1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
|
\chapter[Extensions of \Gallina{}]{Extensions of \Gallina{}\label{Gallina-extension}\index{Gallina}}
{\gallina} is the kernel language of {\Coq}. We describe here extensions of
the Gallina's syntax.
\section{Record types
\comindex{Record}
\comindex{Inductive}
\comindex{CoInductive}
\label{Record}}
The \verb+Record+ construction is a macro allowing the definition of
records as is done in many programming languages. Its syntax is
described on Figure~\ref{record-syntax}. In fact, the \verb+Record+
macro is more general than the usual record types, since it allows
also for ``manifest'' expressions. In this sense, the \verb+Record+
construction allows to define ``signatures''.
\begin{figure}[h]
\begin{centerframe}
\begin{tabular}{lcl}
{\sentence} & ++= & {\record}\\
& & \\
{\record} & ::= &
{\recordkw} {\ident} \zeroone{\binders} \zeroone{{\tt :} {\sort}} \verb.:=. \\
&& ~~~~\zeroone{\ident}
\verb!{! \zeroone{\nelist{\field}{;}} \verb!}! \verb:.:\\
& & \\
{\recordkw} & ::= &
{\tt Record} $|$ {\tt Inductive} $|$ {\tt CoInductive}\\
& & \\
{\field} & ::= & {\name} \zeroone{\binders} : {\type} [ {\tt where} {\it notation} ] \\
& $|$ & {\name} \zeroone{\binders} {\typecstr} := {\term}
\end{tabular}
\end{centerframe}
\caption{Syntax for the definition of {\tt Record}}
\label{record-syntax}
\end{figure}
\noindent In the expression
\smallskip
{\tt Record} {\ident} {\params} \texttt{:}
{\sort} := {\ident$_0$} \verb+{+
{\ident$_1$} \binders$_1$ \texttt{:} {\term$_1$};
\dots
{\ident$_n$} \binders$_n$ \texttt{:} {\term$_n$} \verb+}+.
\smallskip
\noindent the identifier {\ident} is the name of the defined record
and {\sort} is its type. The identifier {\ident$_0$} is the name of
its constructor. If {\ident$_0$} is omitted, the default name {\tt
Build\_{\ident}} is used. If {\sort} is omitted, the default sort is ``{\Type}''.
The identifiers {\ident$_1$}, ..,
{\ident$_n$} are the names of fields and {\tt forall} \binders$_1${\tt ,} {\term$_1$}, ..., {\tt forall} \binders$_n${\tt ,} {\term$_n$}
their respective types. Remark that the type of {\ident$_i$} may
depend on the previous {\ident$_j$} (for $j<i$). Thus the order of the
fields is important. Finally, {\params} are the parameters of the
record.
More generally, a record may have explicitly defined (a.k.a.
manifest) fields. For instance, {\tt Record} {\ident} {\tt [}
{\params} {\tt ]} \texttt{:} {\sort} := \verb+{+ {\ident$_1$}
\texttt{:} {\type$_1$} \verb+;+ {\ident$_2$} \texttt{:=} {\term$_2$}
\verb+;+ {\ident$_3$} \texttt{:} {\type$_3$} \verb+}+ in which case
the correctness of {\type$_3$} may rely on the instance {\term$_2$} of
{\ident$_2$} and {\term$_2$} in turn may depend on {\ident$_1$}.
\Example
The set of rational numbers may be defined as:
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example}
Record Rat : Set := mkRat
{sign : bool;
top : nat;
bottom : nat;
Rat_bottom_cond : 0 <> bottom;
Rat_irred_cond :
forall x y z:nat, (x * y) = top /\ (x * z) = bottom -> x = 1}.
\end{coq_example}
Remark here that the field
\verb+Rat_cond+ depends on the field \verb+bottom+.
%Let us now see the work done by the {\tt Record} macro.
%First the macro generates an inductive definition
%with just one constructor:
%
%\medskip
%\noindent
%{\tt Inductive {\ident} \zeroone{\binders} : {\sort} := \\
%\mbox{}\hspace{0.4cm} {\ident$_0$} : forall ({\ident$_1$}:{\term$_1$}) ..
%({\ident$_n$}:{\term$_n$}), {\ident} {\rm\sl params}.}
%\medskip
Let us now see the work done by the {\tt Record} macro. First the
macro generates an inductive definition with just one constructor:
\begin{quote}
{\tt Inductive {\ident} {\params} :{\sort} :=} \\
\qquad {\tt
{\ident$_0$} ({\ident$_1$}:{\term$_1$}) .. ({\ident$_n$}:{\term$_n$}).}
\end{quote}
To build an object of type {\ident}, one should provide the
constructor {\ident$_0$} with $n$ terms filling the fields of
the record.
As an example, let us define the rational $1/2$:
\begin{coq_example*}
Require Import Arith.
Theorem one_two_irred :
forall x y z:nat, x * y = 1 /\ x * z = 2 -> x = 1.
\end{coq_example*}
\begin{coq_eval}
Lemma mult_m_n_eq_m_1 : forall m n:nat, m * n = 1 -> m = 1.
destruct m; trivial.
intros; apply f_equal with (f := S).
destruct m; trivial.
destruct n; simpl in H.
rewrite <- mult_n_O in H.
discriminate.
rewrite <- plus_n_Sm in H.
discriminate.
Qed.
intros x y z [H1 H2].
apply mult_m_n_eq_m_1 with (n := y); trivial.
\end{coq_eval}
\ldots
\begin{coq_example*}
Qed.
\end{coq_example*}
\begin{coq_example}
Definition half := mkRat true 1 2 (O_S 1) one_two_irred.
\end{coq_example}
\begin{coq_example}
Check half.
\end{coq_example}
The macro generates also, when it is possible, the projection
functions for destructuring an object of type {\ident}. These
projection functions have the same name that the corresponding
fields. If a field is named ``\verb=_='' then no projection is built
for it. In our example:
\begin{coq_example}
Eval compute in half.(top).
Eval compute in half.(bottom).
Eval compute in half.(Rat_bottom_cond).
\end{coq_example}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
Records defined with the {\tt Record} keyword are not allowed to be
recursive (references to the record's name in the type of its field
raises an error). To define recursive records, one can use the {\tt
Inductive} and {\tt CoInductive} keywords, resulting in an inductive
or co-inductive record. A \emph{caveat}, however, is that records
cannot appear in mutually inductive (or co-inductive) definitions.
\begin{Warnings}
\item {\tt Warning: {\ident$_i$} cannot be defined.}
It can happen that the definition of a projection is impossible.
This message is followed by an explanation of this impossibility.
There may be three reasons:
\begin{enumerate}
\item The name {\ident$_i$} already exists in the environment (see
Section~\ref{Axiom}).
\item The body of {\ident$_i$} uses an incorrect elimination for
{\ident} (see Sections~\ref{Fixpoint} and~\ref{Caseexpr}).
\item The type of the projections {\ident$_i$} depends on previous
projections which themselves could not be defined.
\end{enumerate}
\end{Warnings}
\begin{ErrMsgs}
\item \errindex{Records declared with the keyword Record or Structure cannot be recursive.}
The record name {\ident} appears in the type of its fields, but uses
the keyword {\tt Record}. Use the keyword {\tt Inductive} or {\tt
CoInductive} instead.
\item \errindex{Cannot handle mutually (co)inductive records.}
Records cannot be defined as part of mutually inductive (or
co-inductive) definitions, whether with records only or mixed with
standard definitions.
\item During the definition of the one-constructor inductive
definition, all the errors of inductive definitions, as described in
Section~\ref{gal_Inductive_Definitions}, may also occur.
\end{ErrMsgs}
\SeeAlso Coercions and records in Section~\ref{Coercions-and-records}
of the chapter devoted to coercions.
\Rem {\tt Structure} is a synonym of the keyword {\tt Record}.
\Rem Creation of an object of record type can be done by calling {\ident$_0$}
and passing arguments in the correct order.
\begin{coq_example}
Record point := { x : nat; y : nat }.
Definition a := Build_point 5 3.
\end{coq_example}
The following syntax allows to create objects by using named fields. The
fields do not have to be in any particular order, nor do they have to be all
present if the missing ones can be inferred or prompted for (see
Section~\ref{Program}).
\begin{coq_example}
Definition b := {| x := 5; y := 3 |}.
Definition c := {| y := 3; x := 5 |}.
\end{coq_example}
This syntax can be disabled globally for printing by
\begin{quote}
{\tt Unset Printing Records.}
\end{quote}
For a given type, one can override this using either
\begin{quote}
{\tt Add Printing Record {\ident}.}
\end{quote}
to get record syntax or
\begin{quote}
{\tt Add Printing Constructor {\ident}.}
\end{quote}
to get constructor syntax.
