1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
|
Check (forall A:Type, (exists x:A, forall (y:A), x <> y) -> 2 = 3).
Inductive nat : Set :=
| O : nat
| S : nat->nat.
Check nat.
Check O.
Check S.
Reset nat.
Print nat.
Print le.
Theorem zero_leq_three: 0 <= 3.
Proof.
constructor 2.
constructor 2.
constructor 2.
constructor 1.
Qed.
Print zero_leq_three.
Lemma zero_leq_three': 0 <= 3.
repeat constructor.
Qed.
Lemma zero_lt_three : 0 < 3.
Proof.
repeat constructor.
Qed.
Print zero_lt_three.
Inductive le'(n:nat):nat -> Prop :=
| le'_n : le' n n
| le'_S : forall p, le' (S n) p -> le' n p.
Hint Constructors le'.
Require Import List.
Print list.
Check list.
Check (nil (A:=nat)).
Check (nil (A:= nat -> nat)).
Check (fun A: Type => (cons (A:=A))).
Check (cons 3 (cons 2 nil)).
Check (nat :: bool ::nil).
Check ((3<=4) :: True ::nil).
Check (Prop::Set::nil).
Require Import Bvector.
Print vector.
Check (Vnil nat).
Check (fun (A:Type)(a:A)=> Vcons _ a _ (Vnil _)).
Check (Vcons _ 5 _ (Vcons _ 3 _ (Vnil _))).
Lemma eq_3_3 : 2 + 1 = 3.
Proof.
reflexivity.
Qed.
Print eq_3_3.
Lemma eq_proof_proof : eq_refl (2*6) = eq_refl (3*4).
Proof.
reflexivity.
Qed.
Print eq_proof_proof.
Lemma eq_lt_le : ( 2 < 4) = (3 <= 4).
Proof.
reflexivity.
Qed.
Lemma eq_nat_nat : nat = nat.
Proof.
reflexivity.
Qed.
Lemma eq_Set_Set : Set = Set.
Proof.
reflexivity.
Qed.
Lemma eq_Type_Type : Type = Type.
Proof.
reflexivity.
Qed.
Check (2 + 1 = 3).
Check (Type = Type).
Goal Type = Type.
reflexivity.
Qed.
Print or.
Print and.
Print sumbool.
Print ex.
Require Import ZArith.
Require Import Compare_dec.
Check le_lt_dec.
Definition max (n p :nat) := match le_lt_dec n p with
| left _ => p
| right _ => n
end.
Theorem le_max : forall n p, n <= p -> max n p = p.
Proof.
intros n p ; unfold max ; case (le_lt_dec n p); simpl.
trivial.
intros; absurd (p < p); eauto with arith.
Qed.
Extraction max.
Inductive tree(A:Type) : Type :=
node : A -> forest A -> tree A
with
forest (A: Type) : Type :=
nochild : forest A |
addchild : tree A -> forest A -> forest A.
Inductive
even : nat->Prop :=
evenO : even O |
evenS : forall n, odd n -> even (S n)
with
odd : nat->Prop :=
oddS : forall n, even n -> odd (S n).
Lemma odd_49 : odd (7 * 7).
simpl; repeat constructor.
Qed.
Definition nat_case :=
fun (Q : Type)(g0 : Q)(g1 : nat -> Q)(n:nat) =>
match n return Q with
| 0 => g0
| S p => g1 p
end.
Eval simpl in (nat_case nat 0 (fun p => p) 34).
Eval simpl in (fun g0 g1 => nat_case nat g0 g1 34).
Eval simpl in (fun g0 g1 => nat_case nat g0 g1 0).
Definition pred (n:nat) := match n with O => O | S m => m end.
Eval simpl in pred 56.
Eval simpl in pred 0.
Eval simpl in fun p => pred (S p).
Definition xorb (b1 b2:bool) :=
match b1, b2 with
| false, true => true
| true, false => true
| _ , _ => false
end.
Definition pred_spec (n:nat) := {m:nat | n=0 /\ m=0 \/ n = S m}.
Definition predecessor : forall n:nat, pred_spec n.
intro n;case n.
unfold pred_spec;exists 0;auto.
unfold pred_spec; intro n0;exists n0; auto.
Defined.
Print predecessor.
Extraction predecessor.
Theorem nat_expand :
forall n:nat, n = match n with 0 => 0 | S p => S p end.
intro n;case n;simpl;auto.
