1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** Some facts and definitions about extensionality
We investigate the relations between the following extensionality principles
- Functional extensionality
- Equality of projections from diagonal
- Unicity of inverse bijections
- Bijectivity of bijective composition
Table of contents
1. Definitions
2. Functional extensionality <-> Equality of projections from diagonal
3. Functional extensionality <-> Unicity of inverse bijections
4. Functional extensionality <-> Bijectivity of bijective composition
*)
Set Implicit Arguments.
(**********************************************************************)
(** * Definitions *)
(** Being an inverse *)
Definition is_inverse A B f g := (forall a:A, g (f a) = a) /\ (forall b:B, f (g b) = b).
(** The diagonal over A and the one-one correspondence with A *)
Record Delta A := { pi1:A; pi2:A; eq:pi1=pi2 }.
Definition delta {A} (a:A) := {|pi1 := a; pi2 := a; eq := eq_refl a |}.
Arguments pi1 {A} _.
Arguments pi2 {A} _.
Lemma diagonal_projs_same_behavior : forall A (x:Delta A), pi1 x = pi2 x.
Proof.
destruct x as (a1,a2,Heq); assumption.
Qed.
Lemma diagonal_inverse1 : forall A, is_inverse (A:=A) delta pi1.
Proof.
split; [trivial|]; destruct b as (a1,a2,[]); reflexivity.
Qed.
Lemma diagonal_inverse2 : forall A, is_inverse (A:=A) delta pi2.
Proof.
split; [trivial|]; destruct b as (a1,a2,[]); reflexivity.
Qed.
(** Functional extensionality *)
Local Notation FunctionalExtensionality :=
(forall A B (f g : A -> B), (forall x, f x = g x) -> f = g).
(** Equality of projections from diagonal *)
Local Notation EqDeltaProjs := (forall A, pi1 = pi2 :> (Delta A -> A)).
(** Unicity of bijection inverse *)
Local Notation UniqueInverse := (forall A B (f:A->B) g1 g2, is_inverse f g1 -> is_inverse f g2 -> g1 = g2).
(** Bijectivity of bijective composition *)
Definition action A B C (f:A->B) := (fun h:B->C => fun x => h (f x)).
Local Notation BijectivityBijectiveComp := (forall A B C (f:A->B) g,
is_inverse f g -> is_inverse (A:=B->C) (action f) (action g)).
(**********************************************************************)
(** * Functional extensionality <-> Equality of projections from diagonal *)
Theorem FunctExt_iff_EqDeltaProjs : FunctionalExtensionality <-> EqDeltaProjs.
Proof.
split.
- intros FunExt *; apply FunExt, diagonal_projs_same_behavior.
- intros EqProjs **; change f with (fun x => pi1 {|pi1:=f x; pi2:=g x; eq:=H x|}).
rewrite EqProjs; reflexivity.
Qed.
(**********************************************************************)
(** * Functional extensionality <-> Unicity of bijection inverse *)
Lemma FunctExt_UniqInverse : FunctionalExtensionality -> UniqueInverse.
Proof.
intros FunExt * (Hg1f,Hfg1) (Hg2f,Hfg2).
apply FunExt. intros; congruence.
Qed.
Lemma UniqInverse_EqDeltaProjs : UniqueInverse -> EqDeltaProjs.
Proof.
intros UniqInv *.
apply UniqInv with delta; [apply diagonal_inverse1 | apply diagonal_inverse2].
Qed.
Theorem FunctExt_iff_UniqInverse : FunctionalExtensionality <-> UniqueInverse.
Proof.
split.
- apply FunctExt_UniqInverse.
- intro; apply FunctExt_iff_EqDeltaProjs, UniqInverse_EqDeltaProjs; trivial.
Qed.
(**********************************************************************)
(** * Functional extensionality <-> Bijectivity of bijective composition *)
Lemma FunctExt_BijComp : FunctionalExtensionality -> BijectivityBijectiveComp.
Proof.
intros FunExt * (Hgf,Hfg). split; unfold action.
- intros h; apply FunExt; intro b; rewrite Hfg; reflexivity.
- intros h; apply FunExt; intro a; rewrite Hgf; reflexivity.
Qed.
Lemma BijComp_FunctExt : BijectivityBijectiveComp -> FunctionalExtensionality.
Proof.
intros BijComp.
apply FunctExt_iff_UniqInverse. intros * H1 H2.
destruct BijComp with (C:=A) (1:=H2) as (Hg2f,_).
destruct BijComp with (C:=A) (1:=H1) as (_,Hfg1).
rewrite <- (Hg2f g1).
change g1 with (action g1 (fun x => x)).
rewrite -> (Hfg1 (fun x => x)).
reflexivity.
Qed.
|