This syntax can also be used for pattern matching.
\begin{coq_example}
Eval compute in (
match b with
| {| y := S n |} => n
| _ => 0
end).
\end{coq_example}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\Rem An experimental syntax for projections based on a dot notation is
available. The command to activate it is
\begin{quote}
{\tt Set Printing Projections.}
\end{quote}
\begin{figure}[t]
\begin{centerframe}
\begin{tabular}{lcl}
{\term} & ++= & {\term} {\tt .(} {\qualid} {\tt )}\\
& $|$ & {\term} {\tt .(} {\qualid} \nelist{\termarg}{} {\tt )}\\
& $|$ & {\term} {\tt .(} {@}{\qualid} \nelist{\term}{} {\tt )}
\end{tabular}
\end{centerframe}
\caption{Syntax of \texttt{Record} projections}
\label{fig:projsyntax}
\end{figure}
The corresponding grammar rules are given Figure~\ref{fig:projsyntax}.
When {\qualid} denotes a projection, the syntax {\tt
{\term}.({\qualid})} is equivalent to {\qualid~\term}, the syntax
{\tt {\term}.({\qualid}~{\termarg}$_1$~ \ldots~ {\termarg}$_n$)} to
{\qualid~{\termarg}$_1$ \ldots {\termarg}$_n$~\term}, and the syntax
{\tt {\term}.(@{\qualid}~{\term}$_1$~\ldots~{\term}$_n$)} to
{@\qualid~{\term}$_1$ \ldots {\term}$_n$~\term}. In each case, {\term}
is the object projected and the other arguments are the parameters of
the inductive type.
To deactivate the printing of projections, use
{\tt Unset Printing Projections}.
\section{Variants and extensions of {\mbox{\tt match}}
\label{Extensions-of-match}
\index{match@{\tt match\ldots with\ldots end}}}
\subsection{Multiple and nested pattern-matching
\index{ML-like patterns}
\label{Mult-match}}
The basic version of \verb+match+ allows pattern-matching on simple
patterns. As an extension, multiple nested patterns or disjunction of
patterns are allowed, as in ML-like languages.
The extension just acts as a macro that is expanded during parsing
into a sequence of {\tt match} on simple patterns. Especially, a
construction defined using the extended {\tt match} is generally
printed under its expanded form (see~\texttt{Set Printing Matching} in
section~\ref{SetPrintingMatching}).
\SeeAlso Chapter~\ref{Mult-match-full}.
\subsection{Pattern-matching on boolean values: the {\tt if} expression
\label{if-then-else}
\index{if@{\tt if ... then ... else}}}
For inductive types with exactly two constructors and for
pattern-matchings expressions which do not depend on the arguments of
the constructors, it is possible to use a {\tt if ... then ... else}
notation. For instance, the definition
\begin{coq_example}
Definition not (b:bool) :=
match b with
| true => false
| false => true
end.
\end{coq_example}
\noindent can be alternatively written
\begin{coq_eval}
Reset not.
\end{coq_eval}
\begin{coq_example}
Definition not (b:bool) := if b then false else true.
\end{coq_example}
More generally, for an inductive type with constructors {\tt C$_1$}
and {\tt C$_2$}, we have the following equivalence
\smallskip
{\tt if {\term} \zeroone{\ifitem} then {\term}$_1$ else {\term}$_2$} $\equiv$
\begin{tabular}[c]{l}
{\tt match {\term} \zeroone{\ifitem} with}\\
{\tt \verb!|! C$_1$ \_ {\ldots} \_ \verb!=>! {\term}$_1$} \\
{\tt \verb!|! C$_2$ \_ {\ldots} \_ \verb!=>! {\term}$_2$} \\
{\tt end}
\end{tabular}
Here is an example.
\begin{coq_example}
Check (fun x (H:{x=0}+{x<>0}) =>
match H with
| left _ => true
| right _ => false
end).
\end{coq_example}
Notice that the printing uses the {\tt if} syntax because {\tt sumbool} is
declared as such (see Section~\ref{printing-options}).
\subsection{Irrefutable patterns: the destructuring {\tt let} variants
\index{let in@{\tt let ... in}}
\label{Letin}}
Pattern-matching on terms inhabiting inductive type having only one
constructor can be alternatively written using {\tt let ... in ...}
constructions. There are two variants of them.
\subsubsection{First destructuring {\tt let} syntax}
The expression {\tt let
(}~{\ident$_1$},\ldots,{\ident$_n$}~{\tt ) :=}~{\term$_0$}~{\tt
in}~{\term$_1$} performs case analysis on a {\term$_0$} which must be in
an inductive type with one constructor having itself $n$ arguments. Variables
{\ident$_1$}\ldots{\ident$_n$} are bound to the $n$ arguments of the
constructor in expression {\term$_1$}. For instance, the definition
\begin{coq_example}
Definition fst (A B:Set) (H:A * B) := match H with
| pair x y => x
end.
\end{coq_example}
can be alternatively written
\begin{coq_eval}
Reset fst.
\end{coq_eval}
\begin{coq_example}
Definition fst (A B:Set) (p:A * B) := let (x, _) := p in x.
\end{coq_example}
Notice that reduction is different from regular {\tt let ... in ...}
construction since it happens only if {\term$_0$} is in constructor
form. Otherwise, the reduction is blocked.
The pretty-printing of a definition by matching on a
irrefutable pattern can either be done using {\tt match} or the {\tt
let} construction (see Section~\ref{printing-options}).
If {\term} inhabits an inductive type with one constructor {\tt C},
we have an equivalence between
{\tt let ({\ident}$_1$,\ldots,{\ident}$_n$) \zeroone{\ifitem} := {\term} in {\term}'}
\noindent and
{\tt match {\term} \zeroone{\ifitem} with C {\ident}$_1$ {\ldots} {\ident}$_n$ \verb!=>! {\term}' end}
\subsubsection{Second destructuring {\tt let} syntax\index{let '... in}}
Another destructuring {\tt let} syntax is available for inductive types with
one constructor by giving an arbitrary pattern instead of just a tuple
for all the arguments. For example, the preceding example can be written:
\begin{coq_eval}
Reset fst.
\end{coq_eval}
\begin{coq_example}
Definition fst (A B:Set) (p:A*B) := let 'pair x _ := p in x.
\end{coq_example}
This is useful to match deeper inside tuples and also to use notations
for the pattern, as the syntax {\tt let 'p := t in b} allows arbitrary
patterns to do the deconstruction. For example:
\begin{coq_example}
Definition deep_tuple (A:Set) (x:(A*A)*(A*A)) : A*A*A*A :=
let '((a,b), (c, d)) := x in (a,b,c,d).
Notation " x 'with' p " := (exist _ x p) (at level 20).
Definition proj1_sig' (A:Set) (P:A->Prop) (t:{ x:A | P x }) : A :=
let 'x with p := t in x.
\end{coq_example}
When printing definitions which are written using this construct it
takes precedence over {\tt let} printing directives for the datatype
under consideration (see Section~\ref{printing-options}).
\subsection{Controlling pretty-printing of {\tt match} expressions
\label{printing-options}}
The following commands give some control over the pretty-printing of
{\tt match} expressions.
\subsubsection{Printing nested patterns
\label{SetPrintingMatching}
\comindex{Set Printing Matching}
\comindex{Unset Printing Matching}
\comindex{Test Printing Matching}}
The Calculus of Inductive Constructions knows pattern-matching only
over simple patterns. It is however convenient to re-factorize nested
pattern-matching into a single pattern-matching over a nested pattern.
{\Coq}'s printer try to do such limited re-factorization.
\begin{quote}
{\tt Set Printing Matching.}
\end{quote}
This tells {\Coq} to try to use nested patterns. This is the default
behavior.
\begin{quote}
{\tt Unset Printing Matching.}
\end{quote}
This tells {\Coq} to print only simple pattern-matching problems in
the same way as the {\Coq} kernel handles them.
\begin{quote}
{\tt Test Printing Matching.}
\end{quote}
This tells if the printing matching mode is on or off. The default is
on.
