1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
|
\chapter{The \gallina{} specification language
\label{Gallina}\index{Gallina}}
\label{BNF-syntax} % Used referred to as a chapter label
This chapter describes \gallina, the specification language of {\Coq}.
It allows to develop mathematical theories and to prove specifications
of programs. The theories are built from axioms, hypotheses,
parameters, lemmas, theorems and definitions of constants, functions,
predicates and sets. The syntax of logical objects involved in
theories is described in Section~\ref{term}. The language of
commands, called {\em The Vernacular} is described in section
\ref{Vernacular}.
In {\Coq}, logical objects are typed to ensure their logical
correctness. The rules implemented by the typing algorithm are described in
Chapter \ref{Cic}.
\subsection*{About the grammars in the manual
\index{BNF metasyntax}}
Grammars are presented in Backus-Naur form (BNF). Terminal symbols are
set in {\tt typewriter font}. In addition, there are special
notations for regular expressions.
An expression enclosed in square brackets \zeroone{\ldots} means at
most one occurrence of this expression (this corresponds to an
optional component).
The notation ``\nelist{\entry}{sep}'' stands for a non empty
sequence of expressions parsed by {\entry} and
separated by the literal ``{\tt sep}''\footnote{This is similar to the
expression ``{\entry} $\{$ {\tt sep} {\entry} $\}$'' in
standard BNF, or ``{\entry}~{$($} {\tt sep} {\entry} {$)$*}'' in
the syntax of regular expressions.}.
Similarly, the notation ``\nelist{\entry}{}'' stands for a non
empty sequence of expressions parsed by the ``{\entry}'' entry,
without any separator between.
At the end, the notation ``\sequence{\entry}{\tt sep}'' stands for a
possibly empty sequence of expressions parsed by the ``{\entry}'' entry,
separated by the literal ``{\tt sep}''.
\section{Lexical conventions
\label{lexical}\index{Lexical conventions}}
\paragraph{Blanks}
Space, newline and horizontal tabulation are considered as blanks.
Blanks are ignored but they separate tokens.
\paragraph{Comments}
Comments in {\Coq} are enclosed between {\tt (*} and {\tt
*)}\index{Comments}, and can be nested. They can contain any
character. However, string literals must be correctly closed. Comments
are treated as blanks.
\paragraph{Identifiers and access identifiers}
Identifiers, written {\ident}, are sequences of letters, digits,
\verb!_! and \verb!'!, that do not start with a digit or \verb!'!.
That is, they are recognized by the following lexical class:
\index{ident@\ident}
\begin{center}
\begin{tabular}{rcl}
{\firstletter} & ::= & {\tt a..z} $\mid$ {\tt A..Z} $\mid$ {\tt \_}
$\mid$ {\tt unicode-letter}
\\
{\subsequentletter} & ::= & {\tt a..z} $\mid$ {\tt A..Z} $\mid$ {\tt 0..9}
$\mid$ {\tt \_} % $\mid$ {\tt \$}
$\mid$ {\tt '}
$\mid$ {\tt unicode-letter}
$\mid$ {\tt unicode-id-part} \\
{\ident} & ::= & {\firstletter} \sequencewithoutblank{\subsequentletter}{}
\end{tabular}
\end{center}
All characters are meaningful. In particular, identifiers are
case-sensitive. The entry {\tt unicode-letter} non-exhaustively
includes Latin, Greek, Gothic, Cyrillic, Arabic, Hebrew, Georgian,
Hangul, Hiragana and Katakana characters, CJK ideographs, mathematical
letter-like symbols, hyphens, non-breaking space, {\ldots} The entry
{\tt unicode-id-part} non-exhaustively includes symbols for prime
letters and subscripts.
Access identifiers, written {\accessident}, are identifiers prefixed
by \verb!.! (dot) without blank. They are used in the syntax of qualified
identifiers.
\paragraph{Natural numbers and integers}
Numerals are sequences of digits. Integers are numerals optionally preceded by a minus sign.
\index{num@{\num}}
\index{integer@{\integer}}
\begin{center}
\begin{tabular}{r@{\quad::=\quad}l}
{\digit} & {\tt 0..9} \\
{\num} & \nelistwithoutblank{\digit}{} \\
{\integer} & \zeroone{\tt -}{\num} \\
\end{tabular}
\end{center}
\paragraph[Strings]{Strings\label{strings}
\index{string@{\qstring}}}
Strings are delimited by \verb!"! (double quote), and enclose a
sequence of any characters different from \verb!"! or the sequence
\verb!""! to denote the double quote character. In grammars, the
entry for quoted strings is {\qstring}.
