1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
|
\documentclass[11pt]{article}
\title{A Tutorial on [Co-]Inductive Types in Coq}
\author{Eduardo Gim\'enez\thanks{Eduardo.Gimenez@inria.fr},
Pierre Cast\'eran\thanks{Pierre.Casteran@labri.fr}}
\date{May 1998 --- \today}
\usepackage{multirow}
% \usepackage{aeguill}
% \externaldocument{RefMan-gal.v}
% \externaldocument{RefMan-ext.v}
% \externaldocument{RefMan-tac.v}
% \externaldocument{RefMan-oth}
% \externaldocument{RefMan-tus.v}
% \externaldocument{RefMan-syn.v}
% \externaldocument{Extraction.v}
\input{recmacros}
\input{coqartmacros}
\newcommand{\refmancite}[1]{{}}
% \newcommand{\refmancite}[1]{\cite{coqrefman}}
% \newcommand{\refmancite}[1]{\cite[#1] {]{coqrefman}}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{makeidx}
% \usepackage{multind}
\usepackage{alltt}
\usepackage{verbatim}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{theorem}
\usepackage[dvips]{epsfig}
\usepackage{epic}
\usepackage{eepic}
% \usepackage{ecltree}
\usepackage{moreverb}
\usepackage{color}
\usepackage{pifont}
\usepackage{xr}
\usepackage{url}
\usepackage{alltt}
\renewcommand{\familydefault}{ptm}
\renewcommand{\seriesdefault}{m}
\renewcommand{\shapedefault}{n}
\newtheorem{exercise}{Exercise}[section]
\makeindex
\begin{document}
\maketitle
\begin{abstract}
This document\footnote{The first versions of this document were entirely written by Eduardo Gimenez.
Pierre Cast\'eran wrote the 2004 and 2006 revisions.} is an introduction to the definition and
use of inductive and co-inductive types in the {\coq} proof environment. It explains how types like natural numbers and infinite streams are defined
in {\coq}, and the kind of proof techniques that can be used to reason
about them (case analysis, induction, inversion of predicates,
co-induction, etc). Each technique is illustrated through an
executable and self-contained {\coq} script.
\end{abstract}
%\RRkeyword{Proof environments, recursive types.}
%\makeRT
\addtocontents{toc}{\protect \thispagestyle{empty}}
\pagenumbering{arabic}
\cleardoublepage
\tableofcontents
\clearpage
\section{About this document}
This document is an introduction to the definition and use of
inductive and co-inductive types in the {\coq} proof environment. It was born from the
notes written for the course about the version V5.10 of {\coq}, given
by Eduardo Gimenez at
the Ecole Normale Sup\'erieure de Lyon in March 1996. This article is
a revised and improved version of these notes for the version V8.0 of
the system.
We assume that the reader has some familiarity with the
proofs-as-programs paradigm of Logic \cite{Coquand:metamathematical} and the generalities
of the {\coq} system \cite{coqrefman}. You would take a greater advantage of
this document if you first read the general tutorial about {\coq} and
{\coq}'s FAQ, both available on \cite{coqsite}.
A text book \cite{coqart}, accompanied with a lot of
examples and exercises \cite{Booksite}, presents a detailed description
of the {\coq} system and its underlying
formalism: the Calculus of Inductive Construction.
Finally, the complete description of {\coq} is given in the reference manual
\cite{coqrefman}. Most of the tactics and commands we describe have
several options, which we do not present exhaustively.
If some script herein uses a non described feature, please refer to
the Reference Manual.
If you are familiar with other proof environments
based on type theory and the LCF style ---like PVS, LEGO, Isabelle,
etc--- then you will find not difficulty to guess the unexplained
details.
The better way to read this document is to start up the {\coq} system,
type by yourself the examples and exercises, and observe the
behavior of the system. All the examples proposed in this tutorial
can be downloaded from the same site as the present document.
The tutorial is organised as follows. The next section describes how
inductive types are defined in {\coq}, and introduces some useful ones,
like natural numbers, the empty type, the propositional equality type,
and the logical connectives. Section \ref{CaseAnalysis} explains
definitions by pattern-matching and their connection with the
principle of case analysis. This principle is the most basic
elimination rule associated with inductive or co-inductive types
and follows a
general scheme that we illustrate for some of the types introduced in
Section \ref{Introduction}. Section \ref{CaseTechniques} illustrates
the pragmatics of this principle, showing different proof techniques
based on it. Section \ref{StructuralInduction} introduces definitions
by structural recursion and proofs by induction.
Section~\ref{CaseStudy} presents some elaborate techniques
about dependent case analysis. Finally, Section
\ref{CoInduction} is a brief introduction to co-inductive types
--i.e., types containing infinite objects-- and the principle of
co-induction.
Thanks to Bruno Barras, Yves Bertot, Hugo Herbelin, Jean-Fran\c{c}ois Monin
and Michel L\'evy for their help.
\subsection*{Lexical conventions}
The \texttt{typewriter} font is used to represent text
input by the user, while the \textit{italic} font is used to represent
the text output by the system as answers.
Moreover, the mathematical symbols \coqle{}, \coqdiff, \(\exists\),
\(\forall\), \arrow{}, $\rightarrow{}$ \coqor{}, \coqand{}, and \funarrow{}
stand for the character strings \citecoq{<=}, \citecoq{<>},
\citecoq{exists}, \citecoq{forall}, \citecoq{->}, \citecoq{<-},
\texttt{\char'134/}, \texttt{/\char'134}, and \citecoq{=>},
respectively. For instance, the \coq{} statement
%V8 A prendre
% inclusion numero 1
% traduction numero 1
\begin{alltt}
\hide{Open Scope nat_scope. Check (}forall A:Type,(exists x : A, forall (y:A), x <> y) -> 2 = 3\hide{).}
\end{alltt}
is written as follows in this tutorial:
%V8 A prendre
% inclusion numero 2
% traduction numero 2
\begin{alltt}
\hide{Check (}{\prodsym}A:Type,(\exsym{}x:A, {\prodsym}y:A, x {\coqdiff} y) \arrow{} 2 = 3\hide{).}
\end{alltt}
When a fragment of \coq{} input text appears in the middle of
regular text, we often place this fragment between double quotes
``\dots.'' These double quotes do not belong to the \coq{} syntax.
Finally, any
string enclosed between \texttt{(*} and \texttt{*)} is a comment and
is ignored by the \coq{} system.
\section{Introducing Inductive Types}
\label{Introduction}
Inductive types are types closed with respect to their introduction
rules. These rules explain the most basic or \textsl{canonical} ways
of constructing an element of the type. In this sense, they
characterize the recursive type. Different rules must be considered as
introducing different objects. In order to fix ideas, let us introduce
in {\coq} the most well-known example of a recursive type: the type of
natural numbers.
%V8 A prendre
\begin{alltt}
Inductive nat : Set :=
| O : nat
| S : nat\arrow{}nat.
\end{alltt}
The definition of a recursive type has two main parts. First, we
establish what kind of recursive type we will characterize (a set, in
this case). Second, we present the introduction rules that define the
type ({\Z} and {\SUCC}), also called its {\sl constructors}. The constructors
{\Z} and {\SUCC} determine all the elements of this type. In other
words, if $n\mbox{:}\nat$, then $n$ must have been introduced either
by the rule {\Z} or by an application of the rule {\SUCC} to a
previously constructed natural number. In this sense, we can say
that {\nat} is \emph{closed}. On the contrary, the type
$\Set$ is an {\it open} type, since we do not know {\it a priori} all
the possible ways of introducing an object of type \texttt{Set}.
After entering this command, the constants {\nat}, {\Z} and {\SUCC} are
available in the current context. We can see their types using the
\texttt{Check} command \refmancite{Section \ref{Check}}:
%V8 A prendre
\begin{alltt}
Check nat.
\it{}nat : Set
\tt{}Check O.
\it{}O : nat
\tt{}Check S.
\it{}S : nat {\arrow} nat
\end{alltt}
Moreover, {\coq} adds to the context three constants named
$\natind$, $\natrec$ and $\natrect$, which
correspond to different principles of structural induction on
natural numbers that {\coq} infers automatically from the definition. We
will come back to them in Section \ref{StructuralInduction}.
In fact, the type of natural numbers as well as several useful
theorems about them are already defined in the basic library of {\coq},
so there is no need to introduce them. Therefore, let us throw away
our (re)definition of {\nat}, using the command \texttt{Reset}.
%V8 A prendre
\begin{alltt}
Reset nat.
Print nat.
\it{}Inductive nat : Set := O : nat | S : nat \arrow{} nat
For S: Argument scope is [nat_scope]
\end{alltt}
Notice that \coq{}'s \emph{interpretation scope} for natural numbers
(called \texttt{nat\_scope})
allows us to read and write natural numbers in decimal form (see \cite{coqrefman}). For instance, the constructor \texttt{O} can be read or written
as the digit $0$, and the term ``~\texttt{S (S (S O))}~'' as $3$.
%V8 A prendre
\begin{alltt}
Check O.
\it 0 : nat.
\tt
Check (S (S (S O))).
\it 3 : nat
\end{alltt}
Let us now take a look to some other
recursive types contained in the standard library of {\coq}.
\subsection{Lists}
Lists are defined in library \citecoq{List}\footnote{Notice that in versions of
{\coq}
prior to 8.1, the parameter $A$ had sort \citecoq{Set} instead of \citecoq{Type};
the constant \citecoq{list} was thus of type \citecoq{Set\arrow{} Set}.}
\begin{alltt}
Require Import List.
Print list.
\it
Inductive list (A : Type) : Type:=
nil : list A | cons : A {\arrow} list A {\arrow} list A
For nil: Argument A is implicit
For cons: Argument A is implicit
For list: Argument scope is [type_scope]
For nil: Argument scope is [type_scope]
For cons: Argument scopes are [type_scope _ _]
\end{alltt}
In this definition, \citecoq{A} is a \emph{general parameter}, global
to both constructors.
This kind of definition allows us to build a whole family of
inductive types, indexed over the sort \citecoq{Type}.
This can be observed if we consider the type of identifiers
\citecoq{list}, \citecoq{cons} and \citecoq{nil}.
Notice the notation \citecoq{(A := \dots)} which must be used
when {\coq}'s type inference algorithm cannot infer the implicit
parameter \citecoq{A}.
\begin{alltt}
Check list.
\it list
: Type {\arrow} Type
\tt Check (nil (A:=nat)).
\it nil
: list nat
\tt Check (nil (A:= nat {\arrow} nat)).
\it nil
: list (nat {\arrow} nat)
\tt Check (fun A: Type {\funarrow} (cons (A:=A))).
\it fun A : Type {\funarrow} cons (A:=A)
: {\prodsym} A : Type, A {\arrow} list A {\arrow} list A
\tt Check (cons 3 (cons 2 nil)).
\it 3 :: 2 :: nil
: list nat
\tt Check (nat :: bool ::nil).
\it nat :: bool :: nil
: list Set
\tt Check ((3<=4) :: True ::nil).
\it (3<=4) :: True :: nil
: list Prop
\tt Check (Prop::Set::nil).
\it Prop::Set::nil
: list Type
\end{alltt}
\subsection{Vectors.}
\label{vectors}
Like \texttt{list}, \citecoq{vector} is a polymorphic type:
if $A$ is a type, and $n$ a natural number, ``~\citecoq{vector $A$ $n$}~''
is the type of vectors of elements of $A$ and size $n$.
\begin{alltt}
Require Import Bvector.
Print vector.
\it
Inductive vector (A : Type) : nat {\arrow} Type :=
Vnil : vector A 0
| Vcons : A {\arrow} {\prodsym} n : nat, vector A n {\arrow} vector A (S n)
For vector: Argument scopes are [type_scope nat_scope]
For Vnil: Argument scope is [type_scope]
For Vcons: Argument scopes are [type_scope _ nat_scope _]
\end{alltt}
Remark the difference between the two parameters $A$ and $n$:
The first one is a \textsl{general parameter}, global to all the
introduction rules,while the second one is an \textsl{index}, which is
instantiated differently in the introduction rules.
Such types parameterized by regular
values are called \emph{dependent types}.
\begin{alltt}
Check (Vnil nat).
\it Vnil nat
: vector nat 0
\tt Check (fun (A:Type)(a:A){\funarrow} Vcons _ a _ (Vnil _)).
\it fun (A : Type) (a : A) {\funarrow} Vcons A a 0 (Vnil A)
: {\prodsym} A : Type, A {\arrow} vector A 1
\tt Check (Vcons _ 5 _ (Vcons _ 3 _ (Vnil _))).
\it Vcons nat 5 1 (Vcons nat 3 0 (Vnil nat))
: vector nat 2
\end{alltt}
\subsection{The contradictory proposition.}
Another example of an inductive type is the contradictory proposition.
This type inhabits the universe of propositions, and has no element
at all.
%V8 A prendre
\begin{alltt}
Print False.
\it{} Inductive False : Prop :=
\end{alltt}
\noindent Notice that no constructor is given in this definition.
\subsection{The tautological proposition.}
Similarly, the
tautological proposition {\True} is defined as an inductive type
with only one element {\I}:
%V8 A prendre
\begin{alltt}
Print True.
\it{}Inductive True : Prop := I : True
\end{alltt}
\subsection{Relations as inductive types.}
Some relations can also be introduced in a smart way as an inductive family
of propositions. Let us take as example the order $n \leq m$ on natural
numbers, called \citecoq{le} in {\coq}.
This relation is introduced through
the following definition, quoted from the standard library\footnote{In the interpretation scope
for Peano arithmetic:
\citecoq{nat\_scope}, ``~\citecoq{n <= m}~'' is equivalent to
``~\citecoq{le n m}~'' .}:
%V8 A prendre
\begin{alltt}
Print le. \it
Inductive le (n:nat) : nat\arrow{}Prop :=
| le_n: n {\coqle} n
| le_S: {\prodsym} m, n {\coqle} m \arrow{} n {\coqle} S m.
\end{alltt}
Notice that in this definition $n$ is a general parameter,
while the second argument of \citecoq{le} is an index (see section
~\ref{vectors}).
This definition
introduces the binary relation $n {\leq} m$ as the family of unary predicates
``\textsl{to be greater or equal than a given $n$}'', parameterized by $n$.
The introduction rules of this type can be seen as a sort of Prolog
rules for proving that a given integer $n$ is less or equal than another one.
In fact, an object of type $n{\leq} m$ is nothing but a proof
built up using the constructors \textsl{le\_n} and
\textsl{le\_S} of this type. As an example, let us construct
a proof that zero is less or equal than three using {\coq}'s interactive
proof mode.
Such an object can be obtained applying three times the second
introduction rule of \citecoq{le}, to a proof that zero is less or equal
than itself,
which is provided by the first constructor of \citecoq{le}:
%V8 A prendre
\begin{alltt}
Theorem zero_leq_three: 0 {\coqle} 3.
Proof.
\it{} 1 subgoal
============================
0 {\coqle} 3
\tt{}Proof.
constructor 2.
\it{} 1 subgoal
============================
0 {\coqle} 2
\tt{} constructor 2.
\it{} 1 subgoal
============================
0 {\coqle} 1
\tt{} constructor 2
\it{} 1 subgoal
============================
0 {\coqle} 0
\tt{} constructor 1.
\it{}Proof completed
\tt{}Qed.
\end{alltt}
\noindent When
the current goal is an inductive type, the tactic
``~\citecoq{constructor $i$}~'' \refmancite{Section \ref{constructor}} applies the $i$-th constructor in the
definition of the type. We can take a look at the proof constructed
using the command \texttt{Print}:
%V8 A prendre
\begin{alltt}
Print Print zero_leq_three.
\it{}zero_leq_three =
zero_leq_three = le_S 0 2 (le_S 0 1 (le_S 0 0 (le_n 0)))
: 0 {\coqle} 3
\end{alltt}
When the parameter $i$ is not supplied, the tactic \texttt{constructor}
tries to apply ``~\texttt{constructor $1$}~'', ``~\texttt{constructor $2$}~'',\dots,
``~\texttt{constructor $n$}~'' where $n$ is the number of constructors
of the inductive type (2 in our example) of the conclusion of the goal.