\subsubsection{Printing of wildcard pattern
\comindex{Set Printing Wildcard}
\comindex{Unset Printing Wildcard}
\comindex{Test Printing Wildcard}}
Some variables in a pattern may not occur in the right-hand side of
the pattern-matching clause. There are options to control the
display of these variables.
\begin{quote}
{\tt Set Printing Wildcard.}
\end{quote}
The variables having no occurrences in the right-hand side of the
pattern-matching clause are just printed using the wildcard symbol
``{\tt \_}''.
\begin{quote}
{\tt Unset Printing Wildcard.}
\end{quote}
The variables, even useless, are printed using their usual name. But some
non dependent variables have no name. These ones are still printed
using a ``{\tt \_}''.
\begin{quote}
{\tt Test Printing Wildcard.}
\end{quote}
This tells if the wildcard printing mode is on or off. The default is
to print wildcard for useless variables.
\subsubsection{Printing of the elimination predicate
\comindex{Set Printing Synth}
\comindex{Unset Printing Synth}
\comindex{Test Printing Synth}}
In most of the cases, the type of the result of a matched term is
mechanically synthesizable. Especially, if the result type does not
depend of the matched term.
\begin{quote}
{\tt Set Printing Synth.}
\end{quote}
The result type is not printed when {\Coq} knows that it can
re-synthesize it.
\begin{quote}
{\tt Unset Printing Synth.}
\end{quote}
This forces the result type to be always printed.
\begin{quote}
{\tt Test Printing Synth.}
\end{quote}
This tells if the non-printing of synthesizable types is on or off.
The default is to not print synthesizable types.
\subsubsection{Printing matching on irrefutable pattern
\label{AddPrintingLet}
\comindex{Add Printing Let {\ident}}
\comindex{Remove Printing Let {\ident}}
\comindex{Test Printing Let for {\ident}}
\comindex{Print Table Printing Let}}
If an inductive type has just one constructor,
pattern-matching can be written using {\tt let} ... {\tt :=}
... {\tt in}~...
\begin{quote}
{\tt Add Printing Let {\ident}.}
\end{quote}
This adds {\ident} to the list of inductive types for which
pattern-matching is written using a {\tt let} expression.
\begin{quote}
{\tt Remove Printing Let {\ident}.}
\end{quote}
This removes {\ident} from this list.
\begin{quote}
{\tt Test Printing Let for {\ident}.}
\end{quote}
This tells if {\ident} belongs to the list.
\begin{quote}
{\tt Print Table Printing Let.}
\end{quote}
This prints the list of inductive types for which pattern-matching is
written using a {\tt let} expression.
The list of inductive types for which pattern-matching is written
using a {\tt let} expression is managed synchronously. This means that
it is sensible to the command {\tt Reset}.
\subsubsection{Printing matching on booleans
\comindex{Add Printing If {\ident}}
\comindex{Remove Printing If {\ident}}
\comindex{Test Printing If for {\ident}}
\comindex{Print Table Printing If}}
If an inductive type is isomorphic to the boolean type,
pattern-matching can be written using {\tt if} ... {\tt then} ... {\tt
else} ...
\begin{quote}
{\tt Add Printing If {\ident}.}
\end{quote}
This adds {\ident} to the list of inductive types for which
pattern-matching is written using an {\tt if} expression.
\begin{quote}
{\tt Remove Printing If {\ident}.}
\end{quote}
This removes {\ident} from this list.
\begin{quote}
{\tt Test Printing If for {\ident}.}
\end{quote}
This tells if {\ident} belongs to the list.
\begin{quote}
{\tt Print Table Printing If.}
\end{quote}
This prints the list of inductive types for which pattern-matching is
written using an {\tt if} expression.
The list of inductive types for which pattern-matching is written
using an {\tt if} expression is managed synchronously. This means that
it is sensible to the command {\tt Reset}.
\subsubsection{Example}
This example emphasizes what the printing options offer.
\begin{coq_example}
Test Printing Let for prod.
Print fst.
Remove Printing Let prod.
Unset Printing Synth.
Unset Printing Wildcard.
Print fst.
\end{coq_example}
% \subsection{Still not dead old notations}
% The following variant of {\tt match} is inherited from older version
% of {\Coq}.
% \medskip
% \begin{tabular}{lcl}
% {\term} & ::= & {\annotation} {\tt Match} {\term} {\tt with} {\terms} {\tt end}\\
% \end{tabular}
% \medskip
% This syntax is a macro generating a combination of {\tt match} with {\tt
% Fix} implementing a combinator for primitive recursion equivalent to
% the {\tt Match} construction of \Coq\ V5.8. It is provided only for
% sake of compatibility with \Coq\ V5.8. It is recommended to avoid it.
% (see Section~\ref{Matchexpr}).
% There is also a notation \texttt{Case} that is the
% ancestor of \texttt{match}. Again, it is still in the code for
% compatibility with old versions but the user should not use it.
% Explained in RefMan-gal.tex
%% \section{Forced type}
%% In some cases, one may wish to assign a particular type to a term. The
%% syntax to force the type of a term is the following:
%% \medskip
%% \begin{tabular}{lcl}
%% {\term} & ++= & {\term} {\tt :} {\term}\\
%% \end{tabular}
%% \medskip
%% It forces the first term to be of type the second term. The
%% type must be compatible with
%% the term. More precisely it must be either a type convertible to
%% the automatically inferred type (see Chapter~\ref{Cic}) or a type
%% coercible to it, (see \ref{Coercions}). When the type of a
%% whole expression is forced, it is usually not necessary to give the types of
%% the variables involved in the term.
%% Example:
%% \begin{coq_example}
%% Definition ID := forall X:Set, X -> X.
%% Definition id := (fun X x => x):ID.
%% Check id.
%% \end{coq_example}
\section{Advanced recursive functions}
The \emph{experimental} command
\begin{center}
\texttt{Function {\ident} {\binder$_1$}\ldots{\binder$_n$}
\{decrease\_annot\} : type$_0$ := \term$_0$}
\comindex{Function}
\label{Function}
\end{center}
can be seen as a generalization of {\tt Fixpoint}. It is actually a
wrapper for several ways of defining a function \emph{and other useful
related objects}, namely: an induction principle that reflects the
recursive structure of the function (see \ref{FunInduction}), and its
fixpoint equality. The meaning of this
declaration is to define a function {\it ident}, similarly to {\tt
Fixpoint}. Like in {\tt Fixpoint}, the decreasing argument must be
given (unless the function is not recursive), but it must not
necessary be \emph{structurally} decreasing. The point of the {\tt
\{\}} annotation is to name the decreasing argument \emph{and} to
describe which kind of decreasing criteria must be used to ensure
termination of recursive calls.
The {\tt Function} construction enjoys also the {\tt with} extension
to define mutually recursive definitions. However, this feature does
not work for non structural recursive functions. % VRAI??
See the documentation of {\tt functional induction}
(see Section~\ref{FunInduction}) and {\tt Functional Scheme}
(see Section~\ref{FunScheme} and \ref{FunScheme-examples}) for how to use the
induction principle to easily reason about the function.
\noindent {\bf Remark: } To obtain the right principle, it is better
to put rigid parameters of the function as first arguments. For
example it is better to define plus like this:
\begin{coq_example*}
Function plus (m n : nat) {struct n} : nat :=
match n with
| 0 => m
| S p => S (plus m p)
end.
\end{coq_example*}
\noindent than like this:
\begin{coq_eval}
Reset plus.
\end{coq_eval}
\begin{coq_example*}
Function plus (n m : nat) {struct n} : nat :=
match n with
| 0 => m
| S p => S (plus p m)
end.
\end{coq_example*}
\paragraph[Limitations]{Limitations\label{sec:Function-limitations}}
\term$_0$ must be build as a \emph{pure pattern-matching tree}
(\texttt{match...with}) with applications only \emph{at the end} of
each branch.
Function does not support partial application of the function being defined. Thus, the following example cannot be accepted due to the presence of partial application of \ident{wrong} into the body of \ident{wrong}~:
\begin{coq_example*}
Function wrong (C:nat) {\ldots} : nat :=
List.hd(List.map wrong (C::nil)).
\end{coq_example*}
For now dependent cases are not treated for non structurally terminating functions.
\begin{ErrMsgs}
\item \errindex{The recursive argument must be specified}
\item \errindex{No argument name \ident}
\item \errindex{Cannot use mutual definition with well-founded
recursion or measure}
\item \errindex{Cannot define graph for \ident\dots} (warning)
The generation of the graph relation \texttt{(R\_\ident)} used to
compute the induction scheme of \ident\ raised a typing error. Only
the ident is defined, the induction scheme will not be generated.
This error happens generally when:
\begin{itemize}
\item the definition uses pattern matching on dependent types, which
\texttt{Function} cannot deal with yet.
\item the definition is not a \emph{pattern-matching tree} as
explained above.
