1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
(** Sketch of the proof of {p:nat|p<=n} = {p:nat|p<=m} -> n=m
- preliminary results on the irrelevance of boundedness proofs
- introduce the notion of finite cardinal |A|
- prove that |{p:nat|p<=n}| = n
- prove that |A| = n /\ |A| = m -> n = m if equality is decidable on A
- prove that equality is decidable on A
- conclude
*)
(** * Preliminary results on [nat] and [le] *)
(** Proving axiom K on [nat] *)
Require Import Eqdep_dec.
Require Import Arith.
Theorem eq_rect_eq_nat :
forall (p:nat) (Q:nat->Type) (x:Q p) (h:p=p), x = eq_rect p Q x p h.
Proof.
intros.
apply K_dec_set with (p := h).
apply eq_nat_dec.
reflexivity.
Qed.
(** Proving unicity of proofs of [(n<=m)%nat] *)
Scheme le_ind' := Induction for le Sort Prop.
Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q.
Proof.
induction p using le_ind'; intro q.
replace (le_n n) with
(eq_rect _ (fun n0 => n <= n0) (le_n n) _ eq_refl).
2:reflexivity.
generalize (eq_refl n).
pattern n at 2 4 6 10, q; case q; [intro | intros m l e].
rewrite <- eq_rect_eq_nat; trivial.
contradiction (le_Sn_n m); rewrite <- e; assumption.
replace (le_S n m p) with
(eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ eq_refl).
2:reflexivity.
generalize (eq_refl (S m)).
pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS].
contradiction (le_Sn_n m); rewrite Heq; assumption.
injection HeqS; intro Heq; generalize l HeqS.
rewrite <- Heq; intros; rewrite <- eq_rect_eq_nat.
rewrite (IHp l0); reflexivity.
Qed.
(** Proving irrelevance of boundedness proofs while building
elements of interval *)
Lemma dep_pair_intro :
forall (n x y:nat) (Hx : x<=n) (Hy : y<=n), x=y ->
exist (fun x => x <= n) x Hx = exist (fun x => x <= n) y Hy.
Proof.
intros n x y Hx Hy Heq.
generalize Hy.
rewrite <- Heq.
intros.
rewrite (le_uniqueness_proof x n Hx Hy0).
reflexivity.
Qed.
(** * Proving that {p:nat|p<=n} = {p:nat|p<=m} -> n=m *)
(** Definition of having finite cardinality [n+1] for a set [A] *)
Definition card (A:Set) n :=
exists f,
(forall x:A, f x <= n) /\
(forall x y:A, f x = f y -> x = y) /\
(forall m, m <= n -> exists x:A, f x = m).
Require Import Arith.
(** Showing that the interval [0;n] has cardinality [n+1] *)
Theorem card_interval : forall n, card {x:nat|x<=n} n.
Proof.
intro n.
exists (fun x:{x:nat|x<=n} => proj1_sig x).
split.
(* bounded *)
intro x; apply (proj2_sig x).
split.
(* injectivity *)
intros (p,Hp) (q,Hq).
simpl.
intro Hpq.
apply dep_pair_intro; assumption.
(* surjectivity *)
intros m Hmn.
exists (exist (fun x : nat => x <= n) m Hmn).
reflexivity.
Qed.
(** Showing that equality on the interval [0;n] is decidable *)
Lemma interval_dec :
forall n (x y : {m:nat|m<=n}), {x=y}+{x<>y}.
Proof.
intros n (p,Hp).
induction p; intros ([|q],Hq).
left.
apply dep_pair_intro.
reflexivity.
right.
intro H; discriminate H.
right.
intro H; discriminate H.
assert (Hp' : p <= n).
apply le_Sn_le; assumption.
assert (Hq' : q <= n).
apply le_Sn_le; assumption.
destruct (IHp Hp' (exist (fun m => m <= n) q Hq'))
as [Heq|Hneq].
left.
injection Heq; intro Heq'.
apply dep_pair_intro.
apply eq_S.
assumption.
right.
intro HeqS.
injection HeqS; intro Heq.
apply Hneq.
apply dep_pair_intro.
assumption.
Qed.
(** Showing that the cardinality relation is functional on decidable sets *)
Lemma card_inj_aux :
forall (A:Type) f g n,
(forall x:A, f x <= 0) ->
(forall x y:A, f x = f y -> x = y) ->
(forall m, m <= S n -> exists x:A, g x = m)
-> False.