Qed.
Check (fun p:False => match p return 2=3 with end).
Theorem fromFalse : False -> 0=1.
intro absurd.
contradiction.
Qed.
Section equality_elimination.
Variables (A: Type)
(a b : A)
(p : a = b)
(Q : A -> Type).
Check (fun H : Q a =>
match p in (eq _ y) return Q y with
eq_refl => H
end).
End equality_elimination.
Theorem trans : forall n m p:nat, n=m -> m=p -> n=p.
Proof.
intros n m p eqnm.
case eqnm.
trivial.
Qed.
Lemma Rw : forall x y: nat, y = y * x -> y * x * x = y.
intros x y e; do 2 rewrite <- e.
reflexivity.
Qed.
Require Import Arith.
Check mult_1_l.
(*
mult_1_l
: forall n : nat, 1 * n = n
*)
Check mult_plus_distr_r.
(*
mult_plus_distr_r
: forall n m p : nat, (n + m) * p = n * p + m * p
*)
Lemma mult_distr_S : forall n p : nat, n * p + p = (S n)* p.
simpl;auto with arith.
Qed.
Lemma four_n : forall n:nat, n+n+n+n = 4*n.
intro n;rewrite <- (mult_1_l n).
Undo.
intro n; pattern n at 1.
rewrite <- mult_1_l.
repeat rewrite mult_distr_S.
trivial.
Qed.
Section Le_case_analysis.
Variables (n p : nat)
(H : n <= p)
(Q : nat -> Prop)
(H0 : Q n)
(HS : forall m, n <= m -> Q (S m)).
Check (
match H in (_ <= q) return (Q q) with
| le_n => H0
| le_S m Hm => HS m Hm
end
).
End Le_case_analysis.
Lemma predecessor_of_positive : forall n, 1 <= n -> exists p:nat, n = S p.
Proof.
intros n H; case H.
exists 0; trivial.
intros m Hm; exists m;trivial.
Qed.
Definition Vtail_total
(A : Type) (n : nat) (v : vector A n) : vector A (pred n):=
match v in (vector _ n0) return (vector A (pred n0)) with
| Vnil => Vnil A
| Vcons _ n0 v0 => v0
end.
Definition Vtail' (A:Type)(n:nat)(v:vector A n) : vector A (pred n).
intros A n v; case v.
simpl.
exact (Vnil A).
simpl.
auto.
Defined.
(*
Inductive Lambda : Set :=
lambda : (Lambda -> False) -> Lambda.
Error: Non strictly positive occurrence of "Lambda" in
"(Lambda -> False) -> Lambda"
*)
Section Paradox.
Variable Lambda : Set.
Variable lambda : (Lambda -> False) ->Lambda.
Variable matchL : Lambda -> forall Q:Prop, ((Lambda ->False) -> Q) -> Q.
(*
understand matchL Q l (fun h : Lambda -> False => t)
as match l return Q with lambda h => t end
*)
Definition application (f x: Lambda) :False :=
matchL f False (fun h => h x).
Definition Delta : Lambda := lambda (fun x : Lambda => application x x).
Definition loop : False := application Delta Delta.
Theorem two_is_three : 2 = 3.
Proof.
elim loop.
Qed.
End Paradox.
Require Import ZArith.
Inductive itree : Set :=
| ileaf : itree
| inode : Z-> (nat -> itree) -> itree.
Definition isingle l := inode l (fun i => ileaf).
Definition t1 := inode 0 (fun n => isingle (Z.of_nat (2*n))).
Definition t2 := inode 0
(fun n : nat =>
inode (Z.of_nat n)
(fun p => isingle (Z.of_nat (n*p)))).
Inductive itree_le : itree-> itree -> Prop :=
| le_leaf : forall t, itree_le ileaf t
| le_node : forall l l' s s',
Z.le l l' ->
(forall i, exists j:nat, itree_le (s i) (s' j)) ->
itree_le (inode l s) (inode l' s').
Theorem itree_le_trans :
forall t t', itree_le t t' ->
forall t'', itree_le t' t'' -> itree_le t t''.
induction t.
constructor 1.
intros t'; case t'.
inversion 1.
intros z0 i0 H0.
intro t'';case t''.
inversion 1.
intros.
inversion_clear H1.
constructor 2.
inversion_clear H0;eauto with zarith.
inversion_clear H0.
intro i2; case (H4 i2).
intros.
generalize (H i2 _ H0).
intros.
case (H3 x);intros.
generalize (H5 _ H6).
exists x0;auto.