\paragraph{Keywords}
The following identifiers are reserved keywords, and cannot be
employed otherwise:
\begin{center}
\begin{tabular}{llllll}
\verb!_! &
\verb!as! &
\verb!at! &
\verb!cofix! &
\verb!else! &
\verb!end! \\
%
\verb!exists! &
\verb!exists2! &
\verb!fix! &
\verb!for! &
\verb!forall! &
\verb!fun! \\
%
\verb!if! &
\verb!IF! &
\verb!in! &
\verb!let! &
\verb!match! &
\verb!mod! \\
%
\verb!Prop! &
\verb!return! &
\verb!Set! &
\verb!then! &
\verb!Type! &
\verb!using! \\
%
\verb!where! &
\verb!with! &
\end{tabular}
\end{center}
\paragraph{Special tokens}
The following sequences of characters are special tokens:
\begin{center}
\begin{tabular}{lllllll}
\verb/!/ &
\verb!%! &
\verb!&! &
\verb!&&! &
\verb!(! &
\verb!()! &
\verb!)! \\
%
\verb!*! &
\verb!+! &
\verb!++! &
\verb!,! &
\verb!-! &
\verb!->! &
\verb!.! \\
%
\verb!.(! &
\verb!..! &
\verb!/! &
\verb!/\! &
\verb!:! &
\verb!::! &
\verb!:<! \\
%
\verb!:=! &
\verb!:>! &
\verb!;! &
\verb!<! &
\verb!<-! &
\verb!<->! &
\verb!<:! \\
%
\verb!<=! &
\verb!<>! &
\verb!=! &
\verb!=>! &
\verb!=_D! &
\verb!>! &
\verb!>->! \\
%
\verb!>=! &
\verb!?! &
\verb!?=! &
\verb!@! &
\verb![! &
\verb!\/! &
\verb!]! \\
%
\verb!^! &
\verb!{! &
\verb!|! &
\verb!|-! &
\verb!||! &
\verb!}! &
\verb!~! \\
\end{tabular}
\end{center}
Lexical ambiguities are resolved according to the ``longest match''
rule: when a sequence of non alphanumerical characters can be decomposed
into several different ways, then the first token is the longest
possible one (among all tokens defined at this moment), and so on.
\section{Terms \label{term}\index{Terms}}
\subsection{Syntax of terms}
Figures \ref{term-syntax} and \ref{term-syntax-aux} describe the basic syntax of
the terms of the {\em Calculus of Inductive Constructions} (also
called \CIC). The formal presentation of {\CIC} is given in Chapter
\ref{Cic}. Extensions of this syntax are given in chapter
\ref{Gallina-extension}. How to customize the syntax is described in Chapter
\ref{Addoc-syntax}.
\begin{figure}[htbp]
\begin{centerframe}
\begin{tabular}{lcl@{\quad~}r} % warning: page width exceeded with \qquad
{\term} & ::= &
{\tt forall} {\binders} {\tt ,} {\term} &(\ref{products})\\
& $|$ & {\tt fun} {\binders} {\tt =>} {\term} &(\ref{abstractions})\\
& $|$ & {\tt fix} {\fixpointbodies} &(\ref{fixpoints})\\
& $|$ & {\tt cofix} {\cofixpointbodies} &(\ref{fixpoints})\\
& $|$ & {\tt let} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term}
{\tt in} {\term} &(\ref{let-in})\\
& $|$ & {\tt let fix} {\fixpointbody} {\tt in} {\term} &(\ref{fixpoints})\\
& $|$ & {\tt let cofix} {\cofixpointbody}
{\tt in} {\term} &(\ref{fixpoints})\\
& $|$ & {\tt let} {\tt (} \sequence{\name}{,} {\tt )} \zeroone{\ifitem}
{\tt :=} {\term}
{\tt in} {\term} &(\ref{caseanalysis}, \ref{Mult-match})\\
& $|$ & {\tt let '} {\pattern} \zeroone{{\tt in} {\term}} {\tt :=} {\term}
\zeroone{\returntype} {\tt in} {\term} & (\ref{caseanalysis}, \ref{Mult-match})\\
& $|$ & {\tt if} {\term} \zeroone{\ifitem} {\tt then} {\term}
{\tt else} {\term} &(\ref{caseanalysis}, \ref{Mult-match})\\
& $|$ & {\term} {\tt :} {\term} &(\ref{typecast})\\
& $|$ & {\term} {\tt <:} {\term} &(\ref{typecast})\\
& $|$ & {\term} {\tt :>} &(\ref{ProgramSyntax})\\
& $|$ & {\term} {\tt ->} {\term} &(\ref{products})\\
& $|$ & {\term} \nelist{\termarg}{}&(\ref{applications})\\
& $|$ & {\tt @} {\qualid} \sequence{\term}{}
&(\ref{Implicits-explicitation})\\
& $|$ & {\term} {\tt \%} {\ident} &(\ref{scopechange})\\
& $|$ & {\tt match} \nelist{\caseitem}{\tt ,}