Our little proof can thus be obtained iterating the tactic
\texttt{constructor} until it fails:
%V8 A prendre
\begin{alltt}
Lemma zero_leq_three': 0 {\coqle} 3.
repeat constructor.
Qed.
\end{alltt}
Notice that the strict order on \texttt{nat}, called \citecoq{lt}
is not inductively defined: the proposition $n<p$ (notation for \citecoq{lt $n$ $p$})
is reducible to \citecoq{(S $n$) $\leq$ p}.
\begin{alltt}
Print lt.
\it
lt = fun n m : nat {\funarrow} S n {\coqle} m
: nat {\arrow} nat {\arrow} Prop
\tt
Lemma zero_lt_three : 0 < 3.
Proof.
repeat constructor.
Qed.
Print zero_lt_three.
\it zero_lt_three = le_S 1 2 (le_S 1 1 (le_n 1))
: 0 < 3
\end{alltt}
\subsection{About general parameters (\coq{} version $\geq$ 8.1)}
\label{parameterstuff}
Since version $8.1$, it is possible to write more compact inductive definitions
than in earlier versions.
Consider the following alternative definition of the relation $\leq$ on
type \citecoq{nat}:
\begin{alltt}
Inductive le'(n:nat):nat -> Prop :=
| le'_n : le' n n
| le'_S : forall p, le' (S n) p -> le' n p.
Hint Constructors le'.
\end{alltt}
We notice that the type of the second constructor of \citecoq{le'}
has an argument whose type is \citecoq{le' (S n) p}.
This constrasts with earlier versions
of {\coq}, in which a general parameter $a$ of an inductive
type $I$ had to appear only in applications of the form $I\,\dots\,a$.
Since version $8.1$, if $a$ is a general parameter of an inductive
type $I$, the type of an argument of a constructor of $I$ may be
of the form $I\,\dots\,t_a$ , where $t_a$ is any term.
Notice that the final type of the constructors must be of the form
$I\,\dots\,a$, since these constructors describe how to form
inhabitants of type $I\,\dots\,a$ (this is the role of parameter $a$).
Another example of this new feature is {\coq}'s definition of accessibility
(see Section~\ref{WellFoundedRecursion}), which has a general parameter
$x$; the constructor for the predicate
``$x$ is accessible'' takes an argument of type ``$y$ is accessible''.
In earlier versions of {\coq}, a relation like \citecoq{le'} would have to be
defined without $n$ being a general parameter.
\begin{alltt}
Reset le'.
Inductive le': nat-> nat -> Prop :=
| le'_n : forall n, le' n n
| le'_S : forall n p, le' (S n) p -> le' n p.
\end{alltt}
\subsection{The propositional equality type.} \label{equality}
In {\coq}, the propositional equality between two inhabitants $a$ and
$b$ of
the same type $A$ ,
noted $a=b$, is introduced as a family of recursive predicates
``~\textsl{to be equal to $a$}~'', parameterised by both $a$ and its type
$A$. This family of types has only one introduction rule, which
corresponds to reflexivity.
Notice that the syntax ``\citecoq{$a$ = $b$}~'' is an abbreviation
for ``\citecoq{eq $a$ $b$}~'', and that the parameter $A$ is \emph{implicit},
as it can be infered from $a$.
%V8 A prendre
\begin{alltt}
Print eq.
\it{} Inductive eq (A : Type) (x : A) : A \arrow{} Prop :=
eq_refl : x = x
For eq: Argument A is implicit
For eq_refl: Argument A is implicit
For eq: Argument scopes are [type_scope _ _]
For eq_refl: Argument scopes are [type_scope _]
\end{alltt}
Notice also that the first parameter $A$ of \texttt{eq} has type
\texttt{Type}. The type system of {\coq} allows us to consider equality between
various kinds of terms: elements of a set, proofs, propositions,
types, and so on.
Look at \cite{coqrefman, coqart} to get more details on {\coq}'s type
system, as well as implicit arguments and argument scopes.
\begin{alltt}
Lemma eq_3_3 : 2 + 1 = 3.
Proof.
reflexivity.
Qed.
Lemma eq_proof_proof : eq_refl (2*6) = eq_refl (3*4).
Proof.
reflexivity.
Qed.
Print eq_proof_proof.
\it eq_proof_proof =
eq_refl (eq_refl (3 * 4))
: eq_refl (2 * 6) = eq_refl (3 * 4)
\tt
Lemma eq_lt_le : ( 2 < 4) = (3 {\coqle} 4).
Proof.
reflexivity.
Qed.
Lemma eq_nat_nat : nat = nat.
Proof.
reflexivity.
Qed.
Lemma eq_Set_Set : Set = Set.
Proof.
reflexivity.
Qed.
\end{alltt}
\subsection{Logical connectives.} \label{LogicalConnectives}
The conjunction and disjunction of two propositions are also examples
of recursive types:
\begin{alltt}
Inductive or (A B : Prop) : Prop :=
or_introl : A \arrow{} A {\coqor} B | or_intror : B \arrow{} A {\coqor} B
Inductive and (A B : Prop) : Prop :=
conj : A \arrow{} B \arrow{} A {\coqand} B
\end{alltt}
The propositions $A$ and $B$ are general parameters of these
connectives. Choosing different universes for
$A$ and $B$ and for the inductive type itself gives rise to different
type constructors. For example, the type \textsl{sumbool} is a
disjunction but with computational contents.
\begin{alltt}
Inductive sumbool (A B : Prop) : Set :=
left : A \arrow{} \{A\} + \{B\} | right : B \arrow{} \{A\} + \{B\}
\end{alltt}
This type --noted \texttt{\{$A$\}+\{$B$\}} in {\coq}-- can be used in {\coq}
programs as a sort of boolean type, to check whether it is $A$ or $B$
that is true. The values ``~\citecoq{left $p$}~'' and
``~\citecoq{right $q$}~'' replace the boolean values \textsl{true} and
\textsl{false}, respectively. The advantage of this type over
\textsl{bool} is that it makes available the proofs $p$ of $A$ or $q$
of $B$, which could be necessary to construct a verification proof
about the program.
For instance, let us consider the certified program \citecoq{le\_lt\_dec}
of the Standard Library.
\begin{alltt}
Require Import Compare_dec.
Check le_lt_dec.
\it
le_lt_dec
: {\prodsym} n m : nat, \{n {\coqle} m\} + \{m < n\}
\end{alltt}
We use \citecoq{le\_lt\_dec} to build a function for computing
the max of two natural numbers:
\begin{alltt}
Definition max (n p :nat) := match le_lt_dec n p with
| left _ {\funarrow} p
| right _ {\funarrow} n
end.
\end{alltt}
In the following proof, the case analysis on the term
``~\citecoq{le\_lt\_dec n p}~'' gives us an access to proofs
of $n\leq p$ in the first case, $p<n$ in the other.
\begin{alltt}
Theorem le_max : {\prodsym} n p, n {\coqle} p {\arrow} max n p = p.
Proof.
intros n p ; unfold max ; case (le_lt_dec n p); simpl.
\it
2 subgoals
n : nat
p : nat
============================
n {\coqle} p {\arrow} n {\coqle} p {\arrow} p = p
subgoal 2 is:
p < n {\arrow} n {\coqle} p {\arrow} n = p
\tt
trivial.
intros; absurd (p < p); eauto with arith.
Qed.
\end{alltt}
Once the program verified, the proofs are
erased by the extraction procedure:
\begin{alltt}
Extraction max.
\it
(** val max : nat {\arrow} nat {\arrow} nat **)
let max n p =
match le_lt_dec n p with
| Left {\arrow} p
| Right {\arrow} n
\end{alltt}
Another example of use of \citecoq{sumbool} is given in Section
\ref{WellFoundedRecursion}: the theorem \citecoq{eq\_nat\_dec} of
library \citecoq{Coq.Arith.Peano\_dec} is used in an euclidean division
algorithm.
\subsection{The existential quantifier.}\label{ex-def}
The existential quantifier is yet another example of a logical
connective introduced as an inductive type.
\begin{alltt}
Inductive ex (A : Type) (P : A \arrow{} Prop) : Prop :=
ex_intro : {\prodsym} x : A, P x \arrow{} ex P
\end{alltt}
Notice that {\coq} uses the abreviation ``~\citecoq{\exsym\,$x$:$A$, $B$}~''
for \linebreak ``~\citecoq{ex (fun $x$:$A$ \funarrow{} $B$)}~''.
\noindent The former quantifier inhabits the universe of propositions.
As for the conjunction and disjunction connectives, there is also another
version of existential quantification inhabiting the universes $\Type_i$,
which is written \texttt{sig $P$}. The syntax
``~\citecoq{\{$x$:$A$ | $B$\}}~'' is an abreviation for ``~\citecoq{sig (fun $x$:$A$ {\funarrow} $B$)}~''.
%\paragraph{The logical connectives.} Conjuction and disjuction are
%also introduced as recursive types:
%\begin{alltt}
%Print or.
%\end{alltt}
%begin{alltt}
%Print and.
%\end{alltt}
\subsection{Mutually Dependent Definitions}
\label{MutuallyDependent}
Mutually dependent definitions of recursive types are also allowed in
{\coq}. A typical example of these kind of declaration is the
introduction of the trees of unbounded (but finite) width:
\label{Forest}
\begin{alltt}
Inductive tree(A:Type) : Type :=
node : A {\arrow} forest A \arrow{} tree A
with forest (A: Set) : Type :=
nochild : forest A |
addchild : tree A \arrow{} forest A \arrow{} forest A.
\end{alltt}
\noindent Yet another example of mutually dependent types are the
predicates \texttt{even} and \texttt{odd} on natural numbers:
\label{Even}
\begin{alltt}
Inductive
even : nat\arrow{}Prop :=
evenO : even O |
evenS : {\prodsym} n, odd n \arrow{} even (S n)
with
odd : nat\arrow{}Prop :=
oddS : {\prodsym} n, even n \arrow{} odd (S n).
\end{alltt}
\begin{alltt}
Lemma odd_49 : odd (7 * 7).
simpl; repeat constructor.
Qed.
\end{alltt}
\section{Case Analysis and Pattern-matching}
\label{CaseAnalysis}
\subsection{Non-dependent Case Analysis}
An \textsl{elimination rule} for the type $A$ is some way to use an
object $a:A$ in order to define an object in some type $B$.
A natural elimination rule for an inductive type is \emph{case analysis}.
For instance, any value of type {\nat} is built using either \texttt{O} or \texttt{S}.
Thus, a systematic way of building a value of type $B$ from any
value of type {\nat} is to associate to \texttt{O} a constant $t_O:B$ and
to every term of the form ``~\texttt{S $p$}~'' a term $t_S:B$. The following
construction has type $B$:
\begin{alltt}
match \(n\) return \(B\) with O \funarrow \(t\sb{O}\) | S p \funarrow \(t\sb{S}\) end
\end{alltt}
In most of the cases, {\coq} is able to infer the type $B$ of the object
defined, so the ``\texttt{return $B$}'' part can be omitted.
The computing rules associated with this construct are the expected ones
(the notation $t_S\{q/\texttt{p}\}$ stands for the substitution of $p$ by
$q$ in $t_S$ :)
\begin{eqnarray*}
\texttt{match $O$ return $b$ with O {\funarrow} $t_O$ | S p {\funarrow} $t_S$ end} &\Longrightarrow& t_O\\
\texttt{match $S\;q$ return $b$ with O {\funarrow} $t_O$ | S p {\funarrow} $t_S$ end} &\Longrightarrow& t_S\{q/\texttt{p}\}
\end{eqnarray*}
\subsubsection{Example: the predecessor function.}\label{firstpred}
An example of a definition by case analysis is the function which
computes the predecessor of any given natural number:
\begin{alltt}
Definition pred (n:nat) := match n with
| O {\funarrow} O
| S m {\funarrow} m
end.
Eval simpl in pred 56.
\it{} = 55
: nat
\tt
Eval simpl in pred 0.
\it{} = 0
: nat
\tt{}Eval simpl in fun p {\funarrow} pred (S p).
\it{} = fun p : nat {\funarrow} p
: nat {\arrow} nat
\end{alltt}
As in functional programming, tuples and wild-cards can be used in
patterns \refmancite{Section \ref{ExtensionsOfCases}}. Such
definitions are automatically compiled by {\coq} into an expression which
may contain several nested case expressions. For example, the
exclusive \emph{or} on booleans can be defined as follows:
\begin{alltt}
Definition xorb (b1 b2:bool) :=
match b1, b2 with
| false, true {\funarrow} true
| true, false {\funarrow} true
| _ , _ {\funarrow} false
end.
\end{alltt}
This kind of definition is compiled in {\coq} as follows\footnote{{\coq} uses
the conditional ``~\citecoq{if $b$ then $a$ else $b$}~'' as an abreviation to
``~\citecoq{match $b$ with true \funarrow{} $a$ | false \funarrow{} $b$ end}~''.}:
\begin{alltt}
Print xorb.
xorb =
fun b1 b2 : bool {\funarrow}
if b1 then if b2 then false else true
else if b2 then true else false
: bool {\arrow} bool {\arrow} bool
\end{alltt}
\subsection{Dependent Case Analysis}
\label{DependentCase}
For a pattern matching construct of the form
``~\citecoq{match n with \dots end}~'' a more general typing rule
is obtained considering that the type of the whole expression
may also depend on \texttt{n}.
For instance, let us consider some function
$Q:\texttt{nat}\arrow{}\texttt{Type}$, and $n:\citecoq{nat}$.
In order to build a term of type $Q\;n$, we can associate
to the constructor \texttt{O} some term $t_O: Q\;\texttt{O}$ and to
the pattern ``~\texttt{S p}~'' some term $t_S : Q\;(S\;p)$.
Notice that the terms $t_O$ and $t_S$ do not have the same type.
The syntax of the \emph{dependent case analysis} and its
associated typing rule make precise how the resulting
type depends on the argument of the pattern matching, and
which constraint holds on the branches of the pattern matching:
\label{Prod-sup-rule}
\[
\begin{array}[t]{l}
Q: \texttt{nat}{\arrow}\texttt{Type}\quad{t_O}:{{Q\;\texttt{O}}} \quad
\smalljuge{p:\texttt{nat}}{t_p}{{Q\;(\texttt{S}\;p)}} \quad n:\texttt{nat} \\
\hline
{\texttt{match \(n\) as \(n\sb{0}\) return \(Q\;n\sb{0}\) with | O \funarrow \(t\sb{O}\) | S p \funarrow \(t\sb{S}\) end}}:{{Q\;n}}
\end{array}
\]
The interest of this rule of \textsl{dependent} pattern-matching is
that it can also be read as the following logical principle (when $Q$ has type \citecoq{nat\arrow{}Prop}
by \texttt{Prop} in the type of $Q$): in order to prove
that a property $Q$ holds for all $n$, it is sufficient to prove that
$Q$ holds for {\Z} and that for all $p:\nat$, $Q$ holds for
$(\SUCC\;p)$. The former, non-dependent version of case analysis can
be obtained from this latter rule just taking $Q$ as a constant
function on $n$.
Notice that destructuring $n$ into \citecoq{O} or ``~\citecoq{S p}~''
doesn't
make appear in the goal the equalities ``~$n=\citecoq{O}$~''
and ``~$n=\citecoq{S p}$~''.
They are ``internalized'' in the rules above (see section~\ref{inversion}.)
\subsubsection{Example: strong specification of the predecessor function.}
In Section~\ref{firstpred}, the predecessor function was defined directly
as a function from \texttt{nat} to \texttt{nat}. It remains to prove
that this function has some desired properties. Another way to proceed
is to, first introduce a specification of what is the predecessor of a
natural number, under the form of a {\coq} type, then build an inhabitant
of this type: in other words, a realization of this specification. This way, the correctness
of this realization is ensured by {\coq}'s type system.