Qed.
Inductive itree_le' : itree-> itree -> Prop :=
| le_leaf' : forall t, itree_le' ileaf t
| le_node' : forall l l' s s' g,
Z.le l l' ->
(forall i, itree_le' (s i) (s' (g i))) ->
itree_le' (inode l s) (inode l' s').
Lemma t1_le_t2 : itree_le t1 t2.
unfold t1, t2.
constructor.
auto with zarith.
intro i; exists (2 * i).
unfold isingle.
constructor.
auto with zarith.
exists i;constructor.
Qed.
Lemma t1_le'_t2 : itree_le' t1 t2.
unfold t1, t2.
constructor 2 with (fun i : nat => 2 * i).
auto with zarith.
unfold isingle;
intro i ; constructor 2 with (fun i :nat => i).
auto with zarith.
constructor .
Qed.
Require Import List.
Inductive ltree (A:Set) : Set :=
lnode : A -> list (ltree A) -> ltree A.
Inductive prop : Prop :=
prop_intro : Prop -> prop.
Check (prop_intro prop).
Inductive ex_Prop (P : Prop -> Prop) : Prop :=
exP_intro : forall X : Prop, P X -> ex_Prop P.
Lemma ex_Prop_inhabitant : ex_Prop (fun P => P -> P).
Proof.
exists (ex_Prop (fun P => P -> P)).
trivial.
Qed.
(*
Check (fun (P:Prop->Prop)(p: ex_Prop P) =>
match p with exP_intro X HX => X end).
Error:
Incorrect elimination of "p" in the inductive type
"ex_Prop", the return type has sort "Type" while it should be
"Prop"
Elimination of an inductive object of sort "Prop"
is not allowed on a predicate in sort "Type"
because proofs can be eliminated only to build proofs
*)
Inductive typ : Type :=
typ_intro : Type -> typ.
Definition typ_inject: typ.
split.
exact typ.
(*
Defined.
Error: Universe Inconsistency.
*)
Abort.
(*
Inductive aSet : Set :=
aSet_intro: Set -> aSet.
User error: Large non-propositional inductive types must be in Type
*)
Inductive ex_Set (P : Set -> Prop) : Type :=
exS_intro : forall X : Set, P X -> ex_Set P.
Inductive comes_from_the_left (P Q:Prop): P \/ Q -> Prop :=
c1 : forall p, comes_from_the_left P Q (or_introl (A:=P) Q p).
Goal (comes_from_the_left _ _ (or_introl True I)).
split.
Qed.
Goal ~(comes_from_the_left _ _ (or_intror True I)).
red;inversion 1.
(* discriminate H0.
*)
Abort.
Reset comes_from_the_left.
(*
Definition comes_from_the_left (P Q:Prop)(H:P \/ Q): Prop :=
match H with
| or_introl p => True
| or_intror q => False
end.
Error:
Incorrect elimination of "H" in the inductive type
"or", the return type has sort "Type" while it should be
"Prop"
Elimination of an inductive object of sort "Prop"
is not allowed on a predicate in sort "Type"
because proofs can be eliminated only to build proofs
*)
Definition comes_from_the_left_sumbool
(P Q:Prop)(x:{P}+{Q}): Prop :=
match x with
| left p => True
| right q => False
end.
Close Scope Z_scope.
Theorem S_is_not_O : forall n, S n <> 0.
Definition Is_zero (x:nat):= match x with
| 0 => True
| _ => False
end.
Lemma O_is_zero : forall m, m = 0 -> Is_zero m.
Proof.
intros m H; subst m.
(*
============================
Is_zero 0
*)
simpl;trivial.
Qed.
red; intros n Hn.
apply O_is_zero with (m := S n).
assumption.
Qed.
Theorem disc2 : forall n, S (S n) <> 1.
Proof.
intros n Hn; discriminate.
Qed.
Theorem disc3 : forall n, S (S n) = 0 -> forall Q:Prop, Q.
Proof.
intros n Hn Q.
discriminate.
Qed.
Theorem inj_succ : forall n m, S n = S m -> n = m.
Proof.
Lemma inj_pred : forall n m, n = m -> pred n = pred m.
Proof.
intros n m eq_n_m.
rewrite eq_n_m.
trivial.