\zeroone{\returntype} {\tt with} &\\
&& ~~~\zeroone{\zeroone{\tt |} \nelist{\eqn}{|}} {\tt end}
&(\ref{caseanalysis})\\
& $|$ & {\qualid} &(\ref{qualid})\\
& $|$ & {\sort} &(\ref{Gallina-sorts})\\
& $|$ & {\num} &(\ref{numerals})\\
& $|$ & {\_} &(\ref{hole})\\
& $|$ & {\tt (} {\term} {\tt )} & \\
& & &\\
{\termarg} & ::= & {\term} &\\
& $|$ & {\tt (} {\ident} {\tt :=} {\term} {\tt )}
&(\ref{Implicits-explicitation})\\
%% & $|$ & {\tt (} {\num} {\tt :=} {\term} {\tt )}
%% &(\ref{Implicits-explicitation})\\
&&&\\
{\binders} & ::= & \nelist{\binder}{} \\
&&&\\
{\binder} & ::= & {\name} & (\ref{Binders}) \\
& $|$ & {\tt (} \nelist{\name}{} {\tt :} {\term} {\tt )} &\\
& $|$ & {\tt (} {\name} {\typecstr} {\tt :=} {\term} {\tt )} &\\
& & &\\
{\name} & ::= & {\ident} &\\
& $|$ & {\tt \_} &\\
&&&\\
{\qualid} & ::= & {\ident} & \\
& $|$ & {\qualid} {\accessident} &\\
& & &\\
{\sort} & ::= & {\tt Prop} ~$|$~ {\tt Set} ~$|$~ {\tt Type} &
\end{tabular}
\end{centerframe}
\caption{Syntax of terms}
\label{term-syntax}
\index{term@{\term}}
\index{sort@{\sort}}
\end{figure}
\begin{figure}[htb]
\begin{centerframe}
\begin{tabular}{lcl}
{\fixpointbodies} & ::= &
{\fixpointbody} \\
& $|$ & {\fixpointbody} {\tt with} \nelist{\fixpointbody}{{\tt with}}
{\tt for} {\ident} \\
{\cofixpointbodies} & ::= &
{\cofixpointbody} \\
& $|$ & {\cofixpointbody} {\tt with} \nelist{\cofixpointbody}{{\tt with}}
{\tt for} {\ident} \\
&&\\
{\fixpointbody} & ::= &
{\ident} {\binders} \zeroone{\annotation} {\typecstr}
{\tt :=} {\term} \\
{\cofixpointbody} & ::= & {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} \\
& &\\
{\annotation} & ::= & {\tt \{ struct} {\ident} {\tt \}} \\
&&\\
{\caseitem} & ::= & {\term} \zeroone{{\tt as} \name}
\zeroone{{\tt in} \term} \\
&&\\
{\ifitem} & ::= & \zeroone{{\tt as} {\name}} {\returntype} \\
&&\\
{\returntype} & ::= & {\tt return} {\term} \\
&&\\
{\eqn} & ::= & \nelist{\multpattern}{\tt |} {\tt =>} {\term}\\
&&\\
{\multpattern} & ::= & \nelist{\pattern}{\tt ,}\\
&&\\
{\pattern} & ::= & {\qualid} \nelist{\pattern}{} \\
& $|$ & {\pattern} {\tt as} {\ident} \\
& $|$ & {\pattern} {\tt \%} {\ident} \\
& $|$ & {\qualid} \\
& $|$ & {\tt \_} \\
& $|$ & {\num} \\
& $|$ & {\tt (} \nelist{\orpattern}{,} {\tt )} \\
\\
{\orpattern} & ::= & \nelist{\pattern}{\tt |}\\
\end{tabular}
\end{centerframe}
\caption{Syntax of terms (continued)}
\label{term-syntax-aux}
\end{figure}
%%%%%%%
\subsection{Types}
{\Coq} terms are typed. {\Coq} types are recognized by the same
syntactic class as {\term}. We denote by {\type} the semantic subclass
of types inside the syntactic class {\term}.
\index{type@{\type}}
\subsection{Qualified identifiers and simple identifiers
\label{qualid}
\label{ident}}
{\em Qualified identifiers} ({\qualid}) denote {\em global constants}
(definitions, lemmas, theorems, remarks or facts), {\em global
variables} (parameters or axioms), {\em inductive
types} or {\em constructors of inductive types}.
{\em Simple identifiers} (or shortly {\ident}) are a
syntactic subset of qualified identifiers. Identifiers may also
denote local {\em variables}, what qualified identifiers do not.
\subsection{Numerals
\label{numerals}}
Numerals have no definite semantics in the calculus. They are mere
notations that can be bound to objects through the notation mechanism
(see Chapter~\ref{Addoc-syntax} for details). Initially, numerals are
bound to Peano's representation of natural numbers
(see~\ref{libnats}).
Note: negative integers are not at the same level as {\num}, for this
would make precedence unnatural.