A reasonable specification for $\pred$ is to say that for all $n$
there exists another $m$ such that either $m=n=0$, or $(\SUCC\;m)$
is equal to $n$. The function $\pred$ should be just the way to
compute such an $m$.
\begin{alltt}
Definition pred_spec (n:nat) :=
\{m:nat | n=0{\coqand} m=0 {\coqor} n = S m\}.
Definition predecessor : {\prodsym} n:nat, pred_spec n.
intro n; case n.
\it{}
n : nat
============================
pred_spec 0
\tt{} unfold pred_spec;exists 0;auto.
\it{}
=========================================
{\prodsym} n0 : nat, pred_spec (S n0)
\tt{}
unfold pred_spec; intro n0; exists n0; auto.
Defined.
\end{alltt}
If we print the term built by {\coq}, its dependent pattern-matching structure can be observed:
\begin{alltt}
predecessor = fun n : nat {\funarrow}
\textbf{match n as n0 return (pred_spec n0) with}
\textbf{| O {\funarrow}}
exist (fun m : nat {\funarrow} 0 = 0 {\coqand} m = 0 {\coqor} 0 = S m) 0
(or_introl (0 = 1)
(conj (eq_refl 0) (eq_refl 0)))
\textbf{| S n0 {\funarrow}}
exist (fun m : nat {\funarrow} S n0 = 0 {\coqand} m = 0 {\coqor} S n0 = S m) n0
(or_intror (S n0 = 0 {\coqand} n0 = 0) (eq_refl (S n0)))
\textbf{end} : {\prodsym} n : nat, \textbf{pred_spec n}
\end{alltt}
Notice that there are many variants to the pattern ``~\texttt{intros \dots; case \dots}~''. Look at for tactics
``~\texttt{destruct}~'', ``~\texttt{intro \emph{pattern}}~'', etc. in
the reference manual and/or the book.
\noindent The command \texttt{Extraction} \refmancite{Section
\ref{ExtractionIdent}} can be used to see the computational
contents associated to the \emph{certified} function \texttt{predecessor}:
\begin{alltt}
Extraction predecessor.
\it
(** val predecessor : nat {\arrow} pred_spec **)
let predecessor = function
| O {\arrow} O
| S n0 {\arrow} n0
\end{alltt}
\begin{exercise} \label{expand}
Prove the following theorem:
\begin{alltt}
Theorem nat_expand : {\prodsym} n:nat,
n = match n with
| 0 {\funarrow} 0
| S p {\funarrow} S p
end.
\end{alltt}
\end{exercise}
\subsection{Some Examples of Case Analysis}
\label{CaseScheme}
The reader will find in the Reference manual all details about
typing case analysis (chapter 4: Calculus of Inductive Constructions,
and chapter 15: Extended Pattern-Matching).
The following commented examples will show the different situations to consider.
%\subsubsection{General Scheme}
%Case analysis is then the most basic elimination rule that {\coq}
%provides for inductive types. This rule follows a general schema,
%valid for any inductive type $I$. First, if $I$ has type
%``~$\forall\,(z_1:A_1)\ldots(z_r:A_r),S$~'', with $S$ either $\Set$, $\Prop$ or
%$\Type$, then a case expression on $p$ of type ``~$R\;a_1\ldots a_r$~''
% inhabits ``~$Q\;a_1\ldots a_r\;p$~''. The types of the branches of the case expression
%are obtained from the definition of the type in this way: if the type
%of the $i$-th constructor $c_i$ of $R$ is
%``~$\forall\, (x_1:T_1)\ldots
%(x_n:T_n),(R\;q_1\ldots q_r)$~'', then the $i-th$ branch must have the
%form ``~$c_i\; x_1\; \ldots \;x_n\; \funarrow{}\; t_i$~'' where
%$$(x_1:T_1),\ldots, (x_n:T_n) \vdash t_i : Q\;q_1\ldots q_r)$$
% for non-dependent case
%analysis, and $$(x_1:T_1)\ldots (x_n:T_n)\vdash t_i :Q\;q_1\ldots
%q_r\;({c}_i\;x_1\;\ldots x_n)$$ for dependent one. In the
%following section, we illustrate this general scheme for different
%recursive types.
%%\textbf{A vrifier}
\subsubsection{The Empty Type}
In a definition by case analysis, there is one branch for each
introduction rule of the type. Hence, in a definition by case analysis
on $p:\False$ there are no cases to be considered. In other words, the
rule of (non-dependent) case analysis for the type $\False$ is
(for $s$ in \texttt{Prop}, \texttt{Set} or \texttt{Type}):
\begin{center}
\snregla {\JM{Q}{s}\;\;\;\;\;
\JM{p}{\False}}
{\JM{\texttt{match $p$ return $Q$ with end}}{Q}}
\end{center}
As a corollary, if we could construct an object in $\False$, then it
could be possible to define an object in any type. The tactic
\texttt{contradiction} \refmancite{Section \ref{Contradiction}}
corresponds to the application of the elimination rule above. It
searches in the context for an absurd hypothesis (this is, a
hypothesis whose type is $\False$) and then proves the goal by a case
analysis of it.
\begin{alltt}
Theorem fromFalse : False \arrow{} 0=1.
Proof.
intro H.
contradiction.
Qed.
\end{alltt}
In {\coq} the negation is defined as follows :
\begin{alltt}
Definition not (P:Prop) := P {\arrow} False
\end{alltt}
The proposition ``~\citecoq{not $A$}~'' is also written ``~$\neg A$~''.
If $A$ and $B$ are propositions, $a$ is a proof of $A$ and
$H$ is a proof of $\neg A$,
the term ``~\citecoq{match $H\;a$ return $B$ with end}~'' is a proof term of
$B$.
Thus, if your goal is $B$ and you have some hypothesis $H:\neg A$,
the tactic ``~\citecoq{case $H$}~'' generates a new subgoal with
statement $A$, as shown by the following example\footnote{Notice that
$a\coqdiff b$ is just an abreviation for ``~\coqnot a= b~''}.
\begin{alltt}
Fact Nosense : 0 {\coqdiff} 0 {\arrow} 2 = 3.
Proof.
intro H; case H.
\it
===========================
0 = 0
\tt
reflexivity.
Qed.
\end{alltt}
The tactic ``~\texttt{absurd $A$}~'' (where $A$ is any proposition),
is based on the same principle, but
generates two subgoals: $A$ and $\neg A$, for solving $B$.
\subsubsection{The Equality Type}
Let $A:\Type$, $a$, $b$ of type $A$, and $\pi$ a proof of
$a=b$. Non dependent case analysis of $\pi$ allows us to
associate to any proof of ``~$Q\;a$~'' a proof of ``~$Q\;b$~'',
where $Q:A\arrow{} s$ (where $s\in\{\Prop, \Set, \Type\}$).
The following term is a proof of ``~$Q\;a\, \arrow{}\, Q\;b$~''.
\begin{alltt}
fun H : Q a {\funarrow}
match \(\pi\) in (_ = y) return Q y with
eq_refl {\funarrow} H
end
\end{alltt}
Notice the header of the \texttt{match} construct.
It expresses how the resulting type ``~\citecoq{Q y}~'' depends on
the \emph{type} of \texttt{p}.
Notice also that in the pattern introduced by the keyword \texttt{in},
the parameter \texttt{a} in the type ``~\texttt{a = y}~'' must be
implicit, and replaced by a wildcard '\texttt{\_}'.
Therefore, case analysis on a proof of the equality $a=b$
amounts to replacing all the occurrences of the term $b$ with the term
$a$ in the goal to be proven. Let us illustrate this through an
example: the transitivity property of this equality.
\begin{alltt}
Theorem trans : {\prodsym} n m p:nat, n=m \arrow{} m=p \arrow{} n=p.
Proof.
intros n m p eqnm.
\it{}
n : nat
m : nat
p : nat
eqnm : n = m
============================
m = p {\arrow} n = p
\tt{} case eqnm.
\it{}
n : nat
m : nat
p : nat
eqnm : n = m
============================
n = p {\arrow} n = p
\tt{} trivial.
Qed.
\end{alltt}
%\noindent The case analysis on the hypothesis $H:n=m$ yields the
%tautological subgoal $n=p\rightarrow n=p$, that is directly proven by
%the tactic \texttt{Trivial}.
\begin{exercise}
Prove the symmetry property of equality.
\end{exercise}
Instead of using \texttt{case}, we can use the tactic
\texttt{rewrite} \refmancite{Section \ref{Rewrite}}. If $H$ is a proof
of $a=b$, then
``~\citecoq{rewrite $H$}~''
performs a case analysis on a proof of $b=a$, obtained by applying a
symmetry theorem to $H$. This application of symmetry allows us to rewrite
the equality from left to right, which looks more natural. An optional
parameter (either \texttt{\arrow{}} or \texttt{$\leftarrow$}) can be used to precise
in which sense the equality must be rewritten. By default,
``~\texttt{rewrite} $H$~'' corresponds to ``~\texttt{rewrite \arrow{}} $H$~''
\begin{alltt}
Lemma Rw : {\prodsym} x y: nat, y = y * x {\arrow} y * x * x = y.
intros x y e; do 2 rewrite <- e.
\it
1 subgoal
x : nat
y : nat
e : y = y * x
============================
y = y
\tt
reflexivity.
Qed.
\end{alltt}
Notice that, if $H:a=b$, then the tactic ``~\texttt{rewrite $H$}~''
replaces \textsl{all} the
occurrences of $a$ by $b$. However, in certain situations we could be
interested in rewriting some of the occurrences, but not all of them.
This can be done using the tactic \texttt{pattern} \refmancite{Section
\ref{Pattern}}. Let us consider yet another example to
illustrate this.
Let us start with some simple theorems of arithmetic; two of them
are already proven in the Standard Library, the last is left as an exercise.
\begin{alltt}
\it
mult_1_l
: {\prodsym} n : nat, 1 * n = n
mult_plus_distr_r
: {\prodsym} n m p : nat, (n + m) * p = n * p + m * p
mult_distr_S : {\prodsym} n p : nat, n * p + p = (S n)* p.
\end{alltt}
Let us now prove a simple result:
\begin{alltt}
Lemma four_n : {\prodsym} n:nat, n+n+n+n = 4*n.
Proof.
intro n;rewrite <- (mult_1_l n).
\it
n : nat
============================
1 * n + 1 * n + 1 * n + 1 * n = 4 * (1 * n)
\end{alltt}
We can see that the \texttt{rewrite} tactic call replaced \emph{all}
the occurrences of \texttt{n} by the term ``~\citecoq{1 * n}~''.
If we want to do the rewriting ony on the leftmost occurrence of
\texttt{n}, we can mark this occurrence using the \texttt{pattern}
tactic:
\begin{alltt}
Undo.
intro n; pattern n at 1.
\it
n : nat
============================
(fun n0 : nat {\funarrow} n0 + n + n + n = 4 * n) n
\end{alltt}
Applying the tactic ``~\citecoq{pattern n at 1}~'' allowed us
to explicitly abstract the first occurrence of \texttt{n} from the
goal, putting this goal under the form ``~\citecoq{$Q$ n}~'',
thus pointing to \texttt{rewrite} the particular predicate on $n$
that we search to prove.
\begin{alltt}
rewrite <- mult_1_l.
\it
1 subgoal
n : nat
============================
1 * n + n + n + n = 4 * n
\tt
repeat rewrite mult_distr_S.
\it
n : nat
============================
4 * n = 4 * n
\tt
trivial.
Qed.
\end{alltt}
\subsubsection{The Predicate $n {\leq} m$}
The last but one instance of the elimination schema that we will illustrate is
case analysis for the predicate $n {\leq} m$:
Let $n$ and $p$ be terms of type \citecoq{nat}, and $Q$ a predicate
of type $\citecoq{nat}\arrow{}\Prop$.
If $H$ is a proof of ``~\texttt{n {\coqle} p}~'',
$H_0$ a proof of ``~\texttt{$Q$ n}~'' and
$H_S$ a proof of the statement ``~\citecoq{{\prodsym}m:nat, n {\coqle} m {\arrow} Q (S m)}~'',
then the term
\begin{alltt}
match H in (_ {\coqle} q) return (Q q) with
| le_n {\funarrow} H0
| le_S m Hm {\funarrow} HS m Hm
end
\end{alltt}
is a proof term of ``~\citecoq{$Q$ $p$}~''.
The two patterns of this \texttt{match} construct describe
all possible forms of proofs of ``~\citecoq{n {\coqle} m}~'' (notice
again that the general parameter \texttt{n} is implicit in
the ``~\texttt{in \dots}~''
clause and is absent from the match patterns.
Notice that the choice of introducing some of the arguments of the
predicate as being general parameters in its definition has
consequences on the rule of case analysis that is derived. In
particular, the type $Q$ of the object defined by the case expression
only depends on the indexes of the predicate, and not on the general
parameters. In the definition of the predicate $\leq$, the first
argument of this relation is a general parameter of the
definition. Hence, the predicate $Q$ to be proven only depends on the
second argument of the relation. In other words, the integer $n$ is
also a general parameter of the rule of case analysis.
An example of an application of this rule is the following theorem,
showing that any integer greater or equal than $1$ is the successor of another
natural number:
\begin{alltt}
Lemma predecessor_of_positive :
{\prodsym} n, 1 {\coqle} n {\arrow} {\exsym} p:nat, n = S p.
Proof.
intros n H;case H.
\it
n : nat
H : 1 {\coqle} n
============================
{\exsym} p : nat, 1 = S p
\tt
exists 0; trivial.
\it
n : nat
H : 1 {\coqle} n
============================
{\prodsym} m : nat, 0 {\coqle} m {\arrow} {\exsym} p : nat, S m = S p
\tt
intros m _ .
exists m.
trivial.
Qed.
\end{alltt}
\subsubsection{Vectors}
The \texttt{vector} polymorphic and dependent family of types will
give an idea of the most general scheme of pattern-matching.
For instance, let us define a function for computing the tail of
any vector. Notice that we shall build a \emph{total} function,
by considering that the tail of an empty vector is this vector itself.
In that sense, it will be slightly different from the \texttt{Vtail}
function of the Standard Library, which is defined only for vectors
of type ``~\citecoq{vector $A$ (S $n$)}~''.
The header of the function we want to build is the following:
\begin{verbatim}
Definition Vtail_total
(A : Type) (n : nat) (v : vector A n) : vector A (pred n):=
\end{verbatim}
Since the branches will not have the same type
(depending on the parameter \texttt{n}),
the body of this function is a dependent pattern matching on
\citecoq{v}.
So we will have :
\begin{verbatim}
match v in (vector _ n0) return (vector A (pred n0)) with
\end{verbatim}
The first branch deals with the constructor \texttt{Vnil} and must
return a value in ``~\citecoq{vector A (pred 0)}~'', convertible
to ``~\citecoq{vector A 0}~''. So, we propose:
\begin{alltt}
| Vnil {\funarrow} Vnil A
\end{alltt}
The second branch considers a vector in ``~\citecoq{vector A (S n0)}~''
of the form
``~\citecoq{Vcons A n0 v0}~'', with ``~\citecoq{v0:vector A n0}~'',
and must return a value of type ``~\citecoq{vector A (pred (S n0))}~'',
which is convertible to ``~\citecoq{vector A n0}~''.
This second branch is thus :
\begin{alltt}
| Vcons _ n0 v0 {\funarrow} v0
\end{alltt}
Here is the full definition:
\begin{alltt}
Definition Vtail_total
(A : Type) (n : nat) (v : vector A n) : vector A (pred n):=
match v in (vector _ n0) return (vector A (pred n0)) with
| Vnil {\funarrow} Vnil A
| Vcons _ n0 v0 {\funarrow} v0
end.
\end{alltt}
\subsection{Case Analysis and Logical Paradoxes}
In the previous section we have illustrated the general scheme for
generating the rule of case analysis associated to some recursive type
from the definition of the type. However, if the logical soundness is
to be preserved, certain restrictions to this schema are
necessary. This section provides a brief explanation of these
restrictions.
