen (globwit_tactic (Option.get (tactic_genarg_level s))) x)
in
evdref := sigma;
v
| List0ArgType ConstrArgType ->
let wit = wit_list0 globwit_constr in
let (sigma,l_interp) =
List.fold_right begin fun c (sigma,acc) ->
let (sigma,c_interp) = mk_constr_value ist { gl with sigma=sigma } c in
sigma , c_interp::acc
end (out_gen wit x) (project gl,[])
in
evdref := sigma;
VList (l_interp)
| List0ArgType VarArgType ->
let wit = wit_list0 globwit_var in
VList (List.map (mk_hyp_value ist gl) (out_gen wit x))
| List0ArgType IntArgType ->
let wit = wit_list0 globwit_int in
VList (List.map (fun x -> VInteger x) (out_gen wit x))
| List0ArgType IntOrVarArgType ->
let wit = wit_list0 globwit_int_or_var in
VList (List.map (mk_int_or_var_value ist) (out_gen wit x))
| List0ArgType (IdentArgType b) ->
let wit = wit_list0 (globwit_ident_gen b) in
let mk_ident x = value_of_ident (interp_fresh_ident ist env x) in
VList (List.map mk_ident (out_gen wit x))
| List0ArgType IntroPatternArgType ->
let wit = wit_list0 globwit_intro_pattern in
let mk_ipat x = VIntroPattern (snd (interp_intro_pattern ist gl x)) in
VList (List.map mk_ipat (out_gen wit x))
| List1ArgType ConstrArgType ->
let wit = wit_list1 globwit_constr in
let (sigma, l_interp) =
List.fold_right begin fun c (sigma,acc) ->
let (sigma,c_interp) = mk_constr_value ist { gl with sigma=sigma } c in
sigma , c_interp::acc
end (out_gen wit x) (project gl,[])
in
evdref:=sigma;
VList l_interp
| List1ArgType VarArgType ->
let wit = wit_list1 globwit_var in
VList (List.map (mk_hyp_value ist gl) (out_gen wit x))
| List1ArgType IntArgType ->
let wit = wit_list1 globwit_int in
VList (List.map (fun x -> VInteger x) (out_gen wit x))
| List1ArgType IntOrVarArgType ->
let wit = wit_list1 globwit_int_or_var in
VList (List.map (mk_int_or_var_value ist) (out_gen wit x))
| List1ArgType (IdentArgType b) ->
let wit = wit_list1 (globwit_ident_gen b) in
let mk_ident x = value_of_ident (interp_fresh_ident ist env x) in
VList (List.map mk_ident (out_gen wit x))
| List1ArgType IntroPatternArgType ->
let wit = wit_list1 globwit_intro_pattern in
let mk_ipat x = VIntroPattern (snd (interp_intro_pattern ist gl x)) in
VList (List.map mk_ipat (out_gen wit x))
| StringArgType | BoolArgType
| QuantHypArgType | RedExprArgType
| OpenConstrArgType _ | ConstrWithBindingsArgType
| ExtraArgType _ | BindingsArgType
| OptArgType _ | PairArgType _
| List0ArgType _ | List1ArgType _
-> error "This argument type is not supported in tactic notations."