\subsection{Sorts
\index{Sorts}
\index{Type@{\Type}}
\index{Set@{\Set}}
\index{Prop@{\Prop}}
\index{Sorts}
\label{Gallina-sorts}}
There are three sorts \Set, \Prop\ and \Type.
\begin{itemize}
\item \Prop\ is the universe of {\em logical propositions}.
The logical propositions themselves are typing the proofs.
We denote propositions by {\form}. This constitutes a semantic
subclass of the syntactic class {\term}.
\index{form@{\form}}
\item \Set\ is is the universe of {\em program
types} or {\em specifications}.
The specifications themselves are typing the programs.
We denote specifications by {\specif}. This constitutes a semantic
subclass of the syntactic class {\term}.
\index{specif@{\specif}}
\item {\Type} is the type of {\Set} and {\Prop}
\end{itemize}
\noindent More on sorts can be found in Section~\ref{Sorts}.
\bigskip
{\Coq} terms are typed. {\Coq} types are recognized by the same
syntactic class as {\term}. We denote by {\type} the semantic subclass
of types inside the syntactic class {\term}.
\index{type@{\type}}
\subsection{Binders
\label{Binders}
\index{binders}}
Various constructions such as {\tt fun}, {\tt forall}, {\tt fix} and
{\tt cofix} {\em bind} variables. A binding is represented by an
identifier. If the binding variable is not used in the expression, the
identifier can be replaced by the symbol {\tt \_}. When the type of a
bound variable cannot be synthesized by the system, it can be
specified with the notation {\tt (}\,{\ident}\,{\tt :}\,{\type}\,{\tt
)}. There is also a notation for a sequence of binding variables
sharing the same type: {\tt (}\,{\ident$_1$}\ldots{\ident$_n$}\,{\tt
:}\,{\type}\,{\tt )}.
Some constructions allow the binding of a variable to value. This is
called a ``let-binder''. The entry {\binder} of the grammar accepts
either an assumption binder as defined above or a let-binder.
The notation in the
latter case is {\tt (}\,{\ident}\,{\tt :=}\,{\term}\,{\tt )}. In a
let-binder, only one variable can be introduced at the same
time. It is also possible to give the type of the variable as follows:
{\tt (}\,{\ident}\,{\tt :}\,{\term}\,{\tt :=}\,{\term}\,{\tt )}.
Lists of {\binder} are allowed. In the case of {\tt fun} and {\tt
forall}, it is intended that at least one binder of the list is an
assumption otherwise {\tt fun} and {\tt forall} gets identical. Moreover,
parentheses can be omitted in the case of a single sequence of
bindings sharing the same type (e.g.: {\tt fun~(x~y~z~:~A)~=>~t} can
be shortened in {\tt fun~x~y~z~:~A~=>~t}).
\subsection{Abstractions
\label{abstractions}
\index{abstractions}}
The expression ``{\tt fun} {\ident} {\tt :} {\type} {\tt =>}~{\term}''
defines the {\em abstraction} of the variable {\ident}, of type
{\type}, over the term {\term}. It denotes a function of the variable
{\ident} that evaluates to the expression {\term} (e.g. {\tt fun x:$A$
=> x} denotes the identity function on type $A$).
% The variable {\ident} is called the {\em parameter} of the function
% (we sometimes say the {\em formal parameter}).
The keyword {\tt fun} can be followed by several binders as given in
Section~\ref{Binders}. Functions over several variables are
equivalent to an iteration of one-variable functions. For instance the
expression ``{\tt fun}~{\ident$_{1}$}~{\ldots}~{\ident$_{n}$}~{\tt
:}~\type~{\tt =>}~{\term}'' denotes the same function as ``{\tt
fun}~{\ident$_{1}$}~{\tt :}~\type~{\tt =>}~{\ldots}~{\tt
fun}~{\ident$_{n}$}~{\tt :}~\type~{\tt =>}~{\term}''. If a let-binder
occurs in the list of binders, it is expanded to a local definition
(see Section~\ref{let-in}).
\subsection{Products
\label{products}
\index{products}}
The expression ``{\tt forall}~{\ident}~{\tt :}~{\type}{\tt
,}~{\term}'' denotes the {\em product} of the variable {\ident} of
type {\type}, over the term {\term}. As for abstractions, {\tt forall}
is followed by a binder list, and products over several variables are
equivalent to an iteration of one-variable products.
Note that {\term} is intended to be a type.
If the variable {\ident} occurs in {\term}, the product is called {\em
dependent product}. The intention behind a dependent product {\tt
forall}~$x$~{\tt :}~{$A$}{\tt ,}~{$B$} is twofold. It denotes either
the universal quantification of the variable $x$ of type $A$ in the
proposition $B$ or the functional dependent product from $A$ to $B$ (a
construction usually written $\Pi_{x:A}.B$ in set theory).
Non dependent product types have a special notation: ``$A$ {\tt ->}
$B$'' stands for ``{\tt forall \_:}$A${\tt ,}~$B$''. The non dependent
product is used both to denote the propositional implication and
function types.