\subsubsection{The Positivity Condition}
\label{postypes}
In order to make sense of recursive types as types closed under their
introduction rules, a constraint has to be imposed on the possible
forms of such rules. This constraint, known as the
\textsl{positivity condition}, is necessary to prevent the user from
naively introducing some recursive types which would open the door to
logical paradoxes. An example of such a dangerous type is the
``inductive type'' \citecoq{Lambda}, whose only constructor is
\citecoq{lambda} of type \citecoq{(Lambda\arrow False)\arrow Lambda}.
Following the pattern
given in Section \ref{CaseScheme}, the rule of (non dependent) case
analysis for \citecoq{Lambda} would be the following:
\begin{center}
\snregla {\JM{Q}{\Prop}\;\;\;\;\;
\JM{p}{\texttt{Lambda}}\;\;\;\;\;
{h : {\texttt{Lambda}}\arrow\False\; \vdash\; t\,:\,Q}}
{\JM{\citecoq{match $p$ return $Q$ with lambda h {\funarrow} $t$ end}}{Q}}
\end{center}
In order to avoid paradoxes, it is impossible to construct
the type \citecoq{Lambda} in {\coq}:
\begin{alltt}
Inductive Lambda : Set :=
lambda : (Lambda {\arrow} False) {\arrow} Lambda.
\it
Error: Non strictly positive occurrence of "Lambda" in
"(Lambda {\arrow} False) {\arrow} Lambda"
\end{alltt}
In order to explain this danger, we
will declare some constants for simulating the construction of
\texttt{Lambda} as an inductive type.
Let us open some section, and declare two variables, the first one for
\texttt{Lambda}, the other for the constructor \texttt{lambda}.
\begin{alltt}
Section Paradox.
Variable Lambda : Set.
Variable lambda : (Lambda {\arrow} False) {\arrow}Lambda.
\end{alltt}
Since \texttt{Lambda} is not a truely inductive type, we can't use
the \texttt{match} construct. Nevertheless, we can simulate it by a
variable \texttt{matchL} such that the term
``~\citecoq{matchL $l$ $Q$ (fun $h$ : Lambda {\arrow} False {\funarrow} $t$)}~''
should be understood as
``~\citecoq{match $l$ return $Q$ with | lambda h {\funarrow} $t$)}~''
\begin{alltt}
Variable matchL : Lambda {\arrow}
{\prodsym} Q:Prop, ((Lambda {\arrow}False) {\arrow} Q) {\arrow}
Q.
\end{alltt}
>From these constants, it is possible to define application by case
analysis. Then, through auto-application, the well-known looping term
$(\lambda x.(x\;x)\;\lambda x.(x\;x))$ provides a proof of falsehood.
\begin{alltt}
Definition application (f x: Lambda) :False :=
matchL f False (fun h {\funarrow} h x).
Definition Delta : Lambda :=
lambda (fun x : Lambda {\funarrow} application x x).
Definition loop : False := application Delta Delta.
Theorem two_is_three : 2 = 3.
Proof.
elim loop.
Qed.
End Paradox.
\end{alltt}
\noindent This example can be seen as a formulation of Russell's
paradox in type theory associating $(\textsl{application}\;x\;x)$ to the
formula $x\not\in x$, and \textsl{Delta} to the set $\{ x \mid
x\not\in x\}$. If \texttt{matchL} would satisfy the reduction rule
associated to case analysis, that is,
$$ \citecoq{matchL (lambda $f$) $Q$ $h$} \Longrightarrow h\;f$$
then the term \texttt{loop}
would compute into itself. This is not actually surprising, since the
proof of the logical soundness of {\coq} strongly lays on the property
that any well-typed term must terminate. Hence, non-termination is
usually a synonymous of inconsistency.
%\paragraph{} In this case, the construction of a non-terminating
%program comes from the so-called \textsl{negative occurrence} of
%$\Lambda$ in the type of the constructor $\lambda$. In order to be
%admissible for {\coq}, all the occurrences of the recursive type in its
%own introduction rules must be positive, in the sense on the following
%definition:
%
%\begin{enumerate}
%\item $R$ is positive in $(R\;\vec{t})$;
%\item $R$ is positive in $(x: A)C$ if it does not
%occur in $A$ and $R$ is positive in $C$;
%\item if $P\equiv (\vec{x}:\vec{T})Q$, then $R$ is positive in $(P
%\rightarrow C)$ if $R$ does not occur in $\vec{T}$, $R$ is positive
%in $C$, and either
%\begin{enumerate}
%\item $Q\equiv (R\;\vec{q})$ or
%\item $Q\equiv (J\;\vec{t})$, \label{relax}
% where $J$ is a recursive type, and for any term $t_i$ either :
% \begin{enumerate}
% \item $R$ does not occur in $t_i$, or
% \item $t_i\equiv (z:\vec{Z})(R\;\vec{q})$, $R$ does not occur
% in $\vec{Z}$, $t_i$ instantiates a general
% parameter of $J$, and this parameter is positive in the
% arguments of the constructors of $J$.
% \end{enumerate}
%\end{enumerate}
%\end{enumerate}
%\noindent Those types obtained by erasing option (\ref{relax}) in the
%definition above are called \textsl{strictly positive} types.
\subsubsection*{Remark} In this case, the construction of a non-terminating
program comes from the so-called \textsl{negative occurrence} of
\texttt{Lambda} in the argument of the constructor \texttt{lambda}.
The reader will find in the Reference Manual a complete formal
definition of the notions of \emph{positivity condition} and
\emph{strict positivity} that an inductive definition must satisfy.
%In order to be
%admissible for {\coq}, the type $R$ must be positive in the types of the
%arguments of its own introduction rules, in the sense on the following
%definition:
%\textbf{La dfinition du manuel de rfrence est plus complexe:
%la recopier ou donner seulement des exemples?
%}
%\begin{enumerate}
%\item $R$ is positive in $T$ if $R$ does not occur in $T$;
%\item $R$ is positive in $(R\;\vec{t})$ if $R$ does not occur in $\vec{t}$;
%\item $R$ is positive in $(x:A)C$ if it does not
% occur in $A$ and $R$ is positive in $C$;
%\item $R$ is positive in $(J\;\vec{t})$, \label{relax}
% if $J$ is a recursive type, and for any term $t_i$ either :
% \begin{enumerate}
% \item $R$ does not occur in $t_i$, or
% \item $R$ is positive in $t_i$, $t_i$ instantiates a general
% parameter of $J$, and this parameter is positive in the
% arguments of the constructors of $J$.
% \end{enumerate}
%\end{enumerate}
%\noindent When we can show that $R$ is positive without using the item
%(\ref{relax}) of the definition above, then we say that $R$ is
%\textsl{strictly positive}.
%\textbf{Changer le discours sur les ordinaux}
Notice that the positivity condition does not forbid us to
put functional recursive
arguments in the constructors.
For instance, let us consider the type of infinitely branching trees,
with labels in \texttt{Z}.
\begin{alltt}
Require Import ZArith.
Inductive itree : Set :=
| ileaf : itree
| inode : Z {\arrow} (nat {\arrow} itree) {\arrow} itree.
\end{alltt}
In this representation, the $i$-th child of a tree
represented by ``~\texttt{inode $z$ $s$}~'' is obtained by applying
the function $s$ to $i$.
The following definitions show how to construct a tree with a single
node, a tree of height 1 and a tree of height 2:
\begin{alltt}
Definition isingle l := inode l (fun i {\funarrow} ileaf).
Definition t1 := inode 0 (fun n {\funarrow} isingle (Z.of_nat n)).
Definition t2 :=
inode 0
(fun n : nat {\funarrow}
inode (Z.of_nat n)
(fun p {\funarrow} isingle (Z.of_nat (n*p)))).
\end{alltt}
Let us define a preorder on infinitely branching trees.
In order to compare two non-leaf trees,
it is necessary to compare each of their children
without taking care of the order in which they
appear:
\begin{alltt}
Inductive itree_le : itree{\arrow} itree {\arrow} Prop :=
| le_leaf : {\prodsym} t, itree_le ileaf t
| le_node : {\prodsym} l l' s s',
Z.le l l' {\arrow}
({\prodsym} i, {\exsym} j:nat, itree_le (s i) (s' j)){\arrow}
itree_le (inode l s) (inode l' s').
\end{alltt}
Notice that a call to the predicate \texttt{itree\_le} appears as
a general parameter of the inductive type \texttt{ex} (see Sect.\ref{ex-def}).
This kind of definition is accepted by {\coq}, but may lead to some
difficulties, since the induction principle automatically
generated by the system
is not the most appropriate (see chapter 14 of~\cite{coqart} for a detailed
explanation).
The following definition, obtained by
skolemising the
proposition \linebreak $\forall\, i,\exists\, j,(\texttt{itree\_le}\;(s\;i)\;(s'\;j))$ in
the type of \texttt{itree\_le}, does not present this problem:
\begin{alltt}
Inductive itree_le' : itree{\arrow} itree {\arrow} Prop :=
| le_leaf' : {\prodsym} t, itree_le' ileaf t
| le_node' : {\prodsym} l l' s s' g,
Z.le l l' {\arrow}
({\prodsym} i, itree_le' (s i) (s' (g i))) {\arrow}
itree_le' (inode l s) (inode l' s').
\end{alltt}
\iffalse
\begin{alltt}
Lemma t1_le'_t2 : itree_le' t1 t2.
Proof.
unfold t1, t2.
constructor 2 with (fun i : nat {\funarrow} 2 * i).
auto with zarith.
unfold isingle;
intro i ; constructor 2 with (fun i :nat {\funarrow} i).
auto with zarith.
constructor .
Qed.
\end{alltt}
\fi
%In general, strictly positive definitions are preferable to only
%positive ones. The reason is that it is sometimes difficult to derive
%structural induction combinators for the latter ones. Such combinators
%are automatically generated for strictly positive types, but not for
%the only positive ones. Nevertheless, sometimes non-strictly positive
%definitions provide a smarter or shorter way of declaring a recursive
%type.
Another example is the type of trees
of unbounded width, in which a recursive subterm
\texttt{(ltree A)} instantiates the type of polymorphic lists:
\begin{alltt}
Require Import List.
Inductive ltree (A:Set) : Set :=
lnode : A {\arrow} list (ltree A) {\arrow} ltree A.
\end{alltt}
This declaration can be transformed
adding an extra type to the definition, as was done in Section
\ref{MutuallyDependent}.
\subsubsection{Impredicative Inductive Types}
An inductive type $I$ inhabiting a universe $U$ is \textsl{predicative}
if the introduction rules of $I$ do not make a universal
quantification on a universe containing $U$. All the recursive types
previously introduced are examples of predicative types. An example of
an impredicative one is the following type:
%\textsl{exT}, the dependent product
%of a certain set (or proposition) $x$, and a proof of a property $P$
%about $x$.
%\begin{alltt}
%Print exT.
%\end{alltt}
%\textbf{ttention, EXT c'est ex!}
%\begin{alltt}
%Check (exists P:Prop, P {\arrow} not P).
%\end{alltt}
%This type is useful for expressing existential quantification over
%types, like ``there exists a proposition $x$ such that $(P\;x)$''
%---written $(\textsl{EXT}\; x:Prop \mid (P\;x))$ in {\coq}. However,
\begin{alltt}
Inductive prop : Prop :=
prop_intro : Prop {\arrow} prop.
\end{alltt}
Notice
that the constructor of this type can be used to inject any
proposition --even itself!-- into the type.
\begin{alltt}
Check (prop_intro prop).\it
prop_intro prop
: prop
\end{alltt}
A careless use of such a
self-contained objects may lead to a variant of Burali-Forti's
paradox. The construction of Burali-Forti's paradox is more
complicated than Russel's one, so we will not describe it here, and
point the interested reader to \cite{Bar98,Coq86}.
Another example is the second order existential quantifier for propositions:
\begin{alltt}
Inductive ex_Prop (P : Prop {\arrow} Prop) : Prop :=
exP_intro : {\prodsym} X : Prop, P X {\arrow} ex_Prop P.
\end{alltt}
%\begin{alltt}
%(*
%Check (match prop_inject with (prop_intro p _) {\funarrow} p end).
%Error: Incorrect elimination of "prop_inject" in the inductive type
% ex
%The elimination predicate ""fun _ : prop {\funarrow} Prop" has type
% "prop {\arrow} Type"
%It should be one of :
% "Prop"
%Elimination of an inductive object of sort : "Prop"
%is not allowed on a predicate in sort : "Type"
%because non-informative objects may not construct informative ones.
%*)
%Print prop_inject.
%(*
%prop_inject =
%prop_inject = prop_intro prop (fun H : prop {\funarrow} H)
% : prop
%*)
%\end{alltt}
% \textbf{Et par a?
%}
Notice that predicativity on sort \citecoq{Set} forbids us to build
the following definitions.
\begin{alltt}
Inductive aSet : Set :=
aSet_intro: Set {\arrow} aSet.
\it{}User error: Large non-propositional inductive types must be in Type
\tt
Inductive ex_Set (P : Set {\arrow} Prop) : Set :=
exS_intro : {\prodsym} X : Set, P X {\arrow} ex_Set P.
\it{}User error: Large non-propositional inductive types must be in Type
\end{alltt}
Nevertheless, one can define types like \citecoq{aSet} and \citecoq{ex\_Set}, as inhabitants of \citecoq{Type}.
\begin{alltt}
Inductive ex_Set (P : Set {\arrow} Prop) : Type :=
exS_intro : {\prodsym} X : Set, P X {\arrow} ex_Set P.
\end{alltt}
In the following example, the inductive type \texttt{typ} can be defined,
but the term associated with the interactive Definition of
\citecoq{typ\_inject} is incompatible with {\coq}'s hierarchy of universes:
\begin{alltt}
Inductive typ : Type :=
typ_intro : Type {\arrow} typ.
Definition typ_inject: typ.
split; exact typ.
\it Proof completed
\tt{}Defined.
\it Error: Universe Inconsistency.
\tt
Abort.
\end{alltt}
One possible way of avoiding this new source of paradoxes is to
restrict the kind of eliminations by case analysis that can be done on
impredicative types. In particular, projections on those universes
equal or bigger than the one inhabited by the impredicative type must
be forbidden \cite{Coq86}. A consequence of this restriction is that it
is not possible to define the first projection of the type
``~\citecoq{ex\_Prop $P$}~'':
\begin{alltt}
Check (fun (P:Prop{\arrow}Prop)(p: ex_Prop P) {\funarrow}
match p with exP_intro X HX {\funarrow} X end).
\it
Error:
Incorrect elimination of "p" in the inductive type
"ex_Prop", the return type has sort "Type" while it should be
"Prop"
Elimination of an inductive object of sort "Prop"
is not allowed on a predicate in sort "Type"
because proofs can be eliminated only to build proofs.
\end{alltt}
%In order to explain why, let us consider for example the following
%impredicative type \texttt{ALambda}.
%\begin{alltt}
%Inductive ALambda : Set :=
% alambda : (A:Set)(A\arrow{}False)\arrow{}ALambda.
%
%Definition Lambda : Set := ALambda.
%Definition lambda : (ALambda\arrow{}False)\arrow{}ALambda := (alambda ALambda).
%Lemma CaseAL : (Q:Prop)ALambda\arrow{}((ALambda\arrow{}False)\arrow{}Q)\arrow{}Q.
%\end{alltt}
%
%This type contains all the elements of the dangerous type $\Lambda$
%described at the beginning of this section. Try to construct the
%non-ending term $(\Delta\;\Delta)$ as an object of
%\texttt{ALambda}. Why is it not possible?