\end{itemize}
\item \errindex{Cannot define principle(s) for \ident\dots} (warning)
The generation of the graph relation \texttt{(R\_\ident)} succeeded
but the induction principle could not be built. Only the ident is
defined. Please report.
\item \errindex{Cannot build functional inversion principle} (warning)
\texttt{functional inversion} will not be available for the
function.
\end{ErrMsgs}
\SeeAlso{\ref{FunScheme}, \ref{FunScheme-examples}, \ref{FunInduction}}
Depending on the {\tt \{$\ldots$\}} annotation, different definition
mechanisms are used by {\tt Function}. More precise description
given below.
\begin{Variants}
\item \texttt{ Function {\ident} {\binder$_1$}\ldots{\binder$_n$}
: type$_0$ := \term$_0$}
Defines the not recursive function \ident\ as if declared with
\texttt{Definition}. Moreover the following are defined:
\begin{itemize}
\item {\tt\ident\_rect}, {\tt\ident\_rec} and {\tt\ident\_ind},
which reflect the pattern matching structure of \term$_0$ (see the
documentation of {\tt Inductive} \ref{Inductive});
\item The inductive \texttt{R\_\ident} corresponding to the graph of
\ident\ (silently);
\item \texttt{\ident\_complete} and \texttt{\ident\_correct} which are
inversion information linking the function and its graph.
\end{itemize}
\item \texttt{Function {\ident} {\binder$_1$}\ldots{\binder$_n$}
{\tt \{}{\tt struct} \ident$_0${\tt\}} : type$_0$ := \term$_0$}
Defines the structural recursive function \ident\ as if declared
with \texttt{Fixpoint}. Moreover the following are defined:
\begin{itemize}
\item The same objects as above;
\item The fixpoint equation of \ident: \texttt{\ident\_equation}.
\end{itemize}
\item \texttt{Function {\ident} {\binder$_1$}\ldots{\binder$_n$} {\tt
\{}{\tt measure \term$_1$} \ident$_0${\tt\}} : type$_0$ :=
\term$_0$}
\item \texttt{Function {\ident} {\binder$_1$}\ldots{\binder$_n$}
{\tt \{}{\tt wf \term$_1$} \ident$_0${\tt\}} : type$_0$ := \term$_0$}
Defines a recursive function by well founded recursion. \textbf{The
module \texttt{Recdef} of the standard library must be loaded for this
feature}. The {\tt \{\}} annotation is mandatory and must be one of
the following:
\begin{itemize}
\item {\tt \{measure} \term$_1$ \ident$_0${\tt\}} with \ident$_0$
being the decreasing argument and \term$_1$ being a function
from type of \ident$_0$ to \texttt{nat} for which value on the
decreasing argument decreases (for the {\tt lt} order on {\tt
nat}) at each recursive call of \term$_0$, parameters of the
function are bound in \term$_0$;
\item {\tt \{wf} \term$_1$ \ident$_0${\tt\}} with \ident$_0$ being
the decreasing argument and \term$_1$ an ordering relation on
the type of \ident$_0$ (i.e. of type T$_{\ident_0}$
$\to$ T$_{\ident_0}$ $\to$ {\tt Prop}) for which
the decreasing argument decreases at each recursive call of
\term$_0$. The order must be well founded. parameters of the
function are bound in \term$_0$.
\end{itemize}
Depending on the annotation, the user is left with some proof
obligations that will be used to define the function. These proofs
are: proofs that each recursive call is actually decreasing with
respect to the given criteria, and (if the criteria is \texttt{wf}) a
proof that the ordering relation is well founded.
%Completer sur measure et wf
Once proof obligations are discharged, the following objects are
defined:
\begin{itemize}
\item The same objects as with the \texttt{struct};
\item The lemma \texttt{\ident\_tcc} which collects all proof
obligations in one property;
\item The lemmas \texttt{\ident\_terminate} and \texttt{\ident\_F}
which is needed to be inlined during extraction of \ident.
\end{itemize}
%Complete!!
The way this recursive function is defined is the subject of several
papers by Yves Bertot and Antonia Balaa on the one hand, and Gilles Barthe,
Julien Forest, David Pichardie, and Vlad Rusu on the other hand.
%Exemples ok ici
\bigskip
\noindent {\bf Remark: } Proof obligations are presented as several
subgoals belonging to a Lemma {\ident}{\tt\_tcc}. % These subgoals are independent which means that in order to
% abort them you will have to abort each separately.
%The decreasing argument cannot be dependent of another??
%Exemples faux ici
\end{Variants}
\section{Section mechanism
\index{Sections}
\label{Section}}
The sectioning mechanism allows to organize a proof in structured
sections. Then local declarations become available (see
Section~\ref{Basic-definitions}).
\subsection{\tt Section {\ident}\comindex{Section}}
This command is used to open a section named {\ident}.
%% Discontinued ?
%% \begin{Variants}
%% \comindex{Chapter}
%% \item{\tt Chapter {\ident}}\\
%% Same as {\tt Section {\ident}}
%% \end{Variants}
\subsection{\tt End {\ident}
\comindex{End}}
This command closes the section named {\ident}. After closing of the
section, the local declarations (variables and local definitions) get
{\em discharged}, meaning that they stop being visible and that all
global objects defined in the section are generalized with respect to
the variables and local definitions they each depended on in the
section.
Here is an example :
\begin{coq_example}
Section s1.
Variables x y : nat.
Let y' := y.
Definition x' := S x.
Definition x'' := x' + y'.
Print x'.
End s1.
Print x'.
Print x''.
\end{coq_example}
Notice the difference between the value of {\tt x'} and {\tt x''}
inside section {\tt s1} and outside.
\begin{ErrMsgs}
\item \errindex{This is not the last opened section}
\end{ErrMsgs}
\begin{Remarks}
\item Most commands, like {\tt Hint}, {\tt Notation}, option management, ...
which appear inside a section are canceled when the
section is closed.
% see Section~\ref{LongNames}
%\item Usually all identifiers must be distinct.
%However, a name already used in a closed section (see \ref{Section})
%can be reused. In this case, the old name is no longer accessible.
% Obsolte
%\item A module implicitly open a section. Be careful not to name a
%module with an identifier already used in the module (see \ref{compiled}).
\end{Remarks}
\input{RefMan-mod.v}
\section{Libraries and qualified names}
\subsection{Names of libraries and files
\label{Libraries}
\index{Libraries}
\index{Physical paths}
\index{Logical paths}}
\paragraph{Libraries}
The theories developed in {\Coq} are stored in {\em library files}
which are hierarchically classified into {\em libraries} and {\em
sublibraries}. To express this hierarchy, library names are
represented by qualified identifiers {\qualid}, i.e. as list of
identifiers separated by dots (see Section~\ref{qualid}). For
instance, the library file {\tt Mult} of the standard {\Coq} library
{\tt Arith} has name {\tt Coq.Arith.Mult}. The identifier
that starts the name of a library is called a {\em library root}.
All library files of the standard library of {\Coq} have reserved root
{\tt Coq} but library file names based on other roots can be obtained
by using {\tt coqc} options {\tt -I} or {\tt -R} (see
Section~\ref{coqoptions}). Also, when an interactive {\Coq} session
starts, a library of root {\tt Top} is started, unless option {\tt
-top} or {\tt -notop} is set (see Section~\ref{coqoptions}).
As library files are stored on the file system of the underlying
operating system, a translation from file-system names to {\Coq} names
is needed. In this translation, names in the file system are called
{\em physical} paths while {\Coq} names are contrastingly called {\em
logical} names. Logical names are mapped to physical paths using the
commands {\tt Add LoadPath} or {\tt Add Rec LoadPath} (see
Sections~\ref{AddLoadPath} and~\ref{AddRecLoadPath}).
\subsection{Qualified names
\label{LongNames}
\index{Qualified identifiers}
\index{Absolute names}}
Library files are modules which possibly contain submodules which
eventually contain constructions (axioms, parameters, definitions,
lemmas, theorems, remarks or facts). The {\em absolute name}, or {\em
full name}, of a construction in some library file is a qualified
identifier starting with the logical name of the library file,
followed by the sequence of submodules names encapsulating the
construction and ended by the proper name of the construction.
Typically, the absolute name {\tt Coq.Init.Logic.eq} denotes Leibniz'
equality defined in the module {\tt Logic} in the sublibrary {\tt
Init} of the standard library of \Coq.
The proper name that ends the name of a construction is the {\it short
name} (or sometimes {\it base name}) of the construction (for
instance, the short name of {\tt Coq.Init.Logic.eq} is {\tt eq}). Any
partial suffix of the absolute name is a {\em partially qualified name}
(e.g. {\tt Logic.eq} is a partially qualified name for {\tt
Coq.Init.Logic.eq}). Especially, the short name of a construction is
its shortest partially qualified name.