Qed.
intros n m eq_Sn_Sm.
apply inj_pred with (n:= S n) (m := S m); assumption.
Qed.
Lemma list_inject : forall (A:Type)(a b :A)(l l':list A),
a :: b :: l = b :: a :: l' -> a = b /\ l = l'.
Proof.
intros A a b l l' e.
injection e.
auto.
Qed.
Theorem not_le_Sn_0 : forall n:nat, ~ (S n <= 0).
Proof.
red; intros n H.
case H.
Undo.
Lemma not_le_Sn_0_with_constraints :
forall n p , S n <= p -> p = 0 -> False.
Proof.
intros n p H; case H ;
intros; discriminate.
Qed.
eapply not_le_Sn_0_with_constraints; eauto.
Qed.
Theorem not_le_Sn_0' : forall n:nat, ~ (S n <= 0).
Proof.
red; intros n H ; inversion H.
Qed.
Derive Inversion le_Sn_0_inv with (forall n :nat, S n <= 0).
Check le_Sn_0_inv.
Theorem le_Sn_0'' : forall n p : nat, ~ S n <= 0 .
Proof.
intros n p H;
inversion H using le_Sn_0_inv.
Qed.
Derive Inversion_clear le_Sn_0_inv' with (forall n :nat, S n <= 0).
Check le_Sn_0_inv'.
Theorem le_reverse_rules :
forall n m:nat, n <= m ->
n = m \/
exists p, n <= p /\ m = S p.
Proof.
intros n m H; inversion H.
left;trivial.
right; exists m0; split; trivial.
Restart.
intros n m H; inversion_clear H.
left;trivial.
right; exists m0; split; trivial.
Qed.
Inductive ArithExp : Set :=
Zero : ArithExp
| Succ : ArithExp -> ArithExp
| Plus : ArithExp -> ArithExp -> ArithExp.
Inductive RewriteRel : ArithExp -> ArithExp -> Prop :=
RewSucc : forall e1 e2 :ArithExp,
RewriteRel e1 e2 -> RewriteRel (Succ e1) (Succ e2)
| RewPlus0 : forall e:ArithExp,
RewriteRel (Plus Zero e) e
| RewPlusS : forall e1 e2:ArithExp,
RewriteRel e1 e2 ->
RewriteRel (Plus (Succ e1) e2) (Succ (Plus e1 e2)).
Fixpoint plus (n p:nat) {struct n} : nat :=
match n with
| 0 => p
| S m => S (plus m p)
end.
Fixpoint plus' (n p:nat) {struct p} : nat :=
match p with
| 0 => n
| S q => S (plus' n q)
end.
Fixpoint plus'' (n p:nat) {struct n} : nat :=
match n with
| 0 => p
| S m => plus'' m (S p)
end.
Fixpoint even_test (n:nat) : bool :=
match n
with 0 => true
| 1 => false
| S (S p) => even_test p
end.
Reset even_test.
Fixpoint even_test (n:nat) : bool :=
match n
with
| 0 => true
| S p => odd_test p
end
with odd_test (n:nat) : bool :=
match n
with
| 0 => false
| S p => even_test p
end.
Eval simpl in even_test.
Eval simpl in (fun x : nat => even_test x).
Eval simpl in (fun x : nat => plus 5 x).
Eval simpl in (fun x : nat => even_test (plus 5 x)).
Eval simpl in (fun x : nat => even_test (plus x 5)).
Section Principle_of_Induction.
Variable P : nat -> Prop.
Hypothesis base_case : P 0.
Hypothesis inductive_step : forall n:nat, P n -> P (S n).
Fixpoint nat_ind (n:nat) : (P n) :=
match n return P n with
| 0 => base_case
| S m => inductive_step m (nat_ind m)
end.
End Principle_of_Induction.
Scheme Even_induction := Minimality for even Sort Prop
with Odd_induction := Minimality for odd Sort Prop.
Theorem even_plus_four : forall n:nat, even n -> even (4+n).
Proof.
intros n H.
elim H using Even_induction with (P0 := fun n => odd (4+n));
simpl;repeat constructor;assumption.
Qed.
Section Principle_of_Double_Induction.
Variable P : nat -> nat ->Prop.
Hypothesis base_case1 : forall x:nat, P 0 x.
Hypothesis base_case2 : forall x:nat, P (S x) 0.