\subsection{Applications
\label{applications}
\index{applications}}
The expression \term$_0$ \term$_1$ denotes the application of
\term$_0$ to \term$_1$.
The expression {\tt }\term$_0$ \term$_1$ ... \term$_n${\tt}
denotes the application of the term \term$_0$ to the arguments
\term$_1$ ... then \term$_n$. It is equivalent to {\tt (} {\ldots}
{\tt (} {\term$_0$} {\term$_1$} {\tt )} {\ldots} {\tt )} {\term$_n$} {\tt }:
associativity is to the left.
The notation {\tt (}\,{\ident}\,{\tt :=}\,{\term}\,{\tt )} for
arguments is used for making explicit the value of implicit arguments
(see Section~\ref{Implicits-explicitation}).
\subsection{Type cast
\label{typecast}
\index{Cast}}
The expression ``{\term}~{\tt :}~{\type}'' is a type cast
expression. It enforces the type of {\term} to be {\type}.
``{\term}~{\tt <:}~{\type}'' locally sets up the virtual machine (as if option
{\tt Virtual Machine} were on, see \ref{SetVirtualMachine}) for checking that
{\term} has type {\type}.
\subsection{Inferable subterms
\label{hole}
\index{\_}}
Expressions often contain redundant pieces of information. Subterms that
can be automatically inferred by {\Coq} can be replaced by the
symbol ``\_'' and {\Coq} will guess the missing piece of information.
\subsection{Local definitions (let-in)
\label{let-in}
\index{Local definitions}
\index{let-in}}
{\tt let}~{\ident}~{\tt :=}~{\term$_1$}~{\tt in}~{\term$_2$} denotes
the local binding of \term$_1$ to the variable $\ident$ in
\term$_2$.
There is a syntactic sugar for local definition of functions: {\tt
let} {\ident} {\binder$_1$} {\ldots} {\binder$_n$} {\tt :=} {\term$_1$}
{\tt in} {\term$_2$} stands for {\tt let} {\ident} {\tt := fun}
{\binder$_1$} {\ldots} {\binder$_n$} {\tt =>} {\term$_1$} {\tt in}
{\term$_2$}.
\subsection{Definition by case analysis
\label{caseanalysis}
\index{match@{\tt match\ldots with\ldots end}}}
Objects of inductive types can be destructurated by a case-analysis
construction called {\em pattern-matching} expression. A
pattern-matching expression is used to analyze the structure of an
inductive objects and to apply specific treatments accordingly.
This paragraph describes the basic form of pattern-matching. See
Section~\ref{Mult-match} and Chapter~\ref{Mult-match-full} for the
description of the general form. The basic form of pattern-matching is
characterized by a single {\caseitem} expression, a {\multpattern}
restricted to a single {\pattern} and {\pattern} restricted to the
form {\qualid} \nelist{\ident}{}.
The expression {\tt match} {\term$_0$} {\returntype} {\tt with}
{\pattern$_1$} {\tt =>} {\term$_1$} {\tt $|$} {\ldots} {\tt $|$}
{\pattern$_n$} {\tt =>} {\term$_n$} {\tt end}, denotes a {\em
pattern-matching} over the term {\term$_0$} (expected to be of an
inductive type $I$). The terms {\term$_1$}\ldots{\term$_n$} are the
{\em branches} of the pattern-matching expression. Each of
{\pattern$_i$} has a form \qualid~\nelist{\ident}{} where {\qualid}
must denote a constructor. There should be exactly one branch for
every constructor of $I$.
The {\returntype} expresses the type returned by the whole {\tt match}
expression. There are several cases. In the {\em non dependent} case,
all branches have the same type, and the {\returntype} is the common
type of branches. In this case, {\returntype} can usually be omitted
as it can be inferred from the type of the branches\footnote{Except if
the inductive type is empty in which case there is no equation that can be
used to infer the return type.}.
In the {\em dependent} case, there are three subcases. In the first
subcase, the type in each branch may depend on the exact value being
matched in the branch. In this case, the whole pattern-matching itself
depends on the term being matched. This dependency of the term being
matched in the return type is expressed with an ``{\tt as {\ident}}''
clause where {\ident} is dependent in the return type.
For instance, in the following example:
\begin{coq_example*}
Inductive bool : Type := true : bool | false : bool.
Inductive eq (A:Type) (x:A) : A -> Prop := eq_refl : eq A x x.
Inductive or (A:Prop) (B:Prop) : Prop :=
| or_introl : A -> or A B
| or_intror : B -> or A B.
Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false)
:= match b as x return or (eq bool x true) (eq bool x false) with
| true => or_introl (eq bool true true) (eq bool true false)
(eq_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false)
(eq_refl bool false)
end.