{\Coq} does not accept two constructions (definition, theorem, ...)
with the same absolute name but different constructions can have the
same short name (or even same partially qualified names as soon as the
full names are different).
Notice that the notion of absolute, partially qualified and
short names also applies to library file names.
\paragraph{Visibility}
{\Coq} maintains a table called {\it name table} which maps partially
qualified names of constructions to absolute names. This table is
updated by the commands {\tt Require} (see \ref{Require}), {\tt
Import} and {\tt Export} (see \ref{Import}) and also each time a new
declaration is added to the context. An absolute name is called {\it
visible} from a given short or partially qualified name when this
latter name is enough to denote it. This means that the short or
partially qualified name is mapped to the absolute name in {\Coq} name
table.
A similar table exists for library file names. It is updated by the
vernacular commands {\tt Add LoadPath} and {\tt Add Rec LoadPath} (or
their equivalent as options of the {\Coq} executables, {\tt -I} and
{\tt -R}).
It may happen that a visible name is hidden by the short name or a
qualified name of another construction. In this case, the name that
has been hidden must be referred to using one more level of
qualification. To ensure that a construction always remains
accessible, absolute names can never be hidden.
Examples:
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example}
Check 0.
Definition nat := bool.
Check 0.
Check Datatypes.nat.
Locate nat.
\end{coq_example}
\SeeAlso Command {\tt Locate} in Section~\ref{Locate} and {\tt Locate
Library} in Section~\ref{Locate Library}.
%% \paragraph{The special case of remarks and facts}
%%
%% In contrast with definitions, lemmas, theorems, axioms and parameters,
%% the absolute name of remarks includes the segment of sections in which
%% it is defined. Concretely, if a remark {\tt R} is defined in
%% subsection {\tt S2} of section {\tt S1} in module {\tt M}, then its
%% absolute name is {\tt M.S1.S2.R}. The same for facts, except that the
%% name of the innermost section is dropped from the full name. Then, if
%% a fact {\tt F} is defined in subsection {\tt S2} of section {\tt S1}
%% in module {\tt M}, then its absolute name is {\tt M.S1.F}.
\section{Implicit arguments
\index{Implicit arguments}
\label{Implicit Arguments}}
An implicit argument of a function is an argument which can be
inferred from contextual knowledge. There are different kinds of
implicit arguments that can be considered implicit in different
ways. There are also various commands to control the setting or the
inference of implicit arguments.
\subsection{The different kinds of implicit arguments}
\subsubsection{Implicit arguments inferable from the knowledge of other
arguments of a function}
The first kind of implicit arguments covers the arguments that are
inferable from the knowledge of the type of other arguments of the
function, or of the type of the surrounding context of the
application. Especially, such implicit arguments correspond to
parameters dependent in the type of the function. Typical implicit
arguments are the type arguments in polymorphic functions.
There are several kinds of such implicit arguments.
\paragraph{Strict Implicit Arguments.}
An implicit argument can be either strict or non strict. An implicit
argument is said {\em strict} if, whatever the other arguments of the
function are, it is still inferable from the type of some other
argument. Technically, an implicit argument is strict if it
corresponds to a parameter which is not applied to a variable which
itself is another parameter of the function (since this parameter
may erase its arguments), not in the body of a {\tt match}, and not
itself applied or matched against patterns (since the original
form of the argument can be lost by reduction).
For instance, the first argument of
\begin{quote}
\verb|cons: forall A:Set, A -> list A -> list A|
\end{quote}
in module {\tt List.v} is strict because {\tt list} is an inductive
type and {\tt A} will always be inferable from the type {\tt
list A} of the third argument of {\tt cons}.
On the contrary, the second argument of a term of type
\begin{quote}
\verb|forall P:nat->Prop, forall n:nat, P n -> ex nat P|
\end{quote}
is implicit but not strict, since it can only be inferred from the
type {\tt P n} of the third argument and if {\tt P} is, e.g., {\tt
fun \_ => True}, it reduces to an expression where {\tt n} does not
occur any longer. The first argument {\tt P} is implicit but not
strict either because it can only be inferred from {\tt P n} and {\tt
P} is not canonically inferable from an arbitrary {\tt n} and the
normal form of {\tt P n} (consider e.g. that {\tt n} is {\tt 0} and
the third argument has type {\tt True}, then any {\tt P} of the form
{\tt fun n => match n with 0 => True | \_ => \mbox{\em anything} end} would
be a solution of the inference problem).
\paragraph{Contextual Implicit Arguments.}
An implicit argument can be {\em contextual} or not. An implicit
argument is said {\em contextual} if it can be inferred only from the
knowledge of the type of the context of the current expression. For
instance, the only argument of
\begin{quote}
\verb|nil : forall A:Set, list A|
\end{quote}
is contextual. Similarly, both arguments of a term of type
\begin{quote}
\verb|forall P:nat->Prop, forall n:nat, P n \/ n = 0|
\end{quote}
are contextual (moreover, {\tt n} is strict and {\tt P} is not).
\paragraph{Reversible-Pattern Implicit Arguments.}
There is another class of implicit arguments that can be reinferred
unambiguously if all the types of the remaining arguments are
known. This is the class of implicit arguments occurring in the type
of another argument in position of reversible pattern, which means it
is at the head of an application but applied only to uninstantiated
distinct variables. Such an implicit argument is called {\em
reversible-pattern implicit argument}. A typical example is the
argument {\tt P} of {\tt nat\_rec} in
\begin{quote}
{\tt nat\_rec : forall P : nat -> Set,
P 0 -> (forall n : nat, P n -> P (S n)) -> forall x : nat, P x}.
\end{quote}
({\tt P} is reinferable by abstracting over {\tt n} in the type {\tt P n}).
See Section~\ref{SetReversiblePatternImplicit} for the automatic declaration
of reversible-pattern implicit arguments.
\subsubsection{Implicit arguments inferable by resolution}
This corresponds to a class of non dependent implicit arguments that
are solved based on the structure of their type only.
\subsection{Maximal or non maximal insertion of implicit arguments}
In case a function is partially applied, and the next argument to be
applied is an implicit argument, two disciplines are applicable. In the
first case, the function is considered to have no arguments furtherly:
one says that the implicit argument is not maximally inserted. In
the second case, the function is considered to be implicitly applied
to the implicit arguments it is waiting for: one says that the
implicit argument is maximally inserted.
Each implicit argument can be declared to have to be inserted
maximally or non maximally. This can be governed argument per argument
by the command {\tt Implicit Arguments} (see~\ref{ImplicitArguments})
or globally by the command {\tt Set Maximal Implicit Insertion}
(see~\ref{SetMaximalImplicitInsertion}). See also
Section~\ref{PrintImplicit}.
\subsection{Casual use of implicit arguments}
In a given expression, if it is clear that some argument of a function
can be inferred from the type of the other arguments, the user can
force the given argument to be guessed by replacing it by ``{\tt \_}''. If
possible, the correct argument will be automatically generated.
\begin{ErrMsgs}
\item \errindex{Cannot infer a term for this placeholder}
{\Coq} was not able to deduce an instantiation of a ``{\tt \_}''.
\end{ErrMsgs}
\subsection{Declaration of implicit arguments for a constant
\comindex{Arguments}}
\label{ImplicitArguments}
In case one wants that some arguments of a given object (constant,
inductive types, constructors, assumptions, local or not) are always
inferred by Coq, one may declare once and for all which are the expected
implicit arguments of this object. There are two ways to do this,
a priori and a posteriori.
\subsubsection{Implicit Argument Binders}
In the first setting, one wants to explicitly give the implicit
arguments of a constant as part of its definition. To do this, one has
to surround the bindings of implicit arguments by curly braces:
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example}
Definition id {A : Type} (x : A) : A := x.
\end{coq_example}
This automatically declares the argument {\tt A} of {\tt id} as a
maximally inserted implicit argument. One can then do as-if the argument
was absent in every situation but still be able to specify it if needed:
\begin{coq_example}
Definition compose {A B C} (g : B -> C) (f : A -> B) :=
fun x => g (f x).
Goal forall A, compose id id = id (A:=A).
\end{coq_example}
The syntax is supported in all top-level definitions: {\tt Definition},
{\tt Fixpoint}, {\tt Lemma} and so on. For (co-)inductive datatype
declarations, the semantics are the following: an inductive parameter
declared as an implicit argument need not be repeated in the inductive
definition but will become implicit for the constructors of the
inductive only, not the inductive type itself. For example:
\begin{coq_example}
Inductive list {A : Type} : Type :=
| nil : list
| cons : A -> list -> list.