in
let lfun = (List.map (fun (x,c) -> (x,f c)) l)@ist.lfun in
let trace = push_trace (loc,LtacNotationCall s) ist.trace in
let gl = { gl with sigma = !evdref } in
interp_tactic { ist with lfun=lfun; trace=trace } body gl
let make_empty_glob_sign () =
{ ltacvars = ([],[]); ltacrecvars = [];
gsigma = Evd.empty; genv = Global.env() }
let fully_empty_glob_sign =
{ ltacvars = ([],[]); ltacrecvars = [];
gsigma = Evd.empty; genv = Environ.empty_env }
(* Initial call for interpretation *)
let interp_tac_gen lfun avoid_ids debug t gl =
interp_tactic { lfun=lfun; avoid_ids=avoid_ids; debug=debug; trace=[] }
(intern_tactic true {
ltacvars = (List.map fst lfun, []); ltacrecvars = [];
gsigma = project gl; genv = pf_env gl } t) gl
let eval_tactic t gls =
db_initialize ();
interp_tactic { lfun=[]; avoid_ids=[]; debug=get_debug(); trace=[] }
t gls
let interp t = interp_tac_gen [] [] (get_debug()) t
let eval_ltac_constr gl t =
interp_ltac_constr
{ lfun=[]; avoid_ids=[]; debug=get_debug(); trace=[] } gl
(intern_tactic_or_tacarg (make_empty_glob_sign ()) t )
(* Hides interpretation for pretty-print *)
let hide_interp t ot gl =
let ist = { ltacvars = ([],[]); ltacrecvars = [];
gsigma = project gl; genv = pf_env gl } in
let te = intern_tactic true ist t in
let t = eval_tactic te in
match ot with
| None -> abstract_tactic_expr (TacArg (dloc,Tacexp te)) t gl
| Some t' ->
abstract_tactic_expr ~dflt:true (TacArg (dloc,Tacexp te)) (tclTHEN t t') gl
(***************************************************************************)
(* Substitution at module closing time *)
let subst_quantified_hypothesis _ x = x
let subst_declared_or_quantified_hypothesis _ x = x
let subst_glob_constr_and_expr subst (c,e) =
assert (e=None); (* e<>None only for toplevel tactics *)
(Detyping.subst_glob_constr subst c,None)
let subst_glob_constr = subst_glob_constr_and_expr (* shortening *)
let subst_binding subst (loc,b,c) =
(loc,subst_quantified_hypothesis subst b,subst_glob_constr subst c)
let subst_bindings subst = function
| NoBindings -> NoBindings
| ImplicitBindings l -> ImplicitBindings (List.map (subst_glob_constr subst) l)
| ExplicitBindings l -> ExplicitBindings (List.map (subst_binding subst) l)
let subst_glob_with_bindings subst (c,bl) =
(subst_glob_constr subst c, subst_bindings subst bl)
let subst_induction_arg subst = function
| ElimOnConstr c -> ElimOnConstr (subst_glob_with_bindings subst c)
| ElimOnAnonHyp n as x -> x
| ElimOnIdent id as x -> x
let subst_and_short_name f (c,n) =
(* assert (n=None); *)(* since tacdef are strictly globalized *)
(f c,None)
let subst_or_var f = function
| ArgVar _ as x -> x
| ArgArg x -> ArgArg (f x)
let subst_located f (_loc,id) = (dloc,f id)
let subst_reference subst =
subst_or_var (subst_located (subst_kn subst))
(*CSC: subst_global_reference is used "only" for RefArgType, that propagates
to the syntactic non-terminals "global", used in commands such as
Print. It is also used for non-evaluable references. *)
let subst_global_reference subst =
let subst_global ref =
let ref',t' = subst_global subst ref in
if not (eq_constr (constr_of_global ref') t') then
ppnl (str "Warning: The reference " ++ pr_global ref ++ str " is not " ++