\subsubsection{Extraction Constraints}
There is a final constraint on case analysis that is not motivated by
the potential introduction of paradoxes, but for compatibility reasons
with {\coq}'s extraction mechanism \refmancite{Appendix
\ref{CamlHaskellExtraction}}. This mechanism is based on the
classification of basic types into the universe $\Set$ of sets and the
universe $\Prop$ of propositions. The objects of a type in the
universe $\Set$ are considered as relevant for computation
purposes. The objects of a type in $\Prop$ are considered just as
formalised comments, not necessary for execution. The extraction
mechanism consists in erasing such formal comments in order to obtain
an executable program. Hence, in general, it is not possible to define
an object in a set (that should be kept by the extraction mechanism)
by case analysis of a proof (which will be thrown away).
Nevertheless, this general rule has an exception which is important in
practice: if the definition proceeds by case analysis on a proof of a
\textsl{singleton proposition} or an empty type (\emph{e.g.} \texttt{False}),
then it is allowed. A singleton
proposition is a non-recursive proposition with a single constructor
$c$, all whose arguments are proofs. For example, the propositional
equality and the conjunction of two propositions are examples of
singleton propositions.
%From the point of view of the extraction
%mechanism, such types are isomorphic to a type containing a single
%object $c$, so a definition $\Case{x}{c \Rightarrow b}$ is
%directly replaced by $b$ as an extra optimisation.
\subsubsection{Strong Case Analysis on Proofs}
One could consider allowing
to define a proposition $Q$ by case
analysis on the proofs of another recursive proposition $R$. As we
will see in Section \ref{Discrimination}, this would enable one to prove that
different introduction rules of $R$ construct different
objects. However, this property would be in contradiction with the principle
of excluded middle of classical logic, because this principle entails
that the proofs of a proposition cannot be distinguished. This
principle is not provable in {\coq}, but it is frequently introduced by
the users as an axiom, for reasoning in classical logic. For this
reason, the definition of propositions by case analysis on proofs is
not allowed in {\coq}.
\begin{alltt}
Definition comes_from_the_left (P Q:Prop)(H:P{\coqor}Q): Prop :=
match H with
| or_introl p {\funarrow} True
| or_intror q {\funarrow} False
end.
\it
Error:
Incorrect elimination of "H" in the inductive type
"or", the return type has sort "Type" while it should be
"Prop"
Elimination of an inductive object of sort "Prop"
is not allowed on a predicate in sort "Type"
because proofs can be eliminated only to build proofs.
\end{alltt}
On the other hand, if we replace the proposition $P {\coqor} Q$ with
the informative type $\{P\}+\{Q\}$, the elimination is accepted:
\begin{alltt}
Definition comes_from_the_left_sumbool
(P Q:Prop)(x:\{P\} + \{Q\}): Prop :=
match x with
| left p {\funarrow} True
| right q {\funarrow} False
end.
\end{alltt}
\subsubsection{Summary of Constraints}
To end with this section, the following table summarizes which
universe $U_1$ may inhabit an object of type $Q$ defined by case
analysis on $x:R$, depending on the universe $U_2$ inhabited by the
inductive types $R$.\footnote{In the box indexed by $U_1=\citecoq{Type}$
and $U_2=\citecoq{Set}$, the answer ``yes'' takes into account the
predicativity of sort \citecoq{Set}. If you are working with the
option ``impredicative-set'', you must put in this box the
condition ``if $R$ is predicative''.}
\begin{center}
%%% displease hevea less by using * in multirow rather than \LL
\renewcommand{\multirowsetup}{\centering}
%\newlength{\LL}
%\settowidth{\LL}{$x : R : U_2$}
\begin{tabular}{|c|c|c|c|c|}
\hline
\multirow{5}*{$x : R : U_2$} &
\multicolumn{4}{|c|}{$Q : U_1$}\\
\hline
& &\textsl{Set} & \textsl{Prop} & \textsl{Type}\\
\cline{2-5}
&\textsl{Set} & yes & yes & yes\\
\cline{2-5}
&\textsl{Prop} & if $R$ singleton & yes & no\\
\cline{2-5}
&\textsl{Type} & yes & yes & yes\\
\hline
\end{tabular}
\end{center}
\section{Some Proof Techniques Based on Case Analysis}
\label{CaseTechniques}
In this section we illustrate the use of case analysis as a proof
principle, explaining the proof techniques behind three very useful
{\coq} tactics, called \texttt{discriminate}, \texttt{injection} and
\texttt{inversion}.
\subsection{Discrimination of introduction rules}
\label{Discrimination}
In the informal semantics of recursive types described in Section
\ref{Introduction} it was said that each of the introduction rules of a
recursive type is considered as being different from all the others.
It is possible to capture this fact inside the logical system using
the propositional equality. We take as example the following theorem,
stating that \textsl{O} constructs a natural number different
from any of those constructed with \texttt{S}.
\begin{alltt}
Theorem S_is_not_O : {\prodsym} n, S n {\coqdiff} 0.
\end{alltt}
In order to prove this theorem, we first define a proposition by case
analysis on natural numbers, so that the proposition is true for {\Z}
and false for any natural number constructed with {\SUCC}. This uses
the empty and singleton type introduced in Sections \ref{Introduction}.
\begin{alltt}
Definition Is_zero (x:nat):= match x with
| 0 {\funarrow} True
| _ {\funarrow} False
end.
\end{alltt}
\noindent Then, we prove the following lemma:
\begin{alltt}
Lemma O_is_zero : {\prodsym} m, m = 0 {\arrow} Is_zero m.
Proof.
intros m H; subst m.
\it{}
================
Is_zero 0
\tt{}
simpl;trivial.
Qed.
\end{alltt}
\noindent Finally, the proof of \texttt{S\_is\_not\_O} follows by the
application of the previous lemma to $S\;n$.
\begin{alltt}
red; intros n Hn.
\it{}
n : nat
Hn : S n = 0
============================
False \tt
apply O_is_zero with (m := S n).
assumption.
Qed.
\end{alltt}
The tactic \texttt{discriminate} \refmancite{Section \ref{Discriminate}} is
a special-purpose tactic for proving disequalities between two
elements of a recursive type introduced by different constructors. It
generalizes the proof method described here for natural numbers to any
[co]-inductive type. This tactic is also capable of proving disequalities
where the difference is not in the constructors at the head of the
terms, but deeper inside them. For example, it can be used to prove
the following theorem:
\begin{alltt}
Theorem disc2 : {\prodsym} n, S (S n) {\coqdiff} 1.
Proof.
intros n Hn; discriminate.
Qed.
\end{alltt}
When there is an assumption $H$ in the context stating a false
equality $t_1=t_2$, \texttt{discriminate} solves the goal by first
proving $(t_1\not =t_2)$ and then reasoning by absurdity with respect
to $H$:
\begin{alltt}
Theorem disc3 : {\prodsym} n, S (S n) = 0 {\arrow} {\prodsym} Q:Prop, Q.
Proof.
intros n Hn Q.
discriminate.
Qed.
\end{alltt}
\noindent In this case, the proof proceeds by absurdity with respect
to the false equality assumed, whose negation is proved by
discrimination.
\subsection{Injectiveness of introduction rules}
Another useful property about recursive types is the
\textsl{injectiveness} of introduction rules, i.e., that whenever two
objects were built using the same introduction rule, then this rule
should have been applied to the same element. This can be stated
formally using the propositional equality:
\begin{alltt}
Theorem inj : {\prodsym} n m, S n = S m {\arrow} n = m.
Proof.
\end{alltt}
\noindent This theorem is just a corollary of a lemma about the
predecessor function:
\begin{alltt}
Lemma inj_pred : {\prodsym} n m, n = m {\arrow} pred n = pred m.
Proof.
intros n m eq_n_m.
rewrite eq_n_m.
trivial.
Qed.
\end{alltt}
\noindent Once this lemma is proven, the theorem follows directly
from it:
\begin{alltt}
intros n m eq_Sn_Sm.
apply inj_pred with (n:= S n) (m := S m); assumption.
Qed.
\end{alltt}
This proof method is implemented by the tactic \texttt{injection}
\refmancite{Section \ref{injection}}. This tactic is applied to
a term $t$ of type ``~$c\;{t_1}\;\dots\;t_n = c\;t'_1\;\dots\;t'_n$~'', where $c$ is some constructor of
an inductive type. The tactic \texttt{injection} is applied as deep as
possible to derive the equality of all pairs of subterms of $t_i$ and $t'_i$
placed in the same position. All these equalities are put as antecedents
of the current goal.
Like \texttt{discriminate}, the tactic \citecoq{injection}
can be also applied if $x$ does not
occur in a direct sub-term, but somewhere deeper inside it. Its
application may leave some trivial goals that can be easily solved
using the tactic \texttt{trivial}.
\begin{alltt}
Lemma list_inject : {\prodsym} (A:Type)(a b :A)(l l':list A),
a :: b :: l = b :: a :: l' {\arrow} a = b {\coqand} l = l'.
Proof.
intros A a b l l' e.
\it
e : a :: b :: l = b :: a :: l'
============================
a = b {\coqand} l = l'
\tt
injection e.
\it
============================
l = l' {\arrow} b = a {\arrow} a = b {\arrow} a = b {\coqand} l = l'
\tt{} auto.
Qed.
\end{alltt}
\subsection{Inversion Techniques}\label{inversion}
In section \ref{DependentCase}, we motivated the rule of dependent case
analysis as a way of internalizing the informal equalities $n=O$ and
$n=\SUCC\;p$ associated to each case. This internalisation
consisted in instantiating $n$ with the corresponding term in the type
of each branch. However, sometimes it could be better to internalise
these equalities as extra hypotheses --for example, in order to use
the tactics \texttt{rewrite}, \texttt{discriminate} or
\texttt{injection} presented in the previous sections. This is
frequently the case when the element analysed is denoted by a term
which is not a variable, or when it is an object of a particular
instance of a recursive family of types. Consider for example the
following theorem:
\begin{alltt}
Theorem not_le_Sn_0 : {\prodsym} n:nat, ~ (S n {\coqle} 0).
\end{alltt}
\noindent Intuitively, this theorem should follow by case analysis on
the hypothesis $H:(S\;n\;\leq\;\Z)$, because no introduction rule allows
to instantiate the arguments of \citecoq{le} with respectively a successor
and zero. However, there
is no way of capturing this with the typing rule for case analysis
presented in section \ref{Introduction}, because it does not take into
account what particular instance of the family the type of $H$ is.
Let us try it:
\begin{alltt}
Proof.
red; intros n H; case H.
\it 2 subgoals
n : nat
H : S n {\coqle} 0
============================
False
subgoal 2 is:
{\prodsym} m : nat, S n {\coqle} m {\arrow} False
\tt
Undo.
\end{alltt}
\noindent What is necessary here is to make available the equalities
``~$\SUCC\;n = \Z$~'' and ``~$\SUCC\;m = \Z$~''
as extra hypotheses of the
branches, so that the goal can be solved using the
\texttt{Discriminate} tactic. In order to obtain the desired
equalities as hypotheses, let us prove an auxiliary lemma, that our
theorem is a corollary of:
\begin{alltt}
Lemma not_le_Sn_0_with_constraints :
{\prodsym} n p , S n {\coqle} p {\arrow} p = 0 {\arrow} False.
Proof.
intros n p H; case H .
\it
2 subgoals
n : nat
p : nat
H : S n {\coqle} p
============================
S n = 0 {\arrow} False
subgoal 2 is:
{\prodsym} m : nat, S n {\coqle} m {\arrow} S m = 0 {\arrow} False
\tt
intros;discriminate.
intros;discriminate.
Qed.
\end{alltt}
\noindent Our main theorem can now be solved by an application of this lemma:
\begin{alltt}
Show.
\it
2 subgoals
n : nat
p : nat
H : S n {\coqle} p
============================
S n = 0 {\arrow} False
subgoal 2 is:
{\prodsym} m : nat, S n {\coqle} m {\arrow} S m = 0 {\arrow} False
\tt
eapply not_le_Sn_0_with_constraints; eauto.
Qed.
\end{alltt}
The general method to address such situations consists in changing the
goal to be proven into an implication, introducing as preconditions
the equalities needed to eliminate the cases that make no
sense. This proof technique is implemented by the tactic
\texttt{inversion} \refmancite{Section \ref{Inversion}}. In order
to prove a goal $G\;\vec{q}$ from an object of type $R\;\vec{t}$,
this tactic automatically generates a lemma $\forall, \vec{x}.
(R\;\vec{x}) \rightarrow \vec{x}=\vec{t}\rightarrow \vec{B}\rightarrow
(G\;\vec{q})$, where the list of propositions $\vec{B}$ correspond to
the subgoals that cannot be directly proven using
\texttt{discriminate}. This lemma can either be saved for later
use, or generated interactively. In this latter case, the subgoals
yielded by the tactic are the hypotheses $\vec{B}$ of the lemma. If the
lemma has been stored, then the tactic \linebreak
``~\citecoq{inversion \dots using \dots}~'' can be
used to apply it.
Let us show both techniques on our previous example:
\subsubsection{Interactive mode}
\begin{alltt}
Theorem not_le_Sn_0' : {\prodsym} n:nat, ~ (S n {\coqle} 0).
Proof.
red; intros n H ; inversion H.
Qed.
\end{alltt}
\subsubsection{Static mode}
\begin{alltt}
Derive Inversion le_Sn_0_inv with ({\prodsym} n :nat, S n {\coqle} 0).
Theorem le_Sn_0'' : {\prodsym} n p : nat, ~ S n {\coqle} 0 .
Proof.
intros n p H;
inversion H using le_Sn_0_inv.
Qed.
\end{alltt}
In the example above, all the cases are solved using discriminate, so
there remains no subgoal to be proven (i.e. the list $\vec{B}$ is
empty). Let us present a second example, where this list is not empty:
\begin{alltt}
TTheorem le_reverse_rules :
{\prodsym} n m:nat, n {\coqle} m {\arrow}
n = m {\coqor}
{\exsym} p, n {\coqle} p {\coqand} m = S p.
Proof.
intros n m H; inversion H.
\it
2 subgoals
n : nat
m : nat
H : n {\coqle} m
H0 : n = m
============================
m = m {\coqor} ({\exsym} p : nat, m {\coqle} p {\coqand} m = S p)
subgoal 2 is:
n = S m0 {\coqor} ({\exsym} p : nat, n {\coqle} p {\coqand} S m0 = S p)
\tt
left;trivial.
right; exists m0; split; trivial.
\it
Proof completed
\end{alltt}
This example shows how this tactic can be used to ``reverse'' the
introduction rules of a recursive type, deriving the possible premises
that could lead to prove a given instance of the predicate. This is
why these tactics are called \texttt{inversion} tactics: they go back
from conclusions to premises.
The hypotheses corresponding to the propositional equalities are not
needed in this example, since the tactic does the necessary rewriting
to solve the subgoals. When the equalities are no longer needed after
the inversion, it is better to use the tactic
\texttt{Inversion\_clear}. This variant of the tactic clears from the
context all the equalities introduced.
\begin{alltt}
Restart.
intros n m H; inversion_clear H.
\it
\it
n : nat
m : nat
============================
m = m {\coqor} ({\exsym} p : nat, m {\coqle} p {\coqand} m = S p)
\tt
left;trivial.
\it
n : nat
m : nat
m0 : nat
H0 : n {\coqle} m0
============================
n = S m0 {\coqor} ({\exsym} p : nat, n {\coqle} p {\coqand} S m0 = S p)
\tt
right; exists m0; split; trivial.
Qed.
\end{alltt}
%This proof technique works in most of the cases, but not always. In
%particular, it could not if the list $\vec{t}$ contains a term $t_j$
%whose type $T$ depends on a previous term $t_i$, with $i<j$. Remark
%that if this is the case, the propositional equality $x_j=t_j$ is not
%well-typed, since $x_j:T(x_i)$ but $t_j:T(t_i)$, and both types are
%not convertible (otherwise, the problem could be solved using the
%tactic \texttt{Case}).
\begin{exercise}
Consider the following language of arithmetic expression, and
its operational semantics, described by a set of rewriting rules.
%\textbf{J'ai enlev une rgle de commutativit de l'addition qui
%me paraissait bizarre du point de vue de la smantique oprationnelle}
\begin{alltt}
Inductive ArithExp : Set :=
| Zero : ArithExp
| Succ : ArithExp {\arrow} ArithExp
| Plus : ArithExp {\arrow} ArithExp {\arrow} ArithExp.
