1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** Contributed by Laurent Théry (INRIA);
Adapted to Coq V8 by the Coq Development Team *)
Require Import Arith.
Require Import Ascii.
Declare ML Module "string_syntax_plugin".
(** *** Definition of strings *)
(** Implementation of string as list of ascii characters *)
Inductive string : Set :=
| EmptyString : string
| String : ascii -> string -> string.
Delimit Scope string_scope with string.
Bind Scope string_scope with string.
Local Open Scope string_scope.
(** Equality is decidable *)
Definition string_dec : forall s1 s2 : string, {s1 = s2} + {s1 <> s2}.
decide equality; apply ascii_dec.
Defined.
(** *** Concatenation of strings *)
Reserved Notation "x ++ y" (right associativity, at level 60).
Fixpoint append (s1 s2 : string) : string :=
match s1 with
| EmptyString => s2
| String c s1' => String c (s1' ++ s2)
end
where "s1 ++ s2" := (append s1 s2) : string_scope.
(******************************)
(** Length *)
(******************************)
Fixpoint length (s : string) : nat :=
match s with
| EmptyString => 0
| String c s' => S (length s')
end.
(******************************)
(** Nth character of a string *)
(******************************)
Fixpoint get (n : nat) (s : string) {struct s} : option ascii :=
match s with
| EmptyString => None
| String c s' => match n with
| O => Some c
| S n' => get n' s'
end
end.
(** Two lists that are identical through get are syntactically equal *)
Theorem get_correct :
forall s1 s2 : string, (forall n : nat, get n s1 = get n s2) <-> s1 = s2.
Proof.
intros s1; elim s1; simpl.
intros s2; case s2; simpl; split; auto.
intros H; generalize (H 0); intros H1; inversion H1.
intros; discriminate.
intros a s1' Rec s2; case s2; simpl; split; auto.
intros H; generalize (H 0); intros H1; inversion H1.
intros; discriminate.
intros H; generalize (H 0); simpl; intros H1; inversion H1.
case (Rec s).
intros H0; rewrite H0; auto.
intros n; exact (H (S n)).
intros H; injection H; intros H1 H2 n; case n; auto.
rewrite H2; trivial.
rewrite H1; auto.
Qed.
(** The first elements of [s1 ++ s2] are the ones of [s1] *)
Theorem append_correct1 :
forall (s1 s2 : string) (n : nat),
n < length s1 -> get n s1 = get n (s1 ++ s2).
Proof.
intros s1; elim s1; simpl; auto.
intros s2 n H; inversion H.
intros a s1' Rec s2 n; case n; simpl; auto.
intros n0 H; apply Rec; auto.
apply lt_S_n; auto.
Qed.
(** The last elements of [s1 ++ s2] are the ones of [s2] *)
Theorem append_correct2 :
forall (s1 s2 : string) (n : nat),
get n s2 = get (n + length s1) (s1 ++ s2).
Proof.
intros s1; elim s1; simpl; auto.
intros s2 n; rewrite plus_comm; simpl; auto.
intros a s1' Rec s2 n; case n; simpl; auto.
generalize (Rec s2 0); simpl; auto. intros.
rewrite <- Plus.plus_Snm_nSm; auto.
Qed.
(** *** Substrings *)
(** [substring n m s] returns the substring of [s] that starts
at position [n] and of length [m];
if this does not make sense it returns [""] *)
Fixpoint substring (n m : nat) (s : string) : string :=
match n, m, s with
| 0, 0, _ => EmptyString
| 0, S m', EmptyString => s
| 0, S m', String c s' => String c (substring 0 m' s')
| S n', _, EmptyString => s
| S n', _, String c s' => substring n' m s'
end.
(** The substring is included in the initial string *)
Theorem substring_correct1 :
forall (s : string) (n m p : nat),
p < m -> get p (substring n m s) = get (p + n) s.
Proof.
intros s; elim s; simpl; auto.
intros n; case n; simpl; auto.
intros m; case m; simpl; auto.
intros a s' Rec; intros n; case n; simpl; auto.
intros m; case m; simpl; auto.
intros p H; inversion H.
intros m' p; case p; simpl; auto.
intros n0 H; apply Rec; simpl; auto.
apply Lt.lt_S_n; auto.
intros n' m p H; rewrite <- Plus.plus_Snm_nSm; simpl; auto.