str " expanded to \"" ++ pr_lconstr t' ++ str "\", but to " ++
pr_global ref') ;
ref'
in
subst_or_var (subst_located subst_global)
let subst_evaluable subst =
let subst_eval_ref = subst_evaluable_reference subst in
subst_or_var (subst_and_short_name subst_eval_ref)
let subst_unfold subst (l,e) =
(l,subst_evaluable subst e)
let subst_flag subst red =
{ red with rConst = List.map (subst_evaluable subst) red.rConst }
let subst_constr_with_occurrences subst (l,c) = (l,subst_glob_constr subst c)
let subst_glob_constr_or_pattern subst (c,p) =
(subst_glob_constr subst c,subst_pattern subst p)
let subst_pattern_with_occurrences subst (l,p) =
(l,subst_glob_constr_or_pattern subst p)
let subst_redexp subst = function
| Unfold l -> Unfold (List.map (subst_unfold subst) l)
| Fold l -> Fold (List.map (subst_glob_constr subst) l)
| Cbv f -> Cbv (subst_flag subst f)
| Lazy f -> Lazy (subst_flag subst f)
| Pattern l -> Pattern (List.map (subst_constr_with_occurrences subst) l)
| Simpl o -> Simpl (Option.map (subst_pattern_with_occurrences subst) o)
| (Red _ | Hnf | ExtraRedExpr _ | CbvVm as r) -> r
let subst_raw_may_eval subst = function
| ConstrEval (r,c) -> ConstrEval (subst_redexp subst r,subst_glob_constr subst c)
| ConstrContext (locid,c) -> ConstrContext (locid,subst_glob_constr subst c)
| ConstrTypeOf c -> ConstrTypeOf (subst_glob_constr subst c)
| ConstrTerm c -> ConstrTerm (subst_glob_constr subst c)
let subst_match_pattern subst = function
| Subterm (b,ido,pc) -> Subterm (b,ido,(subst_glob_constr_or_pattern subst pc))
| Term pc -> Term (subst_glob_constr_or_pattern subst pc)
let rec subst_match_goal_hyps subst = function
| Hyp (locs,mp) :: tl ->
Hyp (locs,subst_match_pattern subst mp)
:: subst_match_goal_hyps subst tl
| Def (locs,mv,mp) :: tl ->
Def (locs,subst_match_pattern subst mv, subst_match_pattern subst mp)
:: subst_match_goal_hyps subst tl
| [] -> []
let rec subst_atomic subst (t:glob_atomic_tactic_expr) = match t with
(* Basic tactics *)
| TacIntroPattern _ | TacIntrosUntil _ | TacIntroMove _ as x -> x
| TacAssumption as x -> x
| TacExact c -> TacExact (subst_glob_constr subst c)
| TacExactNoCheck c -> TacExactNoCheck (subst_glob_constr subst c)
| TacVmCastNoCheck c -> TacVmCastNoCheck (subst_glob_constr subst c)
| TacApply (a,ev,cb,cl) ->
TacApply (a,ev,List.map (subst_glob_with_bindings subst) cb,cl)
| TacElim (ev,cb,cbo) ->
TacElim (ev,subst_glob_with_bindings subst cb,
Option.map (subst_glob_with_bindings subst) cbo)
| TacElimType c -> TacElimType (subst_glob_constr subst c)
| TacCase (ev,cb) -> TacCase (ev,subst_glob_with_bindings subst cb)
| TacCaseType c -> TacCaseType (subst_glob_constr subst c)
| TacFix (idopt,n) as x -> x
| TacMutualFix (b,id,n,l) ->
TacMutualFix(b,id,n,List.map (fun (id,n,c) -> (id,n,subst_glob_constr subst c)) l)
| TacCofix idopt as x -> x
| TacMutualCofix (b,id,l) ->
TacMutualCofix (b,id, List.map (fun (id,c) -> (id,subst_glob_constr subst c)) l)
| TacCut c -> TacCut (subst_glob_constr subst c)
| TacAssert (b,na,c) ->
TacAssert (Option.map (subst_tactic subst) b,na,subst_glob_constr subst c)
| TacGeneralize cl ->