Inductive RewriteRel : ArithExp {\arrow} ArithExp {\arrow} Prop :=
| RewSucc : {\prodsym} e1 e2 :ArithExp,
RewriteRel e1 e2 {\arrow}
RewriteRel (Succ e1) (Succ e2)
| RewPlus0 : {\prodsym} e:ArithExp,
RewriteRel (Plus Zero e) e
| RewPlusS : {\prodsym} e1 e2:ArithExp,
RewriteRel e1 e2 {\arrow}
RewriteRel (Plus (Succ e1) e2)
(Succ (Plus e1 e2)).
\end{alltt}
\begin{enumerate}
\item Prove that \texttt{Zero} cannot be rewritten any further.
\item Prove that an expression of the form ``~$\texttt{Succ}\;e$~'' is always
rewritten
into an expression of the same form.
\end{enumerate}
\end{exercise}
%Theorem zeroNotCompute : (e:ArithExp)~(RewriteRel Zero e).
%Intro e.
%Red.
%Intro H.
%Inversion_clear H.
%Defined.
%Theorem evalPlus :
% (e1,e2:ArithExp)
% (RewriteRel (Succ e1) e2)\arrow{}(EX e3 : ArithExp | e2=(Succ e3)).
%Intros e1 e2 H.
%Inversion_clear H.
%Exists e3;Reflexivity.
%Qed.
\section{Inductive Types and Structural Induction}
\label{StructuralInduction}
Elements of inductive types are well-founded with
respect to the structural order induced by the constructors of the
type. In addition to case analysis, this extra hypothesis about
well-foundedness justifies a stronger elimination rule for them, called
\textsl{structural induction}. This form of elimination consists in
defining a value ``~$f\;x$~'' from some element $x$ of the inductive type
$I$, assuming that values have been already associated in the same way
to the sub-parts of $x$ of type $I$.
Definitions by structural induction are expressed through the
\texttt{Fixpoint} command \refmancite{Section
\ref{Fixpoint}}. This command is quite close to the
\texttt{let-rec} construction of functional programming languages.
For example, the following definition introduces the addition of two
natural numbers (already defined in the Standard Library:)
\begin{alltt}
Fixpoint plus (n p:nat) \{struct n\} : nat :=
match n with
| 0 {\funarrow} p
| S m {\funarrow} S (plus m p)
end.
\end{alltt}
The definition is by structural induction on the first argument of the
function. This is indicated by the ``~\citecoq{\{struct n\}}~''
directive in the function's header\footnote{This directive is optional
in the case of a function of a single argument}.
In
order to be accepted, the definition must satisfy a syntactical
condition, called the \textsl{guardedness condition}. Roughly
speaking, this condition constrains the arguments of a recursive call
to be pattern variables, issued from a case analysis of the formal
argument of the function pointed by the \texttt{struct} directive.
In the case of the
function \texttt{plus}, the argument \texttt{m} in the recursive call is a
pattern variable issued from a case analysis of \texttt{n}. Therefore, the
definition is accepted.
Notice that we could have defined the addition with structural induction
on its second argument:
\begin{alltt}
Fixpoint plus' (n p:nat) \{struct p\} : nat :=
match p with
| 0 {\funarrow} n
| S q {\funarrow} S (plus' n q)
end.
\end{alltt}
%This notation is useful when defining a function whose decreasing
%argument has a dependent type. As an example, consider the following
%recursivly defined proof of the theorem
%$(n,m:\texttt{nat})n<m \rightarrow (S\;n)<(S\;m)$:
%\begin{alltt}
%Fixpoint lt_n_S [n,m:nat;p:(lt n m)] : (lt (S n) (S m)) :=
% <[n0:nat](lt (S n) (S n0))>
% Cases p of
% lt_intro1 {\funarrow} (lt_intro1 (S n))
% | (lt_intro2 m1 p2) {\funarrow} (lt_intro2 (S n) (S m1) (lt_n_S n m1 p2))
% end.
%\end{alltt}
%The guardedness condition must be satisfied only by the last argument
%of the enclosed list. For example, the following declaration is an
%alternative way of defining addition:
%\begin{alltt}
%Reset add.
%Fixpoint add [n:nat] : nat\arrow{}nat :=
% Cases n of
% O {\funarrow} [x:nat]x
% | (S m) {\funarrow} [x:nat](add m (S x))
% end.
%\end{alltt}
In the following definition of addition,
the second argument of {\tt plus{'}{'}} grows at each
recursive call. However, as the first one always decreases, the
definition is sound.
\begin{alltt}
Fixpoint plus'' (n p:nat) \{struct n\} : nat :=
match n with
| 0 {\funarrow} p
| S m {\funarrow} plus'' m (S p)
end.
\end{alltt}
Moreover, the argument in the recursive call
could be a deeper component of $n$. This is the case in the following
definition of a boolean function determining whether a number is even
or odd:
\begin{alltt}
Fixpoint even_test (n:nat) : bool :=
match n
with 0 {\funarrow} true
| 1 {\funarrow} false
| S (S p) {\funarrow} even_test p
end.
\end{alltt}
Mutually dependent definitions by structural induction are also
allowed. For example, the previous function \textsl{even} could alternatively
be defined using an auxiliary function \textsl{odd}:
\begin{alltt}
Reset even_test.
Fixpoint even_test (n:nat) : bool :=
match n
with
| 0 {\funarrow} true
| S p {\funarrow} odd_test p
end
with odd_test (n:nat) : bool :=
match n
with
| 0 {\funarrow} false
| S p {\funarrow} even_test p
end.
\end{alltt}
%\begin{exercise}
%Define a function by structural induction that computes the number of
%nodes of a tree structure defined in page \pageref{Forest}.
%\end{exercise}
Definitions by structural induction are computed
only when they are applied, and the decreasing argument
is a term having a constructor at the head. We can check this using
the \texttt{Eval} command, which computes the normal form of a well
typed term.
\begin{alltt}
Eval simpl in even_test.
\it
= even_test
: nat {\arrow} bool
\tt
Eval simpl in (fun x : nat {\funarrow} even x).
\it
= fun x : nat {\funarrow} even x
: nat {\arrow} Prop
\tt
Eval simpl in (fun x : nat => plus 5 x).
\it
= fun x : nat {\funarrow} S (S (S (S (S x))))
\tt
Eval simpl in (fun x : nat {\funarrow} even_test (plus 5 x)).
\it
= fun x : nat {\funarrow} odd_test x
: nat {\arrow} bool
\tt
Eval simpl in (fun x : nat {\funarrow} even_test (plus x 5)).
\it
= fun x : nat {\funarrow} even_test (x + 5)
: nat {\arrow} bool
\end{alltt}
%\begin{exercise}
%Prove that the second definition of even satisfies the following
%theorem:
%\begin{verbatim}
%Theorem unfold_even :
% (x:nat)
% (even x)= (Cases x of
% O {\funarrow} true
% | (S O) {\funarrow} false
% | (S (S m)) {\funarrow} (even m)
% end).
%\end{verbatim}
%\end{exercise}
\subsection{Proofs by Structural Induction}
The principle of structural induction can be also used in order to
define proofs, that is, to prove theorems. Let us call an
\textsl{elimination combinator} any function that, given a predicate
$P$, defines a proof of ``~$P\;x$~'' by structural induction on $x$. In
{\coq}, the principle of proof by induction on natural numbers is a
particular case of an elimination combinator. The definition of this
combinator depends on three general parameters: the predicate to be
proven, the base case, and the inductive step:
\begin{alltt}
Section Principle_of_Induction.
Variable P : nat {\arrow} Prop.
Hypothesis base_case : P 0.
Hypothesis inductive_step : {\prodsym} n:nat, P n {\arrow} P (S n).
Fixpoint nat_ind (n:nat) : (P n) :=
match n return P n with
| 0 {\funarrow} base_case
| S m {\funarrow} inductive_step m (nat_ind m)
end.
End Principle_of_Induction.
\end{alltt}
As this proof principle is used very often, {\coq} automatically generates it
when an inductive type is introduced. Similar principles
\texttt{nat\_rec} and \texttt{nat\_rect} for defining objects in the
universes $\Set$ and $\Type$ are also automatically generated
\footnote{In fact, whenever possible, {\coq} generates the
principle \texttt{$I$\_rect}, then derives from it the
weaker principles \texttt{$I$\_ind} and \texttt{$I$\_rec}.
If some principle has to be defined by hand, the user may try
to build \texttt{$I$\_rect} (if possible). Thanks to {\coq}'s conversion
rule, this principle can be used directly to build proofs and/or
programs.}. The
command \texttt{Scheme} \refmancite{Section \ref{Scheme}} can be
used to generate an elimination combinator from certain parameters,
like the universe that the defined objects must inhabit, whether the
case analysis in the definitions must be dependent or not, etc. For
example, it can be used to generate an elimination combinator for
reasoning on even natural numbers from the mutually dependent
predicates introduced in page \pageref{Even}. We do not display the
combinators here by lack of space, but you can see them using the
\texttt{Print} command.
\begin{alltt}
Scheme Even_induction := Minimality for even Sort Prop
with Odd_induction := Minimality for odd Sort Prop.
\end{alltt}
\begin{alltt}
Theorem even_plus_four : {\prodsym} n:nat, even n {\arrow} even (4+n).
Proof.
intros n H.
elim H using Even_induction with (P0 := fun n {\funarrow} odd (4+n));
simpl;repeat constructor;assumption.
Qed.
\end{alltt}
Another example of an elimination combinator is the principle
of double induction on natural numbers, introduced by the following
definition:
\begin{alltt}
Section Principle_of_Double_Induction.
Variable P : nat {\arrow} nat {\arrow}Prop.
Hypothesis base_case1 : {\prodsym} m:nat, P 0 m.
Hypothesis base_case2 : {\prodsym} n:nat, P (S n) 0.
Hypothesis inductive_step : {\prodsym} n m:nat, P n m {\arrow}
\,\, P (S n) (S m).
Fixpoint nat_double_ind (n m:nat)\{struct n\} : P n m :=
match n, m return P n m with
| 0 , x {\funarrow} base_case1 x
| (S x), 0 {\funarrow} base_case2 x
| (S x), (S y) {\funarrow} inductive_step x y (nat_double_ind x y)
end.
End Principle_of_Double_Induction.
\end{alltt}
Changing the type of $P$ into $\nat\rightarrow\nat\rightarrow\Type$,
another combinator for constructing
(certified) programs, \texttt{nat\_double\_rect}, can be defined in exactly the same way.
This definition is left as an exercise.\label{natdoublerect}
\iffalse
\begin{alltt}
Section Principle_of_Double_Recursion.
Variable P : nat {\arrow} nat {\arrow} Type.
Hypothesis base_case1 : {\prodsym} x:nat, P 0 x.
Hypothesis base_case2 : {\prodsym} x:nat, P (S x) 0.
Hypothesis inductive_step : {\prodsym} n m:nat, P n m {\arrow} P (S n) (S m).
Fixpoint nat_double_rect (n m:nat)\{struct n\} : P n m :=
match n, m return P n m with
0 , x {\funarrow} base_case1 x
| (S x), 0 {\funarrow} base_case2 x
| (S x), (S y) {\funarrow} inductive_step x y (nat_double_rect x y)
end.
End Principle_of_Double_Recursion.
\end{alltt}
\fi
For instance the function computing the minimum of two natural
numbers can be defined in the following way:
\begin{alltt}
Definition min : nat {\arrow} nat {\arrow} nat :=
nat_double_rect (fun (x y:nat) {\funarrow} nat)
(fun (x:nat) {\funarrow} 0)
(fun (y:nat) {\funarrow} 0)
(fun (x y r:nat) {\funarrow} S r).
Eval compute in (min 5 8).
\it
= 5 : nat
\end{alltt}
%\begin{exercise}
%
%Define the combinator \texttt{nat\_double\_rec}, and apply it
%to give another definition of \citecoq{le\_lt\_dec} (using the theorems
%of the \texttt{Arith} library).
%\end{exercise}
\subsection{Using Elimination Combinators.}
The tactic \texttt{apply} can be used to apply one of these proof
principles during the development of a proof.
\begin{alltt}
Lemma not_circular : {\prodsym} n:nat, n {\coqdiff} S n.
Proof.
intro n.
apply nat_ind with (P:= fun n {\funarrow} n {\coqdiff} S n).
\it
2 subgoals
n : nat
============================
0 {\coqdiff} 1
subgoal 2 is:
{\prodsym} n0 : nat, n0 {\coqdiff} S n0 {\arrow} S n0 {\coqdiff} S (S n0)
\tt
discriminate.
red; intros n0 Hn0 eqn0Sn0;injection eqn0Sn0;trivial.
Qed.
\end{alltt}
The tactic \texttt{elim} \refmancite{Section \ref{Elim}} is a
refinement of \texttt{apply}, specially designed for the application
of elimination combinators. If $t$ is an object of an inductive type
$I$, then ``~\citecoq{elim $t$}~'' tries to find an abstraction $P$ of the
current goal $G$ such that $(P\;t)\equiv G$. Then it solves the goal
applying ``~$I\texttt{\_ind}\;P$~'', where $I$\texttt{\_ind} is the
combinator associated to $I$. The different cases of the induction
then appear as subgoals that remain to be solved.
In the previous proof, the tactic call ``~\citecoq{apply nat\_ind with (P:= fun n {\funarrow} n {\coqdiff} S n)}~'' can simply be replaced with ``~\citecoq{elim n}~''.
The option ``~\citecoq{\texttt{elim} $t$ \texttt{using} $C$}~''
allows to use a
derived combinator $C$ instead of the default one. Consider the
following theorem, stating that equality is decidable on natural
numbers:
\label{iseqpage}
\begin{alltt}
Lemma eq_nat_dec : {\prodsym} n p:nat, \{n=p\}+\{n {\coqdiff} p\}.
Proof.
intros n p.
\end{alltt}
Let us prove this theorem using the combinator \texttt{nat\_double\_rect}
of section~\ref{natdoublerect}. The example also illustrates how
\texttt{elim} may sometimes fail in finding a suitable abstraction $P$
of the goal. Note that if ``~\texttt{elim n}~''
is used directly on the
goal, the result is not the expected one.
\vspace{12pt}
%\pagebreak
\begin{alltt}
elim n using nat_double_rect.
\it
4 subgoals
n : nat
p : nat
============================
{\prodsym} x : nat, \{x = p\} + \{x {\coqdiff} p\}
subgoal 2 is:
nat {\arrow} \{0 = p\} + \{0 {\coqdiff} p\}
subgoal 3 is:
nat {\arrow} {\prodsym} m : nat, \{m = p\} + \{m {\coqdiff} p\} {\arrow} \{S m = p\} + \{S m {\coqdiff} p\}
subgoal 4 is:
nat
\end{alltt}
The four sub-goals obtained do not correspond to the premises that
would be expected for the principle \texttt{nat\_double\_rec}. The
problem comes from the fact that
this principle for eliminating $n$
has a universally quantified formula as conclusion, which confuses
\texttt{elim} about the right way of abstracting the goal.
%In effect, let us consider the type of the goal before the call to
%\citecoq{elim}: ``~\citecoq{\{n = p\} + \{n {\coqdiff} p\}}~''.
%Among all the abstractions that can be built by ``~\citecoq{elim n}~''
%let us consider this one
%$P=$\citecoq{fun n :nat {\funarrow} fun q : nat {\funarrow} {\{q= p\} + \{q {\coqdiff} p\}}}.
%It is easy to verify that
%$P$ has type \citecoq{nat {\arrow} nat {\arrow} Set}, and that, if some
%$q:\citecoq{nat}$ is given, then $P\;q\;$ matches the current goal.
%Then applying \citecoq{nat\_double\_rec} with $P$ generates
%four goals, corresponding to
Therefore,
in this case the abstraction must be explicited using the
\texttt{pattern} tactic. Once the right abstraction is provided, the rest of
the proof is immediate:
\begin{alltt}
Undo.
pattern p,n.