\end{coq_example*}
the branches have respective types {\tt or (eq bool true true) (eq
bool true false)} and {\tt or (eq bool false true) (eq bool false
false)} while the whole pattern-matching expression has type {\tt or
(eq bool b true) (eq bool b false)}, the identifier {\tt x} being used
to represent the dependency. Remark that when the term being matched
is a variable, the {\tt as} clause can be omitted and the term being
matched can serve itself as binding name in the return type. For
instance, the following alternative definition is accepted and has the
same meaning as the previous one.
\begin{coq_example*}
Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false)
:= match b return or (eq bool b true) (eq bool b false) with
| true => or_introl (eq bool true true) (eq bool true false)
(eq_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false)
(eq_refl bool false)
end.
\end{coq_example*}
The second subcase is only relevant for annotated inductive types such
as the equality predicate (see Section~\ref{Equality}), the order
predicate on natural numbers % (see Section~\ref{le}) % undefined reference
or the type of
lists of a given length (see Section~\ref{listn}). In this configuration,
the type of each branch can depend on the type dependencies specific
to the branch and the whole pattern-matching expression has a type
determined by the specific dependencies in the type of the term being
matched. This dependency of the return type in the annotations of the
inductive type is expressed using a {\tt
``in~I~\_~$\ldots$~\_~\ident$_1$~$\ldots$~\ident$_n$}'' clause, where
\begin{itemize}
\item $I$ is the inductive type of the term being matched;
\item the names \ident$_i$'s correspond to the arguments of the
inductive type that carry the annotations: the return type is dependent
on them;
\item the {\_}'s denote the family parameters of the inductive type:
the return type is not dependent on them.
\end{itemize}
For instance, in the following example:
\begin{coq_example*}
Definition eq_sym (A:Type) (x y:A) (H:eq A x y) : eq A y x :=
match H in eq _ _ z return eq A z x with
| eq_refl => eq_refl A x
end.
\end{coq_example*}
the type of the branch has type {\tt eq~A~x~x} because the third
argument of {\tt eq} is {\tt x} in the type of the pattern {\tt
refl\_equal}. On the contrary, the type of the whole pattern-matching
expression has type {\tt eq~A~y~x} because the third argument of {\tt
eq} is {\tt y} in the type of {\tt H}. This dependency of the case
analysis in the third argument of {\tt eq} is expressed by the
identifier {\tt z} in the return type.
Finally, the third subcase is a combination of the first and second
subcase. In particular, it only applies to pattern-matching on terms
in a type with annotations. For this third subcase, both
the clauses {\tt as} and {\tt in} are available.
There are specific notations for case analysis on types with one or
two constructors: ``{\tt if {\ldots} then {\ldots} else {\ldots}}''
and ``{\tt let (}\nelist{\ldots}{,}{\tt ) := } {\ldots} {\tt in}
{\ldots}'' (see Sections~\ref{if-then-else} and~\ref{Letin}).
%\SeeAlso Section~\ref{Mult-match} for convenient extensions of pattern-matching.
\subsection{Recursive functions
\label{fixpoints}
\index{fix@{fix \ident$_i$\{\dots\}}}}
The expression ``{\tt fix} \ident$_1$ \binder$_1$ {\tt :} {\type$_1$}
\texttt{:=} \term$_1$ {\tt with} {\ldots} {\tt with} \ident$_n$
\binder$_n$~{\tt :} {\type$_n$} \texttt{:=} \term$_n$ {\tt for}
{\ident$_i$}'' denotes the $i$\nth component of a block of functions
defined by mutual well-founded recursion. It is the local counterpart
of the {\tt Fixpoint} command. See Section~\ref{Fixpoint} for more
details. When $n=1$, the ``{\tt for}~{\ident$_i$}'' clause is omitted.
The expression ``{\tt cofix} \ident$_1$~\binder$_1$ {\tt :}
{\type$_1$} {\tt with} {\ldots} {\tt with} \ident$_n$ \binder$_n$ {\tt
:} {\type$_n$}~{\tt for} {\ident$_i$}'' denotes the $i$\nth component of
a block of terms defined by a mutual guarded co-recursion. It is the
local counterpart of the {\tt CoFixpoint} command. See
Section~\ref{CoFixpoint} for more details. When $n=1$, the ``{\tt
for}~{\ident$_i$}'' clause is omitted.
The association of a single fixpoint and a local
definition have a special syntax: ``{\tt let fix}~$f$~{\ldots}~{\tt
:=}~{\ldots}~{\tt in}~{\ldots}'' stands for ``{\tt let}~$f$~{\tt :=
fix}~$f$~\ldots~{\tt :=}~{\ldots}~{\tt in}~{\ldots}''. The same
applies for co-fixpoints.