Hypothesis inductive_step : forall n m:nat, P n m -> P (S n) (S m).
Fixpoint nat_double_ind (n m:nat){struct n} : P n m :=
match n, m return P n m with
| 0 , x => base_case1 x
| (S x), 0 => base_case2 x
| (S x), (S y) => inductive_step x y (nat_double_ind x y)
end.
End Principle_of_Double_Induction.
Section Principle_of_Double_Recursion.
Variable P : nat -> nat -> Type.
Hypothesis base_case1 : forall x:nat, P 0 x.
Hypothesis base_case2 : forall x:nat, P (S x) 0.
Hypothesis inductive_step : forall n m:nat, P n m -> P (S n) (S m).
Fixpoint nat_double_rect (n m:nat){struct n} : P n m :=
match n, m return P n m with
| 0 , x => base_case1 x
| (S x), 0 => base_case2 x
| (S x), (S y) => inductive_step x y (nat_double_rect x y)
end.
End Principle_of_Double_Recursion.
Definition min : nat -> nat -> nat :=
nat_double_rect (fun (x y:nat) => nat)
(fun (x:nat) => 0)
(fun (y:nat) => 0)
(fun (x y r:nat) => S r).
Eval compute in (min 5 8).
Eval compute in (min 8 5).
Lemma not_circular : forall n:nat, n <> S n.
Proof.
intro n.
apply nat_ind with (P:= fun n => n <> S n).
discriminate.
red; intros n0 Hn0 eqn0Sn0;injection eqn0Sn0;trivial.
Qed.
Definition eq_nat_dec : forall n p:nat , {n=p}+{n <> p}.
Proof.
intros n p.
apply nat_double_rect with (P:= fun (n q:nat) => {q=p}+{q <> p}).
Undo.
pattern p,n.
elim n using nat_double_rect.
destruct x; auto.
destruct x; auto.
intros n0 m H; case H.
intro eq; rewrite eq ; auto.
intro neg; right; red ; injection 1; auto.
Defined.
Definition eq_nat_dec' : forall n p:nat, {n=p}+{n <> p}.
decide equality.
Defined.
Require Import Le.
Lemma le'_le : forall n p, le' n p -> n <= p.
Proof.
induction 1;auto with arith.
Qed.
Lemma le'_n_Sp : forall n p, le' n p -> le' n (S p).
Proof.
induction 1;auto.
Qed.
Hint Resolve le'_n_Sp.
Lemma le_le' : forall n p, n<=p -> le' n p.
Proof.
induction 1;auto with arith.
Qed.
Print Acc.
Require Import Minus.
(*
Fixpoint div (x y:nat){struct x}: nat :=
if eq_nat_dec x 0
then 0
else if eq_nat_dec y 0
then x
else S (div (x-y) y).
Error:
Recursive definition of div is ill-formed.
In environment
div : nat -> nat -> nat
x : nat
y : nat
_ : x <> 0
_ : y <> 0
Recursive call to div has principal argument equal to
"x - y"
instead of a subterm of x
*)
Lemma minus_smaller_S: forall x y:nat, x - y < S x.
Proof.
intros x y; pattern y, x;
elim x using nat_double_ind.
destruct x0; auto with arith.
simpl; auto with arith.
simpl; auto with arith.
Qed.
Lemma minus_smaller_positive : forall x y:nat, x <>0 -> y <> 0 ->
x - y < x.
Proof.
destruct x; destruct y;
( simpl;intros; apply minus_smaller_S ||
intros; absurd (0=0); auto).
Qed.
Definition minus_decrease : forall x y:nat, Acc lt x ->
x <> 0 ->
y <> 0 ->
Acc lt (x-y).
Proof.
intros x y H; case H.
intros Hz posz posy.
apply Hz; apply minus_smaller_positive; assumption.
Defined.
Print minus_decrease.
Definition div_aux (x y:nat)(H: Acc lt x):nat.
fix 3.
intros.
refine (if eq_nat_dec x 0
then 0
else if eq_nat_dec y 0
then y
else div_aux (x-y) y _).
apply (minus_decrease x y H);assumption.
Defined.
Print div_aux.
(*
div_aux =
(fix div_aux (x y : nat) (H : Acc lt x) {struct H} : nat :=
match eq_nat_dec x 0 with
| left _ => 0
| right _ =>
match eq_nat_dec y 0 with
| left _ => y
| right _0 => div_aux (x - y) y (minus_decrease x y H _ _0)
end
end)
: forall x : nat, nat -> Acc lt x -> nat
*)
Require Import Wf_nat.