\it
n : nat
p : nat
============================
(fun n0 n1 : nat {\funarrow} \{n1 = n0\} + \{n1 {\coqdiff} n0\}) p n
\tt
elim n using nat_double_rec.
\it
3 subgoals
n : nat
p : nat
============================
{\prodsym} x : nat, \{x = 0\} + \{x {\coqdiff} 0\}
subgoal 2 is:
{\prodsym} x : nat, \{0 = S x\} + \{0 {\coqdiff} S x\}
subgoal 3 is:
{\prodsym} n0 m : nat, \{m = n0\} + \{m {\coqdiff} n0\} {\arrow} \{S m = S n0\} + \{S m {\coqdiff} S n0\}
\tt
destruct x; auto.
destruct x; auto.
intros n0 m H; case H.
intro eq; rewrite eq ; auto.
intro neg; right; red ; injection 1; auto.
Defined.
\end{alltt}
Notice that the tactic ``~\texttt{decide equality}~''
\refmancite{Section\ref{DecideEquality}} generalises the proof
above to a large class of inductive types. It can be used for proving
a proposition of the form
$\forall\,(x,y:R),\{x=y\}+\{x{\coqdiff}y\}$, where $R$ is an inductive datatype
all whose constructors take informative arguments ---like for example
the type {\nat}:
\begin{alltt}
Definition eq_nat_dec' : {\prodsym} n p:nat, \{n=p\} + \{n{\coqdiff}p\}.
decide equality.
Defined.
\end{alltt}
\begin{exercise}
\begin{enumerate}
\item Define a recursive function of name \emph{nat2itree}
that maps any natural number $n$ into an infinitely branching
tree of height $n$.
\item Provide an elimination combinator for these trees.
\item Prove that the relation \citecoq{itree\_le} is a preorder
(i.e. reflexive and transitive).
\end{enumerate}
\end{exercise}
\begin{exercise} \label{zeroton}
Define the type of lists, and a predicate ``being an ordered list''
using an inductive family. Then, define the function
$(from\;n)=0::1\;\ldots\; n::\texttt{nil}$ and prove that it always generates an
ordered list.
\end{exercise}
\begin{exercise}
Prove that \citecoq{le' n p} and \citecoq{n $\leq$ p} are logically equivalent
for all n and p. (\citecoq{le'} is defined in section \ref{parameterstuff}).
\end{exercise}
\subsection{Well-founded Recursion}
\label{WellFoundedRecursion}
Structural induction is a strong elimination rule for inductive types.
This method can be used to define any function whose termination is
a consequence of the well-foundedness of a certain order relation $R$ decreasing
at each recursive call. What makes this principle so strong is the
possibility of reasoning by structural induction on the proof that
certain $R$ is well-founded. In order to illustrate this we have
first to introduce the predicate of accessibility.
\begin{alltt}
Print Acc.
\it
Inductive Acc (A : Type) (R : A {\arrow} A {\arrow} Prop) (x:A) : Prop :=
Acc_intro : ({\prodsym} y : A, R y x {\arrow} Acc R y) {\arrow} Acc R x
For Acc: Argument A is implicit
For Acc_intro: Arguments A, R are implicit
\dots
\end{alltt}
\noindent This inductive predicate characterizes those elements $x$ of
$A$ such that any descending $R$-chain $\ldots x_2\;R\;x_1\;R\;x$
starting from $x$ is finite. A well-founded relation is a relation
such that all the elements of $A$ are accessible.
\emph{Notice the use of parameter $x$ (see Section~\ref{parameterstuff}, page
\pageref{parameterstuff}).}
Consider now the problem of representing in {\coq} the following ML
function $\textsl{div}(x,y)$ on natural numbers, which computes
$\lceil\frac{x}{y}\rceil$ if $y>0$ and yields $x$ otherwise.
\begin{verbatim}
let rec div x y =
if x = 0 then 0
else if y = 0 then x
else (div (x-y) y)+1;;
\end{verbatim}
The equality test on natural numbers can be implemented using the
function \textsl{eq\_nat\_dec} that is defined page \pageref{iseqpage}. Giving $x$ and
$y$, this function yields either the value $(\textsl{left}\;p)$ if
there exists a proof $p:x=y$, or the value $(\textsl{right}\;q)$ if
there exists $q:a\not = b$. The subtraction function is already
defined in the library \citecoq{Minus}.
Hence, direct translation of the ML function \textsl{div} would be:
\begin{alltt}
Require Import Minus.
Fixpoint div (x y:nat)\{struct x\}: nat :=
if eq_nat_dec x 0
then 0
else if eq_nat_dec y 0
then x
else S (div (x-y) y).
\it Error:
Recursive definition of div is ill-formed.
In environment
div : nat {\arrow} nat {\arrow} nat
x : nat
y : nat
_ : x {\coqdiff} 0
_ : y {\coqdiff} 0
Recursive call to div has principal argument equal to
"x - y"
instead of a subterm of x
\end{alltt}
The program \texttt{div} is rejected by {\coq} because it does not verify
the syntactical condition to ensure termination. In particular, the
argument of the recursive call is not a pattern variable issued from a
case analysis on $x$.
We would have the same problem if we had the directive
``~\citecoq{\{struct y\}}~'' instead of ``~\citecoq{\{struct x\}}~''.
However, we know that this program always
stops. One way to justify its termination is to define it by
structural induction on a proof that $x$ is accessible trough the
relation $<$. Notice that any natural number $x$ is accessible
for this relation. In order to do this, it is first necessary to prove
some auxiliary lemmas, justifying that the first argument of
\texttt{div} decreases at each recursive call.
\begin{alltt}
Lemma minus_smaller_S : {\prodsym} x y:nat, x - y < S x.
Proof.
intros x y; pattern y, x;
elim x using nat_double_ind.
destruct x0; auto with arith.
simpl; auto with arith.
simpl; auto with arith.
Qed.
Lemma minus_smaller_positive :
{\prodsym} x y:nat, x {\coqdiff}0 {\arrow} y {\coqdiff} 0 {\arrow} x - y < x.
Proof.
destruct x; destruct y;
( simpl;intros; apply minus_smaller ||
intros; absurd (0=0); auto).
Qed.
\end{alltt}
\noindent The last two lemmas are necessary to prove that for any pair
of positive natural numbers $x$ and $y$, if $x$ is accessible with
respect to \citecoq{lt}, then so is $x-y$.
\begin{alltt}
Definition minus_decrease : {\prodsym} x y:nat, Acc lt x {\arrow}
x {\coqdiff} 0 {\arrow}
y {\coqdiff} 0 {\arrow}
Acc lt (x-y).
Proof.
intros x y H; case H.
intros Hz posz posy.
apply Hz; apply minus_smaller_positive; assumption.
Defined.
\end{alltt}
Let us take a look at the proof of the lemma \textsl{minus\_decrease}, since
the way in which it has been proven is crucial for what follows.
\begin{alltt}
Print minus_decrease.
\it
minus_decrease =
fun (x y : nat) (H : Acc lt x) {\funarrow}
match H in (Acc _ y0) return (y0 {\coqdiff} 0 {\arrow} y {\coqdiff} 0 {\arrow} Acc lt (y0 - y)) with
| Acc_intro z Hz {\funarrow}
fun (posz : z {\coqdiff} 0) (posy : y {\coqdiff} 0) {\funarrow}
Hz (z - y) (minus_smaller_positive z y posz posy)
end
: {\prodsym} x y : nat, Acc lt x {\arrow} x {\coqdiff} 0 {\arrow} y {\coqdiff} 0 {\arrow} Acc lt (x - y)
\end{alltt}
\noindent Notice that the function call
$(\texttt{minus\_decrease}\;n\;m\;H)$
indeed yields an accessibility proof that is \textsl{structurally
smaller} than its argument $H$, because it is (an application of) its
recursive component $Hz$. This enables to justify the following
definition of \textsl{div\_aux}:
\begin{alltt}
Definition div_aux (x y:nat)(H: Acc lt x):nat.
fix 3.
intros.
refine (if eq_nat_dec x 0
then 0
else if eq_nat_dec y 0
then y
else div_aux (x-y) y _).
\it
div_aux : {\prodsym} x : nat, nat {\arrow} Acc lt x {\arrow} nat
x : nat
y : nat
H : Acc lt x
_ : x {\coqdiff} 0
_0 : y {\coqdiff} 0
============================
Acc lt (x - y)
\tt
apply (minus_decrease x y H);auto.
Defined.
\end{alltt}
The main division function is easily defined, using the theorem
\citecoq{lt\_wf} of the library \citecoq{Wf\_nat}. This theorem asserts that
\citecoq{nat} is well founded w.r.t. \citecoq{lt}, thus any natural number
is accessible.
\begin{alltt}
Definition div x y := div_aux x y (lt_wf x).
\end{alltt}
Let us explain the proof above. In the definition of \citecoq{div\_aux},
what decreases is not $x$ but the \textsl{proof} of the accessibility
of $x$. The tactic ``~\texttt{fix 3}~'' is used to indicate that the proof
proceeds by structural induction on the third argument of the theorem
--that is, on the accessibility proof. It also introduces a new
hypothesis in the context, named as the current theorem, and with the
same type as the goal. Then, the proof is refined with an incomplete
proof term, containing a hole \texttt{\_}. This hole corresponds to the proof
of accessibility for $x-y$, and is filled up with the (smaller!)
accessibility proof provided by the function \texttt{minus\_decrease}.
\noindent Let us take a look to the term \textsl{div\_aux} defined:
\pagebreak
\begin{alltt}
Print div_aux.
\it
div_aux =
(fix div_aux (x y : nat) (H : Acc lt x) \{struct H\} : nat :=
match eq_nat_dec x 0 with
| left _ {\funarrow} 0
| right _ {\funarrow}
match eq_nat_dec y 0 with
| left _ {\funarrow} y
| right _0 {\funarrow} div_aux (x - y) y (minus_decrease x y H _ _0)
end
end)
: {\prodsym} x : nat, nat {\arrow} Acc lt x {\arrow} nat
\end{alltt}
If the non-informative parts from this proof --that is, the
accessibility proof-- are erased, then we obtain exactly the program
that we were looking for.
\begin{alltt}
Extraction div.
\it
let div x y =
div_aux x y
\tt
Extraction div_aux.
\it
let rec div_aux x y =
match eq_nat_dec x O with
| Left {\arrow} O
| Right {\arrow}
(match eq_nat_dec y O with
| Left {\arrow} y
| Right {\arrow} div_aux (minus x y) y)
\end{alltt}
This methodology enables the representation
of any program whose termination can be proved in {\coq}. Once the
expected properties from this program have been verified, the
justification of its termination can be thrown away, keeping just the
desired computational behavior for it.
\section{A case study in dependent elimination}\label{CaseStudy}
Dependent types are very expressive, but ignoring some useful
techniques can cause some problems to the beginner.
Let us consider again the type of vectors (see section~\ref{vectors}).
We want to prove a quite trivial property: the only value of type
``~\citecoq{vector A 0}~'' is ``~\citecoq{Vnil $A$}~''.
Our first naive attempt leads to a \emph{cul-de-sac}.
\begin{alltt}
Lemma vector0_is_vnil :
{\prodsym} (A:Type)(v:vector A 0), v = Vnil A.
Proof.
intros A v;inversion v.
\it
1 subgoal
A : Set
v : vector A 0
============================
v = Vnil A
\tt
Abort.
\end{alltt}
Another attempt is to do a case analysis on a vector of any length
$n$, under an explicit hypothesis $n=0$. The tactic
\texttt{discriminate} will help us to get rid of the case
$n=\texttt{S $p$}$.
Unfortunately, even the statement of our lemma is refused!
\begin{alltt}
Lemma vector0_is_vnil_aux :
{\prodsym} (A:Type)(n:nat)(v:vector A n), n = 0 {\arrow} v = Vnil A.
\it
Error: In environment
A : Type
n : nat
v : vector A n
e : n = 0
The term "Vnil A" has type "vector A 0" while it is expected to have type
"vector A n"
\end{alltt}
In effect, the equality ``~\citecoq{v = Vnil A}~'' is ill-typed and this is
because the type ``~\citecoq{vector A n}~'' is not \emph{convertible}
with ``~\citecoq{vector A 0}~''.
This problem can be solved if we consider the heterogeneous
equality \citecoq{JMeq} \cite{conor:motive}
which allows us to consider terms of different types, even if this
equality can only be proven for terms in the same type.
The axiom \citecoq{JMeq\_eq}, from the library \citecoq{JMeq} allows us to convert a
heterogeneous equality to a standard one.
\begin{alltt}
Lemma vector0_is_vnil_aux :
{\prodsym} (A:Type)(n:nat)(v:vector A n),
n= 0 {\arrow} JMeq v (Vnil A).
Proof.
destruct v.
auto.
intro; discriminate.
Qed.
\end{alltt}
Our property of vectors of null length can be easily proven:
\begin{alltt}
Lemma vector0_is_vnil : {\prodsym} (A:Type)(v:vector A 0), v = Vnil A.
intros a v;apply JMeq_eq.
apply vector0_is_vnil_aux.
trivial.
Qed.
\end{alltt}
It is interesting to look at another proof of
\citecoq{vector0\_is\_vnil}, which illustrates a technique developed
and used by various people (consult in the \emph{Coq-club} mailing
list archive the contributions by Yves Bertot, Pierre Letouzey, Laurent Thry,
Jean Duprat, and Nicolas Magaud, Venanzio Capretta and Conor McBride).
This technique is also used for unfolding infinite list definitions
(see chapter13 of~\cite{coqart}).
Notice that this definition does not rely on any axiom (\emph{e.g.} \texttt{JMeq\_eq}).
We first give a new definition of the identity on vectors. Before that,
we make the use of constructors and selectors lighter thanks to
the implicit arguments feature:
\begin{alltt}
Implicit Arguments Vcons [A n].
Implicit Arguments Vnil [A].
Implicit Arguments Vhead [A n].
Implicit Arguments Vtail [A n].
Definition Vid : {\prodsym} (A : Type)(n:nat), vector A n {\arrow} vector A n.
Proof.
destruct n; intro v.
exact Vnil.
exact (Vcons (Vhead v) (Vtail v)).
Defined.
\end{alltt}
Then we prove that \citecoq{Vid} is the identity on vectors:
\begin{alltt}
Lemma Vid_eq : {\prodsym} (n:nat) (A:Type)(v:vector A n), v=(Vid _ n v).
Proof.
destruct v.
\it
A : Type
============================
Vnil = Vid A 0 Vnil
subgoal 2 is:
Vcons a v = Vid A (S n) (Vcons a v)
\tt
reflexivity.
reflexivity.
Defined.
\end{alltt}
Why defining a new identity function on vectors? The following
dialogue shows that \citecoq{Vid} has some interesting computational
properties:
\begin{alltt}
Eval simpl in (fun (A:Type)(v:vector A 0) {\funarrow} (Vid _ _ v)).
\it = fun (A : Type) (_ : vector A 0) {\funarrow} Vnil
: {\prodsym} A : Type, vector A 0 {\arrow} vector A 0
\end{alltt}
Notice that the plain identity on vectors doesn't convert \citecoq{v}
into \citecoq{Vnil}.
\begin{alltt}
Eval simpl in (fun (A:Type)(v:vector A 0) {\funarrow} v).
\it = fun (A : Type) (v : vector A 0) {\funarrow} v
: {\prodsym} A : Type, vector A 0 {\arrow} vector A 0
\end{alltt}
Then we prove easily that any vector of length 0 is \citecoq{Vnil}:
\begin{alltt}
Theorem zero_nil : {\prodsym} A (v:vector A 0), v = Vnil.
Proof.
intros.
change (Vnil (A:=A)) with (Vid _ 0 v).
\it
1 subgoal
A : Type
v : vector A 0
============================
v = Vid A 0 v
\tt
apply Vid_eq.
Defined.