\section{The Vernacular
\label{Vernacular}}
\begin{figure}[tbp]
\begin{centerframe}
\begin{tabular}{lcl}
{\sentence} & ::= & {\assumption} \\
& $|$ & {\definition} \\
& $|$ & {\inductive} \\
& $|$ & {\fixpoint} \\
& $|$ & {\assertion} {\proof} \\
&&\\
%% Assumptions
{\assumption} & ::= & {\assumptionkeyword} {\assums} {\tt .} \\
&&\\
{\assumptionkeyword} & $\!\!$ ::= & {\tt Axiom} $|$ {\tt Conjecture} \\
& $|$ & {\tt Parameter} $|$ {\tt Parameters} \\
& $|$ & {\tt Variable} $|$ {\tt Variables} \\
& $|$ & {\tt Hypothesis} $|$ {\tt Hypotheses}\\
&&\\
{\assums} & ::= & \nelist{\ident}{} {\tt :} {\term} \\
& $|$ & \nelist{{\tt (} \nelist{\ident}{} {\tt :} {\term} {\tt )}}{} \\
&&\\
%% Definitions
{\definition} & ::= &
{\tt Definition} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} {\tt .} \\
& $|$ & {\tt Let} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} {\tt .} \\
&&\\
%% Inductives
{\inductive} & ::= &
{\tt Inductive} \nelist{\inductivebody}{with} {\tt .} \\
& $|$ & {\tt CoInductive} \nelist{\inductivebody}{with} {\tt .} \\
& & \\
{\inductivebody} & ::= &
{\ident} \zeroone{\binders} {\tt :} {\term} {\tt :=} \\
&& ~~\zeroone{\zeroone{\tt |} \nelist{$\!${\ident}$\!$ \zeroone{\binders} {\typecstrwithoutblank}}{|}} \\
& & \\ %% TODO: where ...
%% Fixpoints
{\fixpoint} & ::= & {\tt Fixpoint} \nelist{\fixpointbody}{with} {\tt .} \\
& $|$ & {\tt CoFixpoint} \nelist{\cofixpointbody}{with} {\tt .} \\
&&\\
%% Lemmas & proofs
{\assertion} & ::= &
{\statkwd} {\ident} \zeroone{\binders} {\tt :} {\term} {\tt .} \\
&&\\
{\statkwd} & ::= & {\tt Theorem} $|$ {\tt Lemma} \\
& $|$ & {\tt Remark} $|$ {\tt Fact}\\
& $|$ & {\tt Corollary} $|$ {\tt Proposition} \\
& $|$ & {\tt Definition} $|$ {\tt Example} \\\\
&&\\
{\proof} & ::= & {\tt Proof} {\tt .} {\dots} {\tt Qed} {\tt .}\\
& $|$ & {\tt Proof} {\tt .} {\dots} {\tt Defined} {\tt .}\\
& $|$ & {\tt Proof} {\tt .} {\dots} {\tt Admitted} {\tt .}\\
\end{tabular}
\end{centerframe}
\caption{Syntax of sentences}
\label{sentences-syntax}
\end{figure}
Figure \ref{sentences-syntax} describes {\em The Vernacular} which is the
language of commands of \gallina. A sentence of the vernacular
language, like in many natural languages, begins with a capital letter
and ends with a dot.
The different kinds of command are described hereafter. They all suppose
that the terms occurring in the sentences are well-typed.
%%
%% Axioms and Parameters
%%
\subsection{Assumptions
\index{Declarations}
\label{Declarations}}
Assumptions extend the environment\index{Environment} with axioms,
parameters, hypotheses or variables. An assumption binds an {\ident}
to a {\type}. It is accepted by {\Coq} if and only if this {\type} is
a correct type in the environment preexisting the declaration and if
{\ident} was not previously defined in the same module. This {\type}
is considered to be the type (or specification, or statement) assumed
by {\ident} and we say that {\ident} has type {\type}.
\subsubsection{{\tt Axiom {\ident} :{\term} .}
\comindex{Axiom}
\label{Axiom}}
This command links {\term} to the name {\ident} as its specification
in the global context. The fact asserted by {\term} is thus assumed as
a postulate.
\begin{ErrMsgs}
\item \errindex{{\ident} already exists}
\end{ErrMsgs}
\begin{Variants}
\item \comindex{Parameter}\comindex{Parameters}
{\tt Parameter {\ident} :{\term}.} \\
Is equivalent to {\tt Axiom {\ident} : {\term}}
\item {\tt Parameter {\ident$_1$}\ldots{\ident$_n$} {\tt :}{\term}.}\\
Adds $n$ parameters with specification {\term}
\item
{\tt Parameter\,%
(\,{\ident$_{1,1}$}\ldots{\ident$_{1,k_1}$}\,{\tt :}\,{\term$_1$} {\tt )}\,%
\ldots\,{\tt (}\,{\ident$_{n,1}$}\ldots{\ident$_{n,k_n}$}\,{\tt :}\,%
{\term$_n$} {\tt )}.}\\
Adds $n$ blocks of parameters with different specifications.