Definition div x y := div_aux x y (lt_wf x).
Extraction div.
(*
let div x y =
div_aux x y
*)
Extraction div_aux.
(*
let rec div_aux x y =
match eq_nat_dec x O with
| Left -> O
| Right ->
(match eq_nat_dec y O with
| Left -> y
| Right -> div_aux (minus x y) y)
*)
Lemma vector0_is_vnil : forall (A:Type)(v:vector A 0), v = Vnil A.
Proof.
intros A v;inversion v.
Abort.
(*
Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:vector A n),
n= 0 -> v = Vnil A.
Toplevel input, characters 40281-40287
> Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:vector A n), n= 0 -> v = Vnil A.
> ^^^^^^
Error: In environment
A : Set
n : nat
v : vector A n
e : n = 0
The term "Vnil A" has type "vector A 0" while it is expected to have type
"vector A n"
*)
Require Import JMeq.
(* On devrait changer Set en Type ? *)
Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:vector A n),
n= 0 -> JMeq v (Vnil A).
Proof.
destruct v.
auto.
intro; discriminate.
Qed.
Lemma vector0_is_vnil : forall (A:Type)(v:vector A 0), v = Vnil A.
Proof.
intros a v;apply JMeq_eq.
apply vector0_is_vnil_aux.
trivial.
Qed.
Implicit Arguments Vcons [A n].
Implicit Arguments Vnil [A].
Implicit Arguments Vhead [A n].
Implicit Arguments Vtail [A n].
Definition Vid : forall (A : Type)(n:nat), vector A n -> vector A n.
Proof.
destruct n; intro v.
exact Vnil.
exact (Vcons (Vhead v) (Vtail v)).
Defined.
Eval simpl in (fun (A:Type)(v:vector A 0) => (Vid _ _ v)).
Eval simpl in (fun (A:Type)(v:vector A 0) => v).
Lemma Vid_eq : forall (n:nat) (A:Type)(v:vector A n), v=(Vid _ n v).
Proof.
destruct v.
reflexivity.
reflexivity.
Defined.
Theorem zero_nil : forall A (v:vector A 0), v = Vnil.
Proof.
intros.
change (Vnil (A:=A)) with (Vid _ 0 v).
apply Vid_eq.
Defined.
Theorem decomp :
forall (A : Type) (n : nat) (v : vector A (S n)),
v = Vcons (Vhead v) (Vtail v).
Proof.
intros.
change (Vcons (Vhead v) (Vtail v)) with (Vid _ (S n) v).
apply Vid_eq.
Defined.
Definition vector_double_rect :
forall (A:Type) (P: forall (n:nat),(vector A n)->(vector A n) -> Type),
P 0 Vnil Vnil ->
(forall n (v1 v2 : vector A n) a b, P n v1 v2 ->
P (S n) (Vcons a v1) (Vcons b v2)) ->
forall n (v1 v2 : vector A n), P n v1 v2.
induction n.
intros; rewrite (zero_nil _ v1); rewrite (zero_nil _ v2).
auto.
intros v1 v2; rewrite (decomp _ _ v1);rewrite (decomp _ _ v2).
apply X0; auto.
Defined.
Require Import Bool.
Definition bitwise_or n v1 v2 : vector bool n :=
vector_double_rect bool (fun n v1 v2 => vector bool n)
Vnil
(fun n v1 v2 a b r => Vcons (orb a b) r) n v1 v2.
Fixpoint vector_nth (A:Type)(n:nat)(p:nat)(v:vector A p){struct v}
: option A :=
match n,v with
_ , Vnil => None
| 0 , Vcons b _ _ => Some b
| S n', Vcons _ p' v' => vector_nth A n' p' v'
end.
Implicit Arguments vector_nth [A p].
Lemma nth_bitwise : forall (n:nat) (v1 v2: vector bool n) i a b,
vector_nth i v1 = Some a ->
vector_nth i v2 = Some b ->
vector_nth i (bitwise_or _ v1 v2) = Some (orb a b).
Proof.
intros n v1 v2; pattern n,v1,v2.
apply vector_double_rect.
simpl.
destruct i; discriminate 1.
destruct i; simpl;auto.
injection 1; injection 2;intros; subst a; subst b; auto.
Qed.