Qed.
(** The substring has at most [m] elements *)
Theorem substring_correct2 :
forall (s : string) (n m p : nat), m <= p -> get p (substring n m s) = None.
Proof.
intros s; elim s; simpl; auto.
intros n; case n; simpl; auto.
intros m; case m; simpl; auto.
intros a s' Rec; intros n; case n; simpl; auto.
intros m; case m; simpl; auto.
intros m' p; case p; simpl; auto.
intros H; inversion H.
intros n0 H; apply Rec; simpl; auto.
apply Le.le_S_n; auto.
Qed.
(** *** Test functions *)
(** Test if [s1] is a prefix of [s2] *)
Fixpoint prefix (s1 s2 : string) {struct s2} : bool :=
match s1 with
| EmptyString => true
| String a s1' =>
match s2 with
| EmptyString => false
| String b s2' =>
match ascii_dec a b with
| left _ => prefix s1' s2'
| right _ => false
end
end
end.
(** If [s1] is a prefix of [s2], it is the [substring] of length
[length s1] starting at position [O] of [s2] *)
Theorem prefix_correct :
forall s1 s2 : string,
prefix s1 s2 = true <-> substring 0 (length s1) s2 = s1.
Proof.
intros s1; elim s1; simpl; auto.
intros s2; case s2; simpl; split; auto.
intros a s1' Rec s2; case s2; simpl; auto.
split; intros; discriminate.
intros b s2'; case (ascii_dec a b); simpl; auto.
intros e; case (Rec s2'); intros H1 H2; split; intros H3; auto.
rewrite e; rewrite H1; auto.
apply H2; injection H3; auto.
intros n; split; intros; try discriminate.
case n; injection H; auto.
Qed.
(** Test if, starting at position [n], [s1] occurs in [s2]; if
so it returns the position *)
Fixpoint index (n : nat) (s1 s2 : string) : option nat :=
match s2, n with
| EmptyString, 0 =>
match s1 with
| EmptyString => Some 0
| String a s1' => None
end
| EmptyString, S n' => None
| String b s2', 0 =>
if prefix s1 s2 then Some 0
else
match index 0 s1 s2' with
| Some n => Some (S n)
| None => None
end
| String b s2', S n' =>
match index n' s1 s2' with
| Some n => Some (S n)
| None => None
end
end.
(* Dirty trick to avoid locally that prefix reduces itself *)
Opaque prefix.
(** If the result of [index] is [Some m], [s1] in [s2] at position [m] *)
Theorem index_correct1 :
forall (n m : nat) (s1 s2 : string),
index n s1 s2 = Some m -> substring m (length s1) s2 = s1.
Proof.
intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl;
auto.
intros n; case n; simpl; auto.
intros m s1; case s1; simpl; auto.
intros H; injection H; intros H1; rewrite <- H1; auto.
intros; discriminate.
intros; discriminate.
intros b s2' Rec n m s1.
case n; simpl; auto.
generalize (prefix_correct s1 (String b s2'));
case (prefix s1 (String b s2')).
intros H0 H; injection H; intros H1; rewrite <- H1; auto.
case H0; simpl; auto.
case m; simpl; auto.
case (index 0 s1 s2'); intros; discriminate.
intros m'; generalize (Rec 0 m' s1); case (index 0 s1 s2'); auto.
intros x H H0 H1; apply H; injection H1; auto.
intros; discriminate.
intros n'; case m; simpl; auto.
case (index n' s1 s2'); intros; discriminate.
intros m'; generalize (Rec n' m' s1); case (index n' s1 s2'); auto.
intros x H H1; apply H; injection H1; auto.
intros; discriminate.
Qed.
(** If the result of [index] is [Some m],
[s1] does not occur in [s2] before [m] *)
Theorem index_correct2 :
forall (n m : nat) (s1 s2 : string),
index n s1 s2 = Some m ->
forall p : nat, n <= p -> p < m -> substring p (length s1) s2 <> s1.