Print list.
\end{coq_example}
One can always specify the parameter if it is not uniform using the
usual implicit arguments disambiguation syntax.
\subsubsection{Declaring Implicit Arguments}
To set implicit arguments for a constant a posteriori, one can use the
command:
\begin{quote}
\tt Arguments {\qualid} \nelist{\possiblybracketedident}{}
\end{quote}
where the list of {\possiblybracketedident} is the list of all arguments of
{\qualid} where the ones to be declared implicit are surrounded by
square brackets and the ones to be declared as maximally inserted implicits
are surrounded by curly braces.
After the above declaration is issued, implicit arguments can just (and
have to) be skipped in any expression involving an application of
{\qualid}.
\begin{Variants}
\item {\tt Global Arguments {\qualid} \nelist{\possiblybracketedident}{}
\comindex{Global Arguments}}
Tell to recompute the implicit arguments of {\qualid} after ending of
the current section if any, enforcing the implicit arguments known
from inside the section to be the ones declared by the command.
\item {\tt Local Arguments {\qualid} \nelist{\possiblybracketedident}{}
\comindex{Local Arguments}}
When in a module, tell not to activate the implicit arguments of
{\qualid} declared by this command to contexts that require the
module.
\item {\tt \zeroone{Global {\sl |} Local} Arguments {\qualid} \sequence{\nelist{\possiblybracketedident}{}}{,}}
For names of constants, inductive types, constructors, lemmas which
can only be applied to a fixed number of arguments (this excludes for
instance constants whose type is polymorphic), multiple
implicit arguments decflarations can be given.
Depending on the number of arguments {\qualid} is applied
to in practice, the longest applicable list of implicit arguments is
used to select which implicit arguments are inserted.
For printing, the omitted arguments are the ones of the longest list
of implicit arguments of the sequence.
\end{Variants}
\Example
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Inductive list (A:Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.
\end{coq_example*}
\begin{coq_example}
Check (cons nat 3 (nil nat)).
Arguments cons [A] _ _.
Arguments nil [A].
Check (cons 3 nil).
Fixpoint map (A B:Type) (f:A->B) (l:list A) : list B :=
match l with nil => nil | cons a t => cons (f a) (map A B f t) end.
Fixpoint length (A:Type) (l:list A) : nat :=
match l with nil => 0 | cons _ m => S (length A m) end.
Arguments map [A B] f l.
Arguments length {A} l. (* A has to be maximally inserted *)
Check (fun l:list (list nat) => map length l).
Arguments map [A B] f l, [A] B f l, A B f l.
Check (fun l => map length l = map (list nat) nat length l).
\end{coq_example}
\Rem To know which are the implicit arguments of an object, use the command
{\tt Print Implicit} (see \ref{PrintImplicit}).
\Rem If the list of arguments is empty, the command removes the
implicit arguments of {\qualid}.
\subsection{Automatic declaration of implicit arguments for a constant}
{\Coq} can also automatically detect what are the implicit arguments
of a defined object. The command is just
\begin{quote}
{\tt Arguments {\qualid} : default implicits
\comindex{Arguments}}
\end{quote}
The auto-detection is governed by options telling if strict,
contextual, or reversible-pattern implicit arguments must be
considered or not (see
Sections~\ref{SetStrictImplicit},~\ref{SetContextualImplicit},~\ref{SetReversiblePatternImplicit}
and also~\ref{SetMaximalImplicitInsertion}).
\begin{Variants}
\item {\tt Global Arguments {\qualid} : default implicits
\comindex{Global Arguments}}
Tell to recompute the implicit arguments of {\qualid} after ending of
the current section if any.
\item {\tt Local Arguments {\qualid} : default implicits
\comindex{Local Arguments}}
When in a module, tell not to activate the implicit arguments of
{\qualid} computed by this declaration to contexts that requires the
module.
\end{Variants}
\Example
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.
\end{coq_example*}
\begin{coq_example}
Arguments cons : default implicits.
Print Implicit cons.
Arguments nil : default implicits.
Print Implicit nil.
Set Contextual Implicit.
Arguments nil : default implicits.
Print Implicit nil.
\end{coq_example}
The computation of implicit arguments takes account of the
unfolding of constants. For instance, the variable {\tt p} below has
type {\tt (Transitivity R)} which is reducible to {\tt forall x,y:U, R x
y -> forall z:U, R y z -> R x z}. As the variables {\tt x}, {\tt y} and
{\tt z} appear strictly in body of the type, they are implicit.
\begin{coq_example*}
Variable X : Type.
Definition Relation := X -> X -> Prop.
Definition Transitivity (R:Relation) :=
forall x y:X, R x y -> forall z:X, R y z -> R x z.
Variables (R : Relation) (p : Transitivity R).
Arguments p : default implicits.
\end{coq_example*}
\begin{coq_example}
Print p.
Print Implicit p.
\end{coq_example}
\begin{coq_example*}
Variables (a b c : X) (r1 : R a b) (r2 : R b c).
\end{coq_example*}
\begin{coq_example}
Check (p r1 r2).
\end{coq_example}
Implicit arguments can be cleared with the following syntax:
\begin{quote}
{\tt Arguments {\qualid} : clear implicits
\comindex{Arguments}}
\end{quote}
In the following example implict arguments declarations for the {\tt nil}
constant are cleared:
\begin{coq_example}
Arguments cons : clear implicits.
Print Implicit cons.
\end{coq_example}
\subsection{Mode for automatic declaration of implicit arguments
\label{Auto-implicit}
\comindex{Set Implicit Arguments}
\comindex{Unset Implicit Arguments}}
In case one wants to systematically declare implicit the arguments
detectable as such, one may switch to the automatic declaration of
implicit arguments mode by using the command
\begin{quote}
\tt Set Implicit Arguments.
\end{quote}
Conversely, one may unset the mode by using {\tt Unset Implicit
Arguments}. The mode is off by default. Auto-detection of implicit
arguments is governed by options controlling whether strict and
contextual implicit arguments have to be considered or not.
\subsection{Controlling strict implicit arguments
\comindex{Set Strict Implicit}
\comindex{Unset Strict Implicit}
\label{SetStrictImplicit}}
When the mode for automatic declaration of implicit arguments is on,
the default is to automatically set implicit only the strict implicit
arguments plus, for historical reasons, a small subset of the non
strict implicit arguments. To relax this constraint and to
set implicit all non strict implicit arguments by default, use the command
\begin{quote}
\tt Unset Strict Implicit.
\end{quote}
Conversely, use the command {\tt Set Strict Implicit} to
restore the original mode that declares implicit only the strict implicit arguments plus a small subset of the non strict implicit arguments.
In the other way round, to capture exactly the strict implicit arguments and no more than the strict implicit arguments, use the command:
\comindex{Set Strongly Strict Implicit}
\comindex{Unset Strongly Strict Implicit}
\begin{quote}
\tt Set Strongly Strict Implicit.
\end{quote}
Conversely, use the command {\tt Unset Strongly Strict Implicit} to
let the option ``{\tt Strict Implicit}'' decide what to do.
\Rem In versions of {\Coq} prior to version 8.0, the default was to
declare the strict implicit arguments as implicit.
\subsection{Controlling contextual implicit arguments
\comindex{Set Contextual Implicit}
\comindex{Unset Contextual Implicit}
\label{SetContextualImplicit}}
By default, {\Coq} does not automatically set implicit the contextual
implicit arguments. To tell {\Coq} to infer also contextual implicit
argument, use command
\begin{quote}
\tt Set Contextual Implicit.
\end{quote}
Conversely, use command {\tt Unset Contextual Implicit} to
unset the contextual implicit mode.
\subsection{Controlling reversible-pattern implicit arguments
\comindex{Set Reversible Pattern Implicit}
\comindex{Unset Reversible Pattern Implicit}
\label{SetReversiblePatternImplicit}}
By default, {\Coq} does not automatically set implicit the reversible-pattern
implicit arguments. To tell {\Coq} to infer also reversible-pattern implicit
argument, use command
\begin{quote}
\tt Set Reversible Pattern Implicit.
\end{quote}
Conversely, use command {\tt Unset Reversible Pattern Implicit} to
unset the reversible-pattern implicit mode.