TacGeneralize (List.map (on_fst (subst_constr_with_occurrences subst))cl)
| TacGeneralizeDep c -> TacGeneralizeDep (subst_glob_constr subst c)
| TacLetTac (id,c,clp,b,eqpat) ->
TacLetTac (id,subst_glob_constr subst c,clp,b,eqpat)
(* Automation tactics *)
| TacTrivial (d,lems,l) -> TacTrivial (d,List.map (subst_glob_constr subst) lems,l)
| TacAuto (d,n,lems,l) -> TacAuto (d,n,List.map (subst_glob_constr subst) lems,l)
(* Derived basic tactics *)
| TacSimpleInductionDestruct (isrec,h) as x -> x
| TacInductionDestruct (isrec,ev,(l,el,cls)) ->
let l' = List.map (fun (c,ids) -> subst_induction_arg subst c, ids) l in
let el' = Option.map (subst_glob_with_bindings subst) el in
TacInductionDestruct (isrec,ev,(l',el',cls))
| TacDoubleInduction (h1,h2) as x -> x
| TacDecomposeAnd c -> TacDecomposeAnd (subst_glob_constr subst c)
| TacDecomposeOr c -> TacDecomposeOr (subst_glob_constr subst c)
| TacDecompose (l,c) ->
let l = List.map (subst_or_var (subst_inductive subst)) l in
TacDecompose (l,subst_glob_constr subst c)
| TacSpecialize (n,l) -> TacSpecialize (n,subst_glob_with_bindings subst l)
| TacLApply c -> TacLApply (subst_glob_constr subst c)
(* Context management *)
| TacClear _ as x -> x
| TacClearBody l as x -> x
| TacMove (dep,id1,id2) as x -> x
| TacRename l as x -> x
| TacRevert _ as x -> x
(* Constructors *)
| TacLeft (ev,bl) -> TacLeft (ev,subst_bindings subst bl)
| TacRight (ev,bl) -> TacRight (ev,subst_bindings subst bl)
| TacSplit (ev,b,bll) -> TacSplit (ev,b,List.map (subst_bindings subst) bll)
| TacAnyConstructor (ev,t) -> TacAnyConstructor (ev,Option.map (subst_tactic subst) t)
| TacConstructor (ev,n,bl) -> TacConstructor (ev,n,subst_bindings subst bl)
(* Conversion *)
| TacReduce (r,cl) -> TacReduce (subst_redexp subst r, cl)
| TacChange (op,c,cl) ->
TacChange (Option.map (subst_glob_constr_or_pattern subst) op,
subst_glob_constr subst c, cl)
(* Equivalence relations *)
| TacReflexivity | TacSymmetry _ as x -> x
| TacTransitivity c -> TacTransitivity (Option.map (subst_glob_constr subst) c)
(* Equality and inversion *)
| TacRewrite (ev,l,cl,by) ->
TacRewrite (ev,
List.map (fun (b,m,c) ->
b,m,subst_glob_with_bindings subst c) l,
cl,Option.map (subst_tactic subst) by)
| TacInversion (DepInversion (k,c,l),hyp) ->
TacInversion (DepInversion (k,Option.map (subst_glob_constr subst) c,l),hyp)
| TacInversion (NonDepInversion _,_) as x -> x
| TacInversion (InversionUsing (c,cl),hyp) ->
TacInversion (InversionUsing (subst_glob_constr subst c,cl),hyp)
(* For extensions *)
| TacExtend (_loc,opn,l) ->
TacExtend (dloc,opn,List.map (subst_genarg subst) l)
| TacAlias (_,s,l,(dir,body)) ->
TacAlias (dloc,s,List.map (fun (id,a) -> (id,subst_genarg subst a)) l,
(dir,subst_tactic subst body))
and subst_tactic subst (t:glob_tactic_expr) = match t with
| TacAtom (_loc,t) -> TacAtom (dloc, subst_atomic subst t)
| TacFun tacfun -> TacFun (subst_tactic_fun subst tacfun)
| TacLetIn (r,l,u) ->
let l = List.map (fun (n,b) -> (n,subst_tacarg subst b)) l in
TacLetIn (r,l,subst_tactic subst u)
| TacMatchGoal (lz,lr,lmr) ->
TacMatchGoal(lz,lr, subst_match_rule subst lmr)
| TacMatch (lz,c,lmr) ->
TacMatch (lz,subst_tactic subst c,subst_match_rule subst lmr)