Proof.
intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl;
auto.
intros n; case n; simpl; auto.
intros m s1; case s1; simpl; auto.
intros H; injection H; intros H1; rewrite <- H1.
intros p H0 H2; inversion H2.
intros; discriminate.
intros; discriminate.
intros b s2' Rec n m s1.
case n; simpl; auto.
generalize (prefix_correct s1 (String b s2'));
case (prefix s1 (String b s2')).
intros H0 H; injection H; intros H1; rewrite <- H1; auto.
intros p H2 H3; inversion H3.
case m; simpl; auto.
case (index 0 s1 s2'); intros; discriminate.
intros m'; generalize (Rec 0 m' s1); case (index 0 s1 s2'); auto.
intros x H H0 H1 p; try case p; simpl; auto.
intros H2 H3; red; intros H4; case H0.
intros H5 H6; absurd (false = true); auto with bool.
intros n0 H2 H3; apply H; auto.
injection H1; auto.
apply Le.le_O_n.
apply Lt.lt_S_n; auto.
intros; discriminate.
intros n'; case m; simpl; auto.
case (index n' s1 s2'); intros; discriminate.
intros m'; generalize (Rec n' m' s1); case (index n' s1 s2'); auto.
intros x H H0 p; case p; simpl; auto.
intros H1; inversion H1; auto.
intros n0 H1 H2; apply H; auto.
injection H0; auto.
apply Le.le_S_n; auto.
apply Lt.lt_S_n; auto.
intros; discriminate.
Qed.
(** If the result of [index] is [None], [s1] does not occur in [s2]
after [n] *)
Theorem index_correct3 :
forall (n m : nat) (s1 s2 : string),
index n s1 s2 = None ->
s1 <> EmptyString -> n <= m -> substring m (length s1) s2 <> s1.
Proof.
intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl;
auto.
intros n; case n; simpl; auto.
intros m s1; case s1; simpl; auto.
case m; intros; red; intros; discriminate.
intros n' m; case m; auto.
intros s1; case s1; simpl; auto.
intros b s2' Rec n m s1.
case n; simpl; auto.
generalize (prefix_correct s1 (String b s2'));
case (prefix s1 (String b s2')).
intros; discriminate.
case m; simpl; auto with bool.
case s1; simpl; auto.
intros a s H H0 H1 H2; red; intros H3; case H.
intros H4 H5; absurd (false = true); auto with bool.
case s1; simpl; auto.
intros a s n0 H H0 H1 H2;
change (substring n0 (length (String a s)) s2' <> String a s);
apply (Rec 0); auto.
generalize H0; case (index 0 (String a s) s2'); simpl; auto; intros;
discriminate.
apply Le.le_O_n.
intros n'; case m; simpl; auto.
intros H H0 H1; inversion H1.
intros n0 H H0 H1; apply (Rec n'); auto.
generalize H; case (index n' s1 s2'); simpl; auto; intros;
discriminate.
apply Le.le_S_n; auto.
Qed.
(* Back to normal for prefix *)
Transparent prefix.
(** If we are searching for the [Empty] string and the answer is no
this means that [n] is greater than the size of [s] *)
Theorem index_correct4 :
forall (n : nat) (s : string),
index n EmptyString s = None -> length s < n.
Proof.
intros n s; generalize n; clear n; elim s; simpl; auto.
intros n; case n; simpl; auto.
intros; discriminate.
intros; apply Lt.lt_O_Sn.
intros a s' H n; case n; simpl; auto.
intros; discriminate.
intros n'; generalize (H n'); case (index n' EmptyString s'); simpl;
auto.
intros; discriminate.
intros H0 H1; apply Lt.lt_n_S; auto.
Qed.
(** Same as [index] but with no optional type, we return [0] when it
does not occur *)
Definition findex n s1 s2 :=
match index n s1 s2 with
| Some n => n
| None => 0
end.
(** *** Concrete syntax *)
(**
The concrete syntax for strings in scope string_scope follows the
Coq convention for strings: all ascii characters of code less than
128 are litteral to the exception of the character `double quote'
which must be doubled.
Strings that involve ascii characters of code >= 128 which are not
part of a valid utf8 sequence of characters are not representable
using the Coq string notation (use explicitly the String constructor
with the ascii codes of the characters).
*)
Example HelloWorld := " ""Hello world!""
".
|