\end{alltt}
A similar result can be proven about vectors of strictly positive
length\footnote{As for \citecoq{Vid} and \citecoq{Vid\_eq}, this definition
is from Jean Duprat.}.
\begin{alltt}
Theorem decomp :
{\prodsym} (A : Type) (n : nat) (v : vector A (S n)),
v = Vcons (Vhead v) (Vtail v).
Proof.
intros.
change (Vcons (Vhead v) (Vtail v)) with (Vid _ (S n) v).
\it
1 subgoal
A : Type
n : nat
v : vector A (S n)
============================
v = Vid A (S n) v
\tt{} apply Vid_eq.
Defined.
\end{alltt}
Both lemmas: \citecoq{zero\_nil} and \citecoq{decomp},
can be used to easily derive a double recursion principle
on vectors of same length:
\begin{alltt}
Definition vector_double_rect :
{\prodsym} (A:Type) (P: {\prodsym} (n:nat),(vector A n){\arrow}(vector A n) {\arrow} Type),
P 0 Vnil Vnil {\arrow}
({\prodsym} n (v1 v2 : vector A n) a b, P n v1 v2 {\arrow}
P (S n) (Vcons a v1) (Vcons b v2)) {\arrow}
{\prodsym} n (v1 v2 : vector A n), P n v1 v2.
induction n.
intros; rewrite (zero_nil _ v1); rewrite (zero_nil _ v2).
auto.
intros v1 v2; rewrite (decomp _ _ v1);rewrite (decomp _ _ v2).
apply X0; auto.
Defined.
\end{alltt}
Notice that, due to the conversion rule of {\coq}'s type system,
this function can be used directly with \citecoq{Prop} or \citecoq{Type}
instead of type (thus it is useless to build
\citecoq{vector\_double\_ind} and \citecoq{vector\_double\_rec}) from scratch.
We finish this example with showing how to define the bitwise
\emph{or} on boolean vectors of the same length,
and proving a little property about this
operation.
\begin{alltt}
Definition bitwise_or n v1 v2 : vector bool n :=
vector_double_rect
bool
(fun n v1 v2 {\funarrow} vector bool n)
Vnil
(fun n v1 v2 a b r {\funarrow} Vcons (orb a b) r) n v1 v2.
\end{alltt}
Let us define recursively the $n$-th element of a vector. Notice
that it must be a partial function, in case $n$ is greater or equal
than the length of the vector. Since {\coq} only considers total
functions, the function returns a value in an \emph{option} type.
\begin{alltt}
Fixpoint vector_nth (A:Type)(n:nat)(p:nat)(v:vector A p)
\{struct v\}
: option A :=
match n,v with
_ , Vnil {\funarrow} None
| 0 , Vcons b _ _ {\funarrow} Some b
| S n', Vcons _ p' v' {\funarrow} vector_nth A n' p' v'
end.
Implicit Arguments vector_nth [A p].
\end{alltt}
We can now prove --- using the double induction combinator ---
a simple property relying \citecoq{vector\_nth} and \citecoq{bitwise\_or}:
\begin{alltt}
Lemma nth_bitwise :
{\prodsym} (n:nat) (v1 v2: vector bool n) i a b,
vector_nth i v1 = Some a {\arrow}
vector_nth i v2 = Some b {\arrow}
vector_nth i (bitwise_or _ v1 v2) = Some (orb a b).
Proof.
intros n v1 v2; pattern n,v1,v2.
apply vector_double_rect.
simpl.
destruct i; discriminate 1.
destruct i; simpl;auto.
injection 1; injection 2;intros; subst a; subst b; auto.
Qed.
\end{alltt}
\section{Co-inductive Types and Non-ending Constructions}
\label{CoInduction}
The objects of an inductive type are well-founded with respect to
the constructors of the type. In other words, these objects are built
by applying \emph{a finite number of times} the constructors of the type.
Co-inductive types are obtained by relaxing this condition,
and may contain non-well-founded objects \cite{EG96,EG95a}. An
example of a co-inductive type is the type of infinite
sequences formed with elements of type $A$, also called streams. This
type can be introduced through the following definition:
\begin{alltt}
CoInductive Stream (A: Type) :Type :=
| Cons : A\arrow{}Stream A\arrow{}Stream A.
\end{alltt}
If we are interested in finite or infinite sequences, we consider the type
of \emph{lazy lists}:
\begin{alltt}
CoInductive LList (A: Type) : Type :=
| LNil : LList A
| LCons : A {\arrow} LList A {\arrow} LList A.
\end{alltt}
It is also possible to define co-inductive types for the
trees with infinitely-many branches (see Chapter 13 of~\cite{coqart}).
Structural induction is the way of expressing that inductive types
only contain well-founded objects. Hence, this elimination principle
is not valid for co-inductive types, and the only elimination rule for
streams is case analysis. This principle can be used, for example, to
define the destructors \textsl{head} and \textsl{tail}.
\begin{alltt}
Definition head (A:Type)(s : Stream A) :=
match s with Cons a s' {\funarrow} a end.
Definition tail (A : Type)(s : Stream A) :=
match s with Cons a s' {\funarrow} s' end.
\end{alltt}
Infinite objects are defined by means of (non-ending) methods of
construction, like in lazy functional programming languages. Such
methods can be defined using the \texttt{CoFixpoint} command
\refmancite{Section \ref{CoFixpoint}}. For example, the following
definition introduces the infinite list $[a,a,a,\ldots]$:
\begin{alltt}
CoFixpoint repeat (A:Type)(a:A) : Stream A :=
Cons a (repeat a).
\end{alltt}
However, not every co-recursive definition is an admissible method of
construction. Similarly to the case of structural induction, the
definition must verify a \textsl{guardedness} condition to be
accepted. This condition states that any recursive call in the
definition must be protected --i.e, be an argument of-- some
constructor, and only an argument of constructors \cite{EG94a}. The
following definitions are examples of valid methods of construction:
\begin{alltt}
CoFixpoint iterate (A: Type)(f: A {\arrow} A)(a : A) : Stream A:=
Cons a (iterate f (f a)).
CoFixpoint map
(A B:Type)(f: A {\arrow} B)(s : Stream A) : Stream B:=
match s with Cons a tl {\funarrow} Cons (f a) (map f tl) end.
\end{alltt}
\begin{exercise}
Define two different methods for constructing the stream which
infinitely alternates the values \citecoq{true} and \citecoq{false}.
\end{exercise}
\begin{exercise}
Using the destructors \texttt{head} and \texttt{tail}, define a function
which takes the n-th element of an infinite stream.
\end{exercise}
A non-ending method of construction is computed lazily. This means
that its definition is unfolded only when the object that it
introduces is eliminated, that is, when it appears as the argument of
a case expression. We can check this using the command
\texttt{Eval}.
\begin{alltt}
Eval simpl in (fun (A:Type)(a:A) {\funarrow} repeat a).
\it = fun (A : Type) (a : A) {\funarrow} repeat a
: {\prodsym} A : Type, A {\arrow} Stream A
\tt
Eval simpl in (fun (A:Type)(a:A) {\funarrow} head (repeat a)).
\it = fun (A : Type) (a : A) {\funarrow} a
: {\prodsym} A : Type, A {\arrow} A
\end{alltt}
%\begin{exercise}
%Prove the following theorem:
%\begin{verbatim}
%Theorem expand_repeat : (a:A)(repeat a)=(Cons a (repeat a)).
%\end{verbatim}
%Hint: Prove first the streams version of the lemma in exercise
%\ref{expand}.
%\end{exercise}
\subsection{Extensional Properties}
Case analysis is also a valid proof principle for infinite
objects. However, this principle is not sufficient to prove
\textsl{extensional} properties, that is, properties concerning the
whole infinite object \cite{EG95a}. A typical example of an
extensional property is the predicate expressing that two streams have
the same elements. In many cases, the minimal reflexive relation $a=b$
that is used as equality for inductive types is too small to capture
equality between streams. Consider for example the streams
$\texttt{iterate}\;f\;(f\;x)$ and
$(\texttt{map}\;f\;(\texttt{iterate}\;f\;x))$. Even though these two streams have
the same elements, no finite expansion of their definitions lead to
equal terms. In other words, in order to deal with extensional
properties, it is necessary to construct infinite proofs. The type of
infinite proofs of equality can be introduced as a co-inductive
predicate, as follows:
\begin{alltt}
CoInductive EqSt (A: Type) : Stream A {\arrow} Stream A {\arrow} Prop :=
eqst : {\prodsym} s1 s2: Stream A,
head s1 = head s2 {\arrow}
EqSt (tail s1) (tail s2) {\arrow}
EqSt s1 s2.
\end{alltt}
It is possible to introduce proof principles for reasoning about
infinite objects as combinators defined through
\texttt{CoFixpoint}. However, oppositely to the case of inductive
types, proof principles associated to co-inductive types are not
elimination but \textsl{introduction} combinators. An example of such
a combinator is Park's principle for proving the equality of two
streams, usually called the \textsl{principle of co-induction}. It
states that two streams are equal if they satisfy a
\textit{bisimulation}. A bisimulation is a binary relation $R$ such
that any pair of streams $s_1$ ad $s_2$ satisfying $R$ have equal
heads, and tails also satisfying $R$. This principle is in fact a
method for constructing an infinite proof:
\begin{alltt}
Section Parks_Principle.
Variable A : Type.
Variable R : Stream A {\arrow} Stream A {\arrow} Prop.
Hypothesis bisim1 : {\prodsym} s1 s2:Stream A,
R s1 s2 {\arrow} head s1 = head s2.
Hypothesis bisim2 : {\prodsym} s1 s2:Stream A,
R s1 s2 {\arrow} R (tail s1) (tail s2).
CoFixpoint park_ppl :
{\prodsym} s1 s2:Stream A, R s1 s2 {\arrow} EqSt s1 s2 :=
fun s1 s2 (p : R s1 s2) {\funarrow}
eqst s1 s2 (bisim1 s1 s2 p)
(park_ppl (tail s1)
(tail s2)
(bisim2 s1 s2 p)).
End Parks_Principle.
\end{alltt}
Let us use the principle of co-induction to prove the extensional
equality mentioned above.
\begin{alltt}
Theorem map_iterate : {\prodsym} (A:Type)(f:A{\arrow}A)(x:A),
EqSt (iterate f (f x))
(map f (iterate f x)).
Proof.
intros A f x.
apply park_ppl with
(R:= fun s1 s2 {\funarrow}
{\exsym} x: A, s1 = iterate f (f x) {\coqand}
s2 = map f (iterate f x)).
intros s1 s2 (x0,(eqs1,eqs2));
rewrite eqs1; rewrite eqs2; reflexivity.
intros s1 s2 (x0,(eqs1,eqs2)).
exists (f x0);split;
[rewrite eqs1|rewrite eqs2]; reflexivity.
exists x;split; reflexivity.
Qed.
\end{alltt}
The use of Park's principle is sometimes annoying, because it requires
to find an invariant relation and prove that it is indeed a
bisimulation. In many cases, a shorter proof can be obtained trying
to construct an ad-hoc infinite proof, defined by a guarded
declaration. The tactic ``~``\texttt{Cofix $f$}~'' can be used to do
that. Similarly to the tactic \texttt{fix} indicated in Section
\ref{WellFoundedRecursion}, this tactic introduces an extra hypothesis
$f$ into the context, whose type is the same as the current goal. Note
that the applications of $f$ in the proof \textsl{must be guarded}. In
order to prevent us from doing unguarded calls, we can define a tactic
that always apply a constructor before using $f$ \refmancite{Chapter
\ref{WritingTactics}} :
\begin{alltt}
Ltac infiniteproof f :=
cofix f;
constructor;
[clear f| simpl; try (apply f; clear f)].
\end{alltt}
In the example above, this tactic produces a much simpler proof
that the former one:
\begin{alltt}
Theorem map_iterate' : {\prodsym} ((A:Type)f:A{\arrow}A)(x:A),
EqSt (iterate f (f x))
(map f (iterate f x)).
Proof.
infiniteproof map_iterate'.
reflexivity.
Qed.
\end{alltt}
\begin{exercise}
Define a co-inductive type of name $Nat$ that contains non-standard
natural numbers --this is, verifying
$$\exists m \in \mbox{\texttt{Nat}}, \forall\, n \in \mbox{\texttt{Nat}}, n<m$$.
\end{exercise}
\begin{exercise}
Prove that the extensional equality of streams is an equivalence relation
using Park's co-induction principle.
\end{exercise}
\begin{exercise}
Provide a suitable definition of ``being an ordered list'' for infinite lists
and define a principle for proving that an infinite list is ordered. Apply
this method to the list $[0,1,\ldots ]$. Compare the result with
exercise \ref{zeroton}.
\end{exercise}
\subsection{About injection, discriminate, and inversion}
Since co-inductive types are closed w.r.t. their constructors,
the techniques shown in Section~\ref{CaseTechniques} work also
with these types.
Let us consider the type of lazy lists, introduced on page~\pageref{CoInduction}.
The following lemmas are straightforward applications
of \texttt{discriminate} and \citecoq{injection}:
\begin{alltt}
Lemma Lnil_not_Lcons : {\prodsym} (A:Type)(a:A)(l:LList A),
LNil {\coqdiff} (LCons a l).
Proof.
intros;discriminate.
Qed.
Lemma injection_demo : {\prodsym} (A:Type)(a b : A)(l l': LList A),
LCons a (LCons b l) = LCons b (LCons a l') {\arrow}
a = b {\coqand} l = l'.
Proof.
intros A a b l l' e; injection e; auto.
Qed.
\end{alltt}
In order to show \citecoq{inversion} at work, let us define
two predicates on lazy lists:
\begin{alltt}
Inductive Finite (A:Type) : LList A {\arrow} Prop :=
| Lnil_fin : Finite (LNil (A:=A))
| Lcons_fin : {\prodsym} a l, Finite l {\arrow} Finite (LCons a l).
CoInductive Infinite (A:Type) : LList A {\arrow} Prop :=
| LCons_inf : {\prodsym} a l, Infinite l {\arrow} Infinite (LCons a l).
\end{alltt}
\noindent
First, two easy theorems:
\begin{alltt}
Lemma LNil_not_Infinite : {\prodsym} (A:Type), ~ Infinite (LNil (A:=A)).
Proof.
intros A H;inversion H.
Qed.
Lemma Finite_not_Infinite : {\prodsym} (A:Type)(l:LList A),
Finite l {\arrow} ~ Infinite l.
Proof.
intros A l H; elim H.
apply LNil_not_Infinite.
intros a l0 F0 I0' I1.
case I0'; inversion_clear I1.
trivial.
Qed.
\end{alltt}
On the other hand, the next proof uses the \citecoq{cofix} tactic.
Notice the destructuration of \citecoq{l}, which allows us to
apply the constructor \texttt{LCons\_inf}, thus satisfying
the guard condition:
\begin{alltt}
Lemma Not_Finite_Infinite : {\prodsym} (A:Type)(l:LList A),
~ Finite l {\arrow} Infinite l.
Proof.
cofix H.
destruct l.
intro;
absurd (Finite (LNil (A:=A)));
[auto|constructor].
\it
1 subgoal
H : forall (A : Type) (l : LList A), ~ Finite l -> Infinite l
A : Type
a : A
l : LList A
H0 : ~ Finite (LCons a l)
============================
Infinite l
\end{alltt}
At this point, one must not apply \citecoq{H}! . It would be possible
to solve the current goal by an inversion of ``~\citecoq{Finite (LCons a l)}~'', but, since the guard condition would be violated, the user
would get an error message after typing \citecoq{Qed}.
In order to satisfy the guard condition, we apply the constructor of
\citecoq{Infinite}, \emph{then} apply \citecoq{H}.
\begin{alltt}
constructor.
apply H.
red; intro H1;case H0.
constructor.
trivial.
Qed.
\end{alltt}
The reader is invited to replay this proof and understand each of its steps.
\bibliographystyle{abbrv}
\bibliography{manbiblio,morebib}
\end{document}
|