\subsection{Controlling the insertion of implicit arguments not followed by explicit arguments
\comindex{Set Maximal Implicit Insertion}
\comindex{Unset Maximal Implicit Insertion}
\label{SetMaximalImplicitInsertion}}
Implicit arguments can be declared to be automatically inserted when a
function is partially applied and the next argument of the function is
an implicit one. In case the implicit arguments are automatically
declared (with the command {\tt Set Implicit Arguments}), the command
\begin{quote}
\tt Set Maximal Implicit Insertion.
\end{quote}
is used to tell to declare the implicit arguments with a maximal
insertion status. By default, automatically declared implicit
arguments are not declared to be insertable maximally. To restore the
default mode for maximal insertion, use command {\tt Unset Maximal
Implicit Insertion}.
\subsection{Explicit applications
\index{Explicitly given implicit arguments}
\label{Implicits-explicitation}
\index{qualid@{\qualid}} \index{\symbol{64}}}
In presence of non strict or contextual argument, or in presence of
partial applications, the synthesis of implicit arguments may fail, so
one may have to give explicitly certain implicit arguments of an
application. The syntax for this is {\tt (\ident:=\term)} where {\ident}
is the name of the implicit argument and {\term} is its corresponding
explicit term. Alternatively, one can locally deactivate the hiding of
implicit arguments of a function by using the notation
{\tt @{\qualid}~{\term}$_1$..{\term}$_n$}. This syntax extension is
given Figure~\ref{fig:explicitations}.
\begin{figure}
\begin{centerframe}
\begin{tabular}{lcl}
{\term} & ++= & @ {\qualid} \nelist{\term}{}\\
& $|$ & @ {\qualid}\\
& $|$ & {\qualid} \nelist{\textrm{\textsl{argument}}}{}\\
\\
{\textrm{\textsl{argument}}} & ::= & {\term} \\
& $|$ & {\tt ({\ident}:={\term})}\\
\end{tabular}
\end{centerframe}
\caption{Syntax for explicitly giving implicit arguments}
\label{fig:explicitations}
\end{figure}
\noindent {\bf Example (continued): }
\begin{coq_example}
Check (p r1 (z:=c)).
Check (p (x:=a) (y:=b) r1 (z:=c) r2).
\end{coq_example}
\subsection{Renaming implicit arguments
\comindex{Arguments}
}
Implicit arguments names can be redefined using the following syntax:
\begin{quote}
{\tt Arguments {\qualid} \nelist{\name}{} : rename}
\end{quote}
Without the {\tt rename} flag, {\tt Arguments} can be used to assert
that a given constant has the expected number of arguments and that
these arguments are named as expected.
\noindent {\bf Example (continued): }
\begin{coq_example}
Arguments p [s t] _ [u] _: rename.
Check (p r1 (u:=c)).
Check (p (s:=a) (t:=b) r1 (u:=c) r2).
Fail Arguments p [s t] _ [w] _.
\end{coq_example}
\subsection{Deprecated Implicit Arguments command
\comindex{Implicit Arguments}}
Before version 8.4 the command to specify the implicit arguments of a constant
was {\tt Implicit Arguments} followed by a bracketed list of identifiers.
Starting with Coq 8.4 the {\tt Argument} command must be used (see
\ref{ImplicitArguments}).
\begin{coq_example}
Require Import List.
Implicit Arguments map [A B].
Implicit Arguments length [[A]].
\end{coq_example}
The first example declares the arguments of {\tt map} named {\tt A} and
{\tt B} implicit. The second one declares the argument named {\tt A} implicit
and maximally inserted.
\subsection{Displaying what the implicit arguments are
\comindex{Print Implicit}
\label{PrintImplicit}}
To display the implicit arguments associated to an object, and to know
if each of them is to be used maximally or not, use the command
\begin{quote}
\tt Print Implicit {\qualid}.
\end{quote}
\subsection{Explicit displaying of implicit arguments for pretty-printing
\comindex{Set Printing Implicit}
\comindex{Unset Printing Implicit}
\comindex{Set Printing Implicit Defensive}
\comindex{Unset Printing Implicit Defensive}}
By default the basic pretty-printing rules hide the inferable implicit
arguments of an application. To force printing all implicit arguments,
use command
\begin{quote}
{\tt Set Printing Implicit.}
\end{quote}
Conversely, to restore the hiding of implicit arguments, use command
\begin{quote}
{\tt Unset Printing Implicit.}
\end{quote}
By default the basic pretty-printing rules display the implicit arguments that are not detected as strict implicit arguments. This ``defensive'' mode can quickly make the display cumbersome so this can be deactivated by using the command
\begin{quote}
{\tt Unset Printing Implicit Defensive.}
\end{quote}
Conversely, to force the display of non strict arguments, use command
\begin{quote}
{\tt Set Printing Implicit Defensive.}
\end{quote}
\SeeAlso {\tt Set Printing All} in Section~\ref{SetPrintingAll}.
\subsection{Interaction with subtyping}
When an implicit argument can be inferred from the type of more than
one of the other arguments, then only the type of the first of these
arguments is taken into account, and not an upper type of all of
them. As a consequence, the inference of the implicit argument of
``='' fails in
\begin{coq_example*}
Check nat = Prop.
\end{coq_example*}
but succeeds in
\begin{coq_example*}
Check Prop = nat.
\end{coq_example*}
\subsection{Deactivation of implicit arguments for parsing}
\comindex{Set Parsing Explicit}
\comindex{Unset Parsing Explicit}
Use of implicit arguments can be deactivated by issuing the command:
\begin{quote}
{\tt Set Parsing Explicit.}
\end{quote}
In this case, all arguments of constants, inductive types,
constructors, etc, including the arguments declared as implicit, have
to be given as if none arguments were implicit. By symmetry, this also
affects printing. To restore parsing and normal printing of implicit
arguments, use:
\begin{quote}
{\tt Set Parsing Explicit.}
\end{quote}
\subsection{Canonical structures
\comindex{Canonical Structure}}
A canonical structure is an instance of a record/structure type that
can be used to solve equations involving implicit arguments. Assume
that {\qualid} denotes an object $(Build\_struc~ c_1~ \ldots~ c_n)$ in the
structure {\em struct} of which the fields are $x_1$, ...,
$x_n$. Assume that {\qualid} is declared as a canonical structure
using the command
\begin{quote}
{\tt Canonical Structure {\qualid}.}
\end{quote}
Then, each time an equation of the form $(x_i~
\_)=_{\beta\delta\iota\zeta}c_i$ has to be solved during the
type-checking process, {\qualid} is used as a solution. Otherwise
said, {\qualid} is canonically used to extend the field $c_i$ into a
complete structure built on $c_i$.
Canonical structures are particularly useful when mixed with
coercions and strict implicit arguments. Here is an example.
\begin{coq_example*}
Require Import Relations.
Require Import EqNat.
Set Implicit Arguments.
Unset Strict Implicit.
Structure Setoid : Type :=
{Carrier :> Set;
Equal : relation Carrier;
Prf_equiv : equivalence Carrier Equal}.
Definition is_law (A B:Setoid) (f:A -> B) :=
forall x y:A, Equal x y -> Equal (f x) (f y).
Axiom eq_nat_equiv : equivalence nat eq_nat.
Definition nat_setoid : Setoid := Build_Setoid eq_nat_equiv.
Canonical Structure nat_setoid.
\end{coq_example*}
Thanks to \texttt{nat\_setoid} declared as canonical, the implicit
arguments {\tt A} and {\tt B} can be synthesized in the next statement.
\begin{coq_example}
Lemma is_law_S : is_law S.
\end{coq_example}
\Rem If a same field occurs in several canonical structure, then
only the structure declared first as canonical is considered.
\begin{Variants}
\item {\tt Canonical Structure {\ident} := {\term} : {\type}.}\\
{\tt Canonical Structure {\ident} := {\term}.}\\
{\tt Canonical Structure {\ident} : {\type} := {\term}.}
These are equivalent to a regular definition of {\ident} followed by
the declaration
{\tt Canonical Structure {\ident}}.
\end{Variants}
\SeeAlso more examples in user contribution \texttt{category}
(\texttt{Rocq/ALGEBRA}).
\subsubsection{Print Canonical Projections.
\comindex{Print Canonical Projections}}
This displays the list of global names that are components of some
canonical structure. For each of them, the canonical structure of
which it is a projection is indicated. For instance, the above example
gives the following output:
\begin{coq_example}
Print Canonical Projections.