Proof.
intros A f g n Hfbound Hfinj Hgsurj.
destruct (Hgsurj (S n) (le_n _)) as (x,Hx).
destruct (Hgsurj n (le_S _ _ (le_n _))) as (x',Hx').
assert (Hfx : 0 = f x).
apply le_n_O_eq.
apply Hfbound.
assert (Hfx' : 0 = f x').
apply le_n_O_eq.
apply Hfbound.
assert (x=x').
apply Hfinj.
rewrite <- Hfx.
rewrite <- Hfx'.
reflexivity.
rewrite H in Hx.
rewrite Hx' in Hx.
apply (n_Sn _ Hx).
Qed.
(** For [dec_restrict], we use a lemma on the negation of equality
that requires proof-irrelevance. It should be possible to avoid this
lemma by generalizing over a first-order definition of [x<>y], say
[neq] such that [{x=y}+{neq x y}] and [~(x=y /\ neq x y)]; for such
[neq], unicity of proofs could be proven *)
Require Import Classical.
Lemma neq_dep_intro :
forall (A:Set) (z x y:A) (p:x<>z) (q:y<>z), x=y ->
exist (fun x => x <> z) x p = exist (fun x => x <> z) y q.
Proof.
intros A z x y p q Heq.
generalize q; clear q; rewrite <- Heq; intro q.
rewrite (proof_irrelevance _ p q); reflexivity.
Qed.
Lemma dec_restrict :
forall (A:Set),
(forall x y :A, {x=y}+{x<>y}) ->
forall z (x y :{a:A|a<>z}), {x=y}+{x<>y}.
Proof.
intros A Hdec z (x,Hx) (y,Hy).
destruct (Hdec x y) as [Heq|Hneq].
left; apply neq_dep_intro; assumption.
right; intro Heq; injection Heq; exact Hneq.
Qed.
Lemma pred_inj : forall n m,
0 <> n -> 0 <> m -> pred m = pred n -> m = n.
Proof.
destruct n.
intros m H; destruct H; reflexivity.
destruct m.
intros _ H; destruct H; reflexivity.
simpl; intros _ _ H.
rewrite H.
reflexivity.
Qed.
Lemma le_neq_lt : forall n m, n <= m -> n<>m -> n < m.
Proof.
intros n m Hle Hneq.
destruct (le_lt_eq_dec n m Hle).
assumption.
contradiction.
Qed.
Lemma inj_restrict :
forall (A:Set) (f:A->nat) x y z,
(forall x y : A, f x = f y -> x = y)
-> x <> z -> f y < f z -> f z <= f x
-> pred (f x) = f y
-> False.
(* Search error sans le type de f !! *)
Proof.
intros A f x y z Hfinj Hneqx Hfy Hfx Heq.
assert (f z <> f x).
apply not_eq_sym.
intro Heqf.
apply Hneqx.
apply Hfinj.
assumption.
assert (f x = S (f y)).
assert (0 < f x).
apply le_lt_trans with (f z).
apply le_O_n.
apply le_neq_lt; assumption.
apply pred_inj.
apply O_S.
apply lt_O_neq; assumption.
exact Heq.
assert (f z <= f y).
destruct (le_lt_or_eq _ _ Hfx).
apply lt_n_Sm_le.
rewrite <- H0.
assumption.
contradiction Hneqx.
symmetry.
apply Hfinj.
assumption.
contradiction (lt_not_le (f y) (f z)).
Qed.
Theorem card_inj : forall m n (A:Set),
(forall x y :A, {x=y}+{x<>y}) ->
card A m -> card A n -> m = n.
Proof.
induction m; destruct n;
intros A Hdec
(f,(Hfbound,(Hfinj,Hfsurj)))
(g,(Hgbound,(Hginj,Hgsurj))).
(* 0/0 *)
reflexivity.
(* 0/Sm *)
destruct (card_inj_aux _ _ _ _ Hfbound Hfinj Hgsurj).
(* Sn/0 *)
destruct (card_inj_aux _ _ _ _ Hgbound Hginj Hfsurj).
(* Sn/Sm *)
destruct (Hgsurj (S n) (le_n _)) as (xSn,HSnx).
rewrite IHm with (n:=n) (A := {x:A|x<>xSn}).
reflexivity.
(* decidability of eq on {x:A|x<>xSm} *)
apply dec_restrict.
assumption.
(* cardinality of {x:A|x<>xSn} is m *)
pose (f' := fun x' : {x:A|x<>xSn} =>
let (x,Hneq) := x' in
if le_lt_dec (f xSn) (f x)
then pred (f x)
else f x).
exists f'.
split.
(* f' is bounded *)
unfold f'.
intros (x,_).
destruct (le_lt_dec (f xSn) (f x)) as [Hle|Hge].
change m with (pred (S m)).
apply le_pred.
apply Hfbound.
apply le_S_n.
apply le_trans with (f xSn).
exact Hge.
apply Hfbound.
split.