| TacId _ | TacFail _ as x -> x
| TacProgress tac -> TacProgress (subst_tactic subst tac:glob_tactic_expr)
| TacAbstract (tac,s) -> TacAbstract (subst_tactic subst tac,s)
| TacThen (t1,tf,t2,tl) ->
TacThen (subst_tactic subst t1,Array.map (subst_tactic subst) tf,
subst_tactic subst t2,Array.map (subst_tactic subst) tl)
| TacThens (t,tl) ->
TacThens (subst_tactic subst t, List.map (subst_tactic subst) tl)
| TacDo (n,tac) -> TacDo (n,subst_tactic subst tac)
| TacTimeout (n,tac) -> TacTimeout (n,subst_tactic subst tac)
| TacTry tac -> TacTry (subst_tactic subst tac)
| TacInfo tac -> TacInfo (subst_tactic subst tac)
| TacRepeat tac -> TacRepeat (subst_tactic subst tac)
| TacOrelse (tac1,tac2) ->
TacOrelse (subst_tactic subst tac1,subst_tactic subst tac2)
| TacFirst l -> TacFirst (List.map (subst_tactic subst) l)
| TacSolve l -> TacSolve (List.map (subst_tactic subst) l)
| TacComplete tac -> TacComplete (subst_tactic subst tac)
| TacArg (_,a) -> TacArg (dloc,subst_tacarg subst a)
and subst_tactic_fun subst (var,body) = (var,subst_tactic subst body)
and subst_tacarg subst = function
| Reference r -> Reference (subst_reference subst r)
| ConstrMayEval c -> ConstrMayEval (subst_raw_may_eval subst c)
| MetaIdArg (_loc,_,_) -> assert false
| TacCall (_loc,f,l) ->
TacCall (_loc, subst_reference subst f, List.map (subst_tacarg subst) l)
| TacExternal (_loc,com,req,la) ->
TacExternal (_loc,com,req,List.map (subst_tacarg subst) la)
| (TacVoid | IntroPattern _ | Integer _ | TacFreshId _) as x -> x
| Tacexp t -> Tacexp (subst_tactic subst t)
| TacDynamic(the_loc,t) as x ->
(match Dyn.tag t with
| "tactic" | "value" -> x
| "constr" ->
TacDynamic(the_loc, constr_in (subst_mps subst (constr_out t)))
| s -> anomaly_loc (dloc, "Tacinterp.val_interp",
str "Unknown dynamic: <" ++ str s ++ str ">"))
(* Reads the rules of a Match Context or a Match *)
and subst_match_rule subst = function
| (All tc)::tl ->
(All (subst_tactic subst tc))::(subst_match_rule subst tl)
| (Pat (rl,mp,tc))::tl ->
let hyps = subst_match_goal_hyps subst rl in
let pat = subst_match_pattern subst mp in
Pat (hyps,pat,subst_tactic subst tc)
::(subst_match_rule subst tl)
| [] -> []
and subst_genarg subst (x:glob_generic_argument) =
match genarg_tag x with
| BoolArgType -> in_gen globwit_bool (out_gen globwit_bool x)
| IntArgType -> in_gen globwit_int (out_gen globwit_int x)
| IntOrVarArgType -> in_gen globwit_int_or_var (out_gen globwit_int_or_var x)
| StringArgType -> in_gen globwit_string (out_gen globwit_string x)
| PreIdentArgType -> in_gen globwit_pre_ident (out_gen globwit_pre_ident x)
| IntroPatternArgType ->
in_gen globwit_intro_pattern (out_gen globwit_intro_pattern x)
| IdentArgType b ->
in_gen (globwit_ident_gen b) (out_gen (globwit_ident_gen b) x)
| VarArgType -> in_gen globwit_var (out_gen globwit_var x)
| RefArgType ->
in_gen globwit_ref (subst_global_reference subst
(out_gen globwit_ref x))
| SortArgType ->
in_gen globwit_sort (out_gen globwit_sort x)
| ConstrArgType ->
in_gen globwit_constr (subst_glob_constr subst (out_gen globwit_constr x))
| ConstrMayEvalArgType ->
in_gen globwit_constr_may_eval (subst_raw_may_eval subst (out_gen globwit_constr_may_eval x))