\end{coq_example}
\subsection{Implicit types of variables}
\comindex{Implicit Types}
It is possible to bind variable names to a given type (e.g. in a
development using arithmetic, it may be convenient to bind the names
{\tt n} or {\tt m} to the type {\tt nat} of natural numbers). The
command for that is
\begin{quote}
\tt Implicit Types \nelist{\ident}{} : {\type}
\end{quote}
The effect of the command is to automatically set the type of bound
variables starting with {\ident} (either {\ident} itself or
{\ident} followed by one or more single quotes, underscore or digits)
to be {\type} (unless the bound variable is already declared with an
explicit type in which case, this latter type is considered).
\Example
\begin{coq_example}
Require Import List.
Implicit Types m n : nat.
Lemma cons_inj_nat : forall m n l, n :: l = m :: l -> n = m.
intros m n.
Lemma cons_inj_bool : forall (m n:bool) l, n :: l = m :: l -> n = m.
\end{coq_example}
\begin{Variants}
\item {\tt Implicit Type {\ident} : {\type}}\\
This is useful for declaring the implicit type of a single variable.
\item
{\tt Implicit Types\,%
(\,{\ident$_{1,1}$}\ldots{\ident$_{1,k_1}$}\,{\tt :}\,{\term$_1$} {\tt )}\,%
\ldots\,{\tt (}\,{\ident$_{n,1}$}\ldots{\ident$_{n,k_n}$}\,{\tt :}\,%
{\term$_n$} {\tt )}.}\\
Adds $n$ blocks of implicit types with different specifications.
\end{Variants}
\subsection{Implicit generalization
\label{implicit-generalization}
\comindex{Generalizable Variables}}
Implicit generalization is an automatic elaboration of a statement with
free variables into a closed statement where these variables are
quantified explicitly. Implicit generalization is done inside binders
starting with a \verb|`| and terms delimited by \verb|`{ }| and
\verb|`( )|, always introducing maximally inserted implicit arguments for
the generalized variables. Inside implicit generalization
delimiters, free variables in the current context are automatically
quantified using a product or a lambda abstraction to generate a closed
term. In the following statement for example, the variables \texttt{n}
and \texttt{m} are autamatically generalized and become explicit
arguments of the lemma as we are using \verb|`( )|:
\begin{coq_example}
Generalizable All Variables.
Lemma nat_comm : `(n = n + 0).
\end{coq_example}
\begin{coq_eval}
Abort.
\end{coq_eval}
One can control the set of generalizable identifiers with the
\texttt{Generalizable} vernacular command to avoid unexpected
generalizations when mistyping identifiers. There are three variants of
the command:
\begin{quote}
{\tt Generalizable (All|No) Variable(s)? ({\ident$_1$ \ident$_n$})?.}
\end{quote}
\begin{Variants}
\item {\tt Generalizable All Variables.} All variables are candidate for
generalization if they appear free in the context under a
generalization delimiter. This may result in confusing errors in
case of typos. In such cases, the context will probably contain some
unexpected generalized variable.
\item {\tt Generalizable No Variables.} Disable implicit generalization
entirely. This is the default behavior.
\item {\tt Generalizable Variable(s)? {\ident$_1$ \ident$_n$}.}
Allow generalization of the given identifiers only. Calling this
command multiple times adds to the allowed identifiers.
\item {\tt Global Generalizable} Allows to export the choice of
generalizable variables.
\end{Variants}
One can also use implicit generalization for binders, in which case the
generalized variables are added as binders and set maximally implicit.
\begin{coq_example*}
Definition id `(x : A) : A := x.
\end{coq_example*}
\begin{coq_example}
Print id.
\end{coq_example}
The generalizing binders \verb|`{ }| and \verb|`( )| work similarly to
their explicit counterparts, only binding the generalized variables
implicitly, as maximally-inserted arguments. In these binders, the
binding name for the bound object is optional, whereas the type is
mandatory, dually to regular binders.
\section{Coercions
\label{Coercions}
\index{Coercions}}
Coercions can be used to implicitly inject terms from one {\em class} in
which they reside into another one. A {\em class} is either a sort
(denoted by the keyword {\tt Sortclass}), a product type (denoted by the
keyword {\tt Funclass}), or a type constructor (denoted by its name),
e.g. an inductive type or any constant with a type of the form
\texttt{forall} $(x_1:A_1) .. (x_n:A_n),~s$ where $s$ is a sort.
Then the user is able to apply an
object that is not a function, but can be coerced to a function, and
more generally to consider that a term of type A is of type B provided
that there is a declared coercion between A and B. The main command is
\comindex{Coercion}
\begin{quote}
\tt Coercion {\qualid} : {\class$_1$} >-> {\class$_2$}.
\end{quote}
which declares the construction denoted by {\qualid} as a
coercion between {\class$_1$} and {\class$_2$}.
More details and examples, and a description of the commands related
to coercions are provided in Chapter~\ref{Coercions-full}.
\section[Printing constructions in full]{Printing constructions in full\label{SetPrintingAll}
\comindex{Set Printing All}
\comindex{Unset Printing All}}
Coercions, implicit arguments, the type of pattern-matching, but also
notations (see Chapter~\ref{Addoc-syntax}) can obfuscate the behavior
of some tactics (typically the tactics applying to occurrences of
subterms are sensitive to the implicit arguments). The command
\begin{quote}
{\tt Set Printing All.}
\end{quote}
deactivates all high-level printing features such as coercions,
implicit arguments, returned type of pattern-matching, notations and
various syntactic sugar for pattern-matching or record projections.
Otherwise said, {\tt Set Printing All} includes the effects
of the commands {\tt Set Printing Implicit}, {\tt Set Printing
Coercions}, {\tt Set Printing Synth}, {\tt Unset Printing Projections}
and {\tt Unset Printing Notations}. To reactivate the high-level
printing features, use the command
\begin{quote}
{\tt Unset Printing All.}
\end{quote}
\section[Printing universes]{Printing universes\label{PrintingUniverses}
\comindex{Set Printing Universes}
\comindex{Unset Printing Universes}}
The following command:
\begin{quote}
{\tt Set Printing Universes}
\end{quote}
activates the display of the actual level of each occurrence of
{\Type}. See Section~\ref{Sorts} for details. This wizard option, in
combination with \texttt{Set Printing All} (see
section~\ref{SetPrintingAll}) can help to diagnose failures to unify
terms apparently identical but internally different in the Calculus of
Inductive Constructions. To reactivate the display of the actual level
of the occurrences of {\Type}, use
\begin{quote}
{\tt Unset Printing Universes.}
\end{quote}
\comindex{Print Universes}
\comindex{Print Sorted Universes}
The constraints on the internal level of the occurrences of {\Type}
(see Section~\ref{Sorts}) can be printed using the command
\begin{quote}
{\tt Print \zeroone{Sorted} Universes.}
\end{quote}
If the optional {\tt Sorted} option is given, each universe will be
made equivalent to a numbered label reflecting its level (with a
linear ordering) in the universe hierarchy.
This command also accepts an optional output filename:
\begin{quote}
\tt Print \zeroone{Sorted} Universes {\str}.
\end{quote}
If {\str} ends in \texttt{.dot} or \texttt{.gv}, the constraints are
printed in the DOT language, and can be processed by Graphviz
tools. The format is unspecified if {\str} doesn't end in
\texttt{.dot} or \texttt{.gv}.
\section[Existential variables]{Existential variables\label{ExistentialVariables}}
Coq terms can include existential variables. An existential variable
is a placeholder intended to eventually be replaced by an actual
subterm though which subterm it will be replaced by is still unknown.
Existential variables are generated in place of unsolvable implicit
arguments when using commands such as \texttt{Check} (see
Section~\ref{Check}) or in place of unsolvable instances when using
tactics such as \texttt{eapply} (see Section~\ref{eapply}). They can
only appear as the result of a command displaying a term and they are
represented by ``?'' followed by a number. They cannot be entered by
the user (though they can be generated from ``\_'' when the
corresponding implicit argument is unsolvable).
A given existential variable name can occur several times in a term
meaning the corresponding expected instance is shared. Each
existential variable is relative to a context, as shown by {\tt Show
Existential} when in the process of proving a goal (see
Section~\ref{ShowExistentials}). Henceforth, each occurrence of an
existential variable in a term is subject to an instance of the
variables of its context of definition which is specific to this
occurrence.
\subsection{Explicit displaying of existential instances for pretty-printing
\comindex{Set Printing Existential Instances}
\comindex{Unset Printing Existential Instances}}
The command:
\begin{quote}
{\tt Set Printing Existential Instances}
\end{quote}
activates the display of how the context of an existential variable is
instantiated on each of its occurrences.
To deactivate the display of the instances of existential variables, use
\begin{quote}
{\tt Unset Printing Existential Instances.}
\end{quote}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "Reference-Manual"
%%% End:
|