(* f' is injective *)
unfold f'.
intros (x,Hneqx) (y,Hneqy) Heqf'.
destruct (le_lt_dec (f xSn) (f x)) as [Hlefx|Hgefx];
destruct (le_lt_dec (f xSn) (f y)) as [Hlefy|Hgefy].
(* f xSn <= f x et f xSn <= f y *)
assert (Heq : x = y).
apply Hfinj.
assert (f xSn <> f y).
apply not_eq_sym.
intro Heqf.
apply Hneqy.
apply Hfinj.
assumption.
assert (0 < f y).
apply le_lt_trans with (f xSn).
apply le_O_n.
apply le_neq_lt; assumption.
assert (f xSn <> f x).
apply not_eq_sym.
intro Heqf.
apply Hneqx.
apply Hfinj.
assumption.
assert (0 < f x).
apply le_lt_trans with (f xSn).
apply le_O_n.
apply le_neq_lt; assumption.
apply pred_inj.
apply lt_O_neq; assumption.
apply lt_O_neq; assumption.
assumption.
apply neq_dep_intro; assumption.
(* f y < f xSn <= f x *)
destruct (inj_restrict A f x y xSn); assumption.
(* f x < f xSn <= f y *)
symmetry in Heqf'.
destruct (inj_restrict A f y x xSn); assumption.
(* f x < f xSn et f y < f xSn *)
assert (Heq : x=y).
apply Hfinj; assumption.
apply neq_dep_intro; assumption.
(* f' is surjective *)
intros p Hlep.
destruct (le_lt_dec (f xSn) p) as [Hle|Hlt].
(* case f xSn <= p *)
destruct (Hfsurj (S p) (le_n_S _ _ Hlep)) as (x,Hx).
assert (Hneq : x <> xSn).
intro Heqx.
rewrite Heqx in Hx.
rewrite Hx in Hle.
apply le_Sn_n with p; assumption.
exists (exist (fun a => a<>xSn) x Hneq).
unfold f'.
destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt'].
rewrite Hx; reflexivity.
rewrite Hx in Hlt'.
contradiction (le_not_lt (f xSn) p).
apply lt_trans with (S p).
apply lt_n_Sn.
assumption.
(* case p < f xSn *)
destruct (Hfsurj p (le_S _ _ Hlep)) as (x,Hx).
assert (Hneq : x <> xSn).
intro Heqx.
rewrite Heqx in Hx.
rewrite Hx in Hlt.
apply (lt_irrefl p).
assumption.
exists (exist (fun a => a<>xSn) x Hneq).
unfold f'.
destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt'].
rewrite Hx in Hle'.
contradiction (lt_irrefl p).
apply lt_le_trans with (f xSn); assumption.
assumption.
(* cardinality of {x:A|x<>xSn} is n *)
pose (g' := fun x' : {x:A|x<>xSn} =>
let (x,Hneq) := x' in
if Hdec x xSn then 0 else g x).
exists g'.
split.
(* g is bounded *)
unfold g'.
intros (x,_).
destruct (Hdec x xSn) as [_|Hneq].
apply le_O_n.
assert (Hle_gx:=Hgbound x).
destruct (le_lt_or_eq _ _ Hle_gx).
apply lt_n_Sm_le.
assumption.
contradiction Hneq.
apply Hginj.
rewrite HSnx.
assumption.
split.
(* g is injective *)
unfold g'.
intros (x,Hneqx) (y,Hneqy) Heqg'.
destruct (Hdec x xSn) as [Heqx|_].
contradiction Hneqx.
destruct (Hdec y xSn) as [Heqy|_].
contradiction Hneqy.
assert (Heq : x=y).
apply Hginj; assumption.
apply neq_dep_intro; assumption.
(* g is surjective *)
intros p Hlep.
destruct (Hgsurj p (le_S _ _ Hlep)) as (x,Hx).
assert (Hneq : x<>xSn).
intro Heq.
rewrite Heq in Hx.
rewrite Hx in HSnx.
rewrite HSnx in Hlep.
contradiction (le_Sn_n _ Hlep).
exists (exist (fun a => a<>xSn) x Hneq).
simpl.
destruct (Hdec x xSn) as [Heqx|_].
contradiction Hneq.
assumption.
Qed.
(** Conclusion *)
Theorem interval_discr :
forall n m, {p:nat|p<=n} = {p:nat|p<=m} -> n=m.
Proof.
intros n m Heq.
apply card_inj with (A := {p:nat|p<=n}).
apply interval_dec.
apply card_interval.
rewrite Heq.
apply card_interval.
Qed.
|