| QuantHypArgType ->
in_gen globwit_quant_hyp
(subst_declared_or_quantified_hypothesis subst
(out_gen globwit_quant_hyp x))
| RedExprArgType ->
in_gen globwit_red_expr (subst_redexp subst (out_gen globwit_red_expr x))
| OpenConstrArgType (b1,b2) ->
in_gen (globwit_open_constr_gen (b1,b2))
((),subst_glob_constr subst (snd (out_gen (globwit_open_constr_gen (b1,b2)) x)))
| ConstrWithBindingsArgType ->
in_gen globwit_constr_with_bindings
(subst_glob_with_bindings subst (out_gen globwit_constr_with_bindings x))
| BindingsArgType ->
in_gen globwit_bindings
(subst_bindings subst (out_gen globwit_bindings x))
| List0ArgType _ -> app_list0 (subst_genarg subst) x
| List1ArgType _ -> app_list1 (subst_genarg subst) x
| OptArgType _ -> app_opt (subst_genarg subst) x
| PairArgType _ -> app_pair (subst_genarg subst) (subst_genarg subst) x
| ExtraArgType s ->
match tactic_genarg_level s with
| Some n ->
(* Special treatment of tactic arguments *)
in_gen (globwit_tactic n)
(subst_tactic subst (out_gen (globwit_tactic n) x))
| None ->
lookup_genarg_subst s subst x
(***************************************************************************)
(* Tactic registration *)
(* Declaration of the TAC-DEFINITION object *)
let add (kn,td) = mactab := Gmap.add kn td !mactab
let replace (kn,td) = mactab := Gmap.add kn td (Gmap.remove kn !mactab)
type tacdef_kind = | NewTac of identifier
| UpdateTac of ltac_constant
let load_md i ((sp,kn),(local,defs)) =
let dp,_ = repr_path sp in
let mp,dir,_ = repr_kn kn in
List.iter (fun (id,t) ->
match id with
NewTac id ->
let sp = Libnames.make_path dp id in
let kn = Names.make_kn mp dir (label_of_id id) in
Nametab.push_tactic (Until i) sp kn;
add (kn,t)
| UpdateTac kn -> replace (kn,t)) defs
let open_md i ((sp,kn),(local,defs)) =
let dp,_ = repr_path sp in
let mp,dir,_ = repr_kn kn in
List.iter (fun (id,t) ->
match id with
NewTac id ->
let sp = Libnames.make_path dp id in
let kn = Names.make_kn mp dir (label_of_id id) in
Nametab.push_tactic (Exactly i) sp kn
| UpdateTac kn -> ()) defs
let cache_md x = load_md 1 x
let subst_kind subst id =
match id with
| NewTac _ -> id
| UpdateTac kn -> UpdateTac (subst_kn subst kn)
let subst_md (subst,(local,defs)) =
(local,
List.map (fun (id,t) -> (subst_kind subst id,subst_tactic subst t)) defs)
let classify_md (local,defs as o) =
if local then Dispose else Substitute o
let inMD : bool * (tacdef_kind * glob_tactic_expr) list -> obj =
declare_object {(default_object "TAC-DEFINITION") with
cache_function = cache_md;
load_function = load_md;
open_function = open_md;
subst_function = subst_md;
classify_function = classify_md}
let rec split_ltac_fun = function
| TacFun (l,t) -> (l,t)
| t -> ([],t)
let pr_ltac_fun_arg = function
| None -> spc () ++ str "_"
| Some id -> spc () ++ pr_id id
let print_ltac id =
try
let kn = Nametab.locate_tactic id in
let l,t = split_ltac_fun (lookup kn) in
hv 2 (
hov 2 (str "Ltac" ++ spc() ++ pr_qualid id ++
prlist pr_ltac_fun_arg l ++ spc () ++ str ":=")
++ spc() ++ Pptactic.pr_glob_tactic (Global.env ()) t)
with
Not_found ->
errorlabstrm "print_ltac"
(pr_qualid id ++ spc() ++ str "is not a user defined tactic.")