Set Implicit Arguments.
CoInductive Stream (A:Type) : Type :=
| Cons : A -> Stream A -> Stream A.
CoInductive LList (A: Type) : Type :=
| LNil : LList A
| LCons : A -> LList A -> LList A.
Definition head (A:Type)(s : Stream A) := match s with Cons a s' => a end.
Definition tail (A : Type)(s : Stream A) :=
match s with Cons a s' => s' end.
CoFixpoint repeat (A:Type)(a:A) : Stream A := Cons a (repeat a).
CoFixpoint iterate (A: Type)(f: A -> A)(a : A) : Stream A:=
Cons a (iterate f (f a)).
CoFixpoint map (A B:Type)(f: A -> B)(s : Stream A) : Stream B:=
match s with Cons a tl => Cons (f a) (map f tl) end.
Eval simpl in (fun (A:Type)(a:A) => repeat a).
Eval simpl in (fun (A:Type)(a:A) => head (repeat a)).
CoInductive EqSt (A: Type) : Stream A -> Stream A -> Prop :=
eqst : forall s1 s2: Stream A,
head s1 = head s2 ->
EqSt (tail s1) (tail s2) ->
EqSt s1 s2.
Section Parks_Principle.
Variable A : Type.
Variable R : Stream A -> Stream A -> Prop.
Hypothesis bisim1 : forall s1 s2:Stream A, R s1 s2 ->
head s1 = head s2.
Hypothesis bisim2 : forall s1 s2:Stream A, R s1 s2 ->
R (tail s1) (tail s2).
CoFixpoint park_ppl : forall s1 s2:Stream A, R s1 s2 ->
EqSt s1 s2 :=
fun s1 s2 (p : R s1 s2) =>
eqst s1 s2 (bisim1 p)
(park_ppl (bisim2 p)).
End Parks_Principle.
Theorem map_iterate : forall (A:Type)(f:A->A)(x:A),
EqSt (iterate f (f x)) (map f (iterate f x)).
Proof.
intros A f x.
apply park_ppl with
(R:= fun s1 s2 => exists x: A,
s1 = iterate f (f x) /\ s2 = map f (iterate f x)).
intros s1 s2 (x0,(eqs1,eqs2));rewrite eqs1;rewrite eqs2;reflexivity.
intros s1 s2 (x0,(eqs1,eqs2)).
exists (f x0);split;[rewrite eqs1|rewrite eqs2]; reflexivity.
exists x;split; reflexivity.
Qed.
Ltac infiniteproof f :=
cofix f; constructor; [clear f| simpl; try (apply f; clear f)].
Theorem map_iterate' : forall (A:Type)(f:A->A)(x:A),
EqSt (iterate f (f x)) (map f (iterate f x)).
infiniteproof map_iterate'.
reflexivity.
Qed.
Implicit Arguments LNil [A].
Lemma Lnil_not_Lcons : forall (A:Type)(a:A)(l:LList A),
LNil <> (LCons a l).
intros;discriminate.
Qed.
Lemma injection_demo : forall (A:Type)(a b : A)(l l': LList A),
LCons a (LCons b l) = LCons b (LCons a l') ->
a = b /\ l = l'.
Proof.
intros A a b l l' e; injection e; auto.
Qed.
Inductive Finite (A:Type) : LList A -> Prop :=
| Lnil_fin : Finite (LNil (A:=A))
| Lcons_fin : forall a l, Finite l -> Finite (LCons a l).
CoInductive Infinite (A:Type) : LList A -> Prop :=
| LCons_inf : forall a l, Infinite l -> Infinite (LCons a l).
Lemma LNil_not_Infinite : forall (A:Type), ~ Infinite (LNil (A:=A)).
Proof.
intros A H;inversion H.
Qed.
Lemma Finite_not_Infinite : forall (A:Type)(l:LList A),
Finite l -> ~ Infinite l.
Proof.
intros A l H; elim H.
apply LNil_not_Infinite.
intros a l0 F0 I0' I1.
case I0'; inversion_clear I1.
trivial.
Qed.
Lemma Not_Finite_Infinite : forall (A:Type)(l:LList A),
~ Finite l -> Infinite l.
Proof.
cofix H.
destruct l.
intro; absurd (Finite (LNil (A:=A)));[auto|constructor].
constructor.
apply H.
red; intro H1;case H0.
constructor.
trivial.
Qed.
|