open Libnames
(* Adds a definition for tactics in the table *)
let make_absolute_name ident repl =
let loc = loc_of_reference ident in
try
let id, kn =
if repl then None, Nametab.locate_tactic (snd (qualid_of_reference ident))
else let id = coerce_reference_to_id ident in
Some id, Lib.make_kn id
in
if Gmap.mem kn !mactab then
if repl then id, kn
else
user_err_loc (loc,"Tacinterp.add_tacdef",
str "There is already an Ltac named " ++ pr_reference ident ++ str".")
else if is_atomic_kn kn then
user_err_loc (loc,"Tacinterp.add_tacdef",
str "Reserved Ltac name " ++ pr_reference ident ++ str".")
else id, kn
with Not_found ->
user_err_loc (loc,"Tacinterp.add_tacdef",
str "There is no Ltac named " ++ pr_reference ident ++ str".")
let add_tacdef local isrec tacl =
let rfun = List.map (fun (ident, b, _) -> make_absolute_name ident b) tacl in
let ist =
{(make_empty_glob_sign()) with ltacrecvars =
if isrec then list_map_filter
(function (Some id, qid) -> Some (id, qid) | (None, _) -> None) rfun
else []} in
let gtacl =
List.map2 (fun (_,b,def) (id, qid) ->
let k = if b then UpdateTac qid else NewTac (Option.get id) in
let t = Flags.with_option strict_check (intern_tactic_or_tacarg ist) def in
(k, t))
tacl rfun in
let id0 = fst (List.hd rfun) in
let _ = match id0 with
| Some id0 -> ignore(Lib.add_leaf id0 (inMD (local,gtacl)))
| _ -> Lib.add_anonymous_leaf (inMD (local,gtacl)) in
List.iter
(fun (id,b,_) ->
Flags.if_verbose msgnl (Libnames.pr_reference id ++
(if b then str " is redefined"
else str " is defined")))
tacl
(***************************************************************************)
(* Other entry points *)
let glob_tactic x =
Flags.with_option strict_check (intern_tactic true (make_empty_glob_sign ())) x
let glob_tactic_env l env x =
Flags.with_option strict_check
(intern_pure_tactic
{ ltacvars = (l,[]); ltacrecvars = []; gsigma = Evd.empty; genv = env })
x
let interp_redexp env sigma r =
let ist = { lfun=[]; avoid_ids=[]; debug=get_debug (); trace=[] } in
let gist = {(make_empty_glob_sign ()) with genv = env; gsigma = sigma } in
interp_red_expr ist sigma env (intern_red_expr gist r)
(***************************************************************************)
(* Embed tactics in raw or glob tactic expr *)
let globTacticIn t = TacArg (dloc,TacDynamic (dloc,tactic_in t))
let tacticIn t =
globTacticIn (fun ist ->
try glob_tactic (t ist)
with e when Errors.noncritical e ->
anomalylabstrm "tacticIn"
(str "Incorrect tactic expression. Received exception is:" ++
Errors.print e))
let tacticOut = function
| TacArg (_,TacDynamic (_,d)) ->
if (Dyn.tag d) = "tactic" then
tactic_out d
else
anomalylabstrm "tacticOut" (str "Dynamic tag should be tactic")
| ast ->
anomalylabstrm "tacticOut"
(str "Not a Dynamic ast: " (* ++ print_ast ast*) )
(***************************************************************************)
(* Backwarding recursive needs of tactic glob/interp/eval functions *)
let _ = Auto.set_extern_interp
(fun l ->
let l = List.map (fun (id,c) -> (id,VConstr ([],c))) l in
interp_tactic {lfun=l;avoid_ids=[];debug=get_debug(); trace=[]})
let _ = Auto.set_extern_intern_tac
(fun l ->
Flags.with_option strict_check
(intern_pure_tactic {(make_empty_glob_sign()) with ltacvars=(l,[])}))
let _ = Auto.set_extern_subst_tactic subst_tactic
|