\item \comindex{Conjecture}
{\tt Conjecture {\ident} :{\term}.}\\
Is equivalent to {\tt Axiom {\ident} : {\term}}.
\end{Variants}
\noindent {\bf Remark: } It is possible to replace {\tt Parameter} by
{\tt Parameters}.
\subsubsection{{\tt Variable {\ident} :{\term}}.
\comindex{Variable}
\comindex{Variables}
\label{Variable}}
This command links {\term} to the name {\ident} in the context of the
current section (see Section~\ref{Section} for a description of the section
mechanism). When the current section is closed, name {\ident} will be
unknown and every object using this variable will be explicitly
parametrized (the variable is {\em discharged}). Using the {\tt
Variable} command out of any section is equivalent to using {\tt Parameter}.
\begin{ErrMsgs}
\item \errindex{{\ident} already exists}
\end{ErrMsgs}
\begin{Variants}
\item {\tt Variable {\ident$_1$}\ldots{\ident$_n$} {\tt :}{\term}.}\\
Links {\term} to names {\ident$_1$}\ldots{\ident$_n$}.
\item
{\tt Variable\,%
(\,{\ident$_{1,1}$}\ldots{\ident$_{1,k_1}$}\,{\tt :}\,{\term$_1$} {\tt )}\,%
\ldots\,{\tt (}\,{\ident$_{n,1}$}\ldots{\ident$_{n,k_n}$}\,{\tt :}\,%
{\term$_n$} {\tt )}.}\\
Adds $n$ blocks of variables with different specifications.
\item \comindex{Hypothesis}
\comindex{Hypotheses}
{\tt Hypothesis {\ident} {\tt :}{\term}.} \\
\texttt{Hypothesis} is a synonymous of \texttt{Variable}
\end{Variants}
\noindent {\bf Remark: } It is possible to replace {\tt Variable} by
{\tt Variables} and {\tt Hypothesis} by {\tt Hypotheses}.
It is advised to use the keywords \verb:Axiom: and \verb:Hypothesis:
for logical postulates (i.e. when the assertion {\term} is of sort
\verb:Prop:), and to use the keywords \verb:Parameter: and
\verb:Variable: in other cases (corresponding to the declaration of an
abstract mathematical entity).
%%
%% Definitions
%%
\subsection{Definitions
\index{Definitions}
\label{Basic-definitions}}
Definitions extend the environment\index{Environment} with
associations of names to terms. A definition can be seen as a way to
give a meaning to a name or as a way to abbreviate a term. In any
case, the name can later be replaced at any time by its definition.
The operation of unfolding a name into its definition is called
$\delta$-conversion\index{delta-reduction@$\delta$-reduction} (see
Section~\ref{delta}). A definition is accepted by the system if and
only if the defined term is well-typed in the current context of the
definition and if the name is not already used. The name defined by
the definition is called a {\em constant}\index{Constant} and the term
it refers to is its {\em body}. A definition has a type which is the
type of its body.
A formal presentation of constants and environments is given in
Section~\ref{Typed-terms}.
\subsubsection{\tt Definition {\ident} := {\term}.
\comindex{Definition}}
This command binds {\term} to the name {\ident} in the
environment, provided that {\term} is well-typed.
\begin{ErrMsgs}
\item \errindex{{\ident} already exists}
\end{ErrMsgs}
\begin{Variants}
\item {\tt Definition {\ident} {\tt :}{\term$_1$} := {\term$_2$}.}\\
It checks that the type of {\term$_2$} is definitionally equal to
{\term$_1$}, and registers {\ident} as being of type {\term$_1$},
and bound to value {\term$_2$}.
\item {\tt Definition {\ident} {\binder$_1$}\ldots{\binder$_n$}
{\tt :}\term$_1$ {\tt :=} {\term$_2$}.}\\
This is equivalent to \\
{\tt Definition\,{\ident}\,{\tt :\,forall}\,%
{\binder$_1$}\ldots{\binder$_n$}{\tt ,}\,\term$_1$\,{\tt :=}}\,%
{\tt fun}\,{\binder$_1$}\ldots{\binder$_n$}\,{\tt =>}\,{\term$_2$}\,%
{\tt .}
\item {\tt Example {\ident} := {\term}.}\\
{\tt Example {\ident} {\tt :}{\term$_1$} := {\term$_2$}.}\\
{\tt Example {\ident} {\binder$_1$}\ldots{\binder$_n$}
{\tt :}\term$_1$ {\tt :=} {\term$_2$}.}\\
\comindex{Example}
These are synonyms of the {\tt Definition} forms.
\end{Variants}
\begin{ErrMsgs}
\item \errindex{Error: The term {\term} has type {\type} while it is expected to have type {\type}}
\end{ErrMsgs}
\SeeAlso Sections \ref{Opaque}, \ref{Transparent}, \ref{unfold}.
\subsubsection{\tt Let {\ident} := {\term}.
\comindex{Let}}
This command binds the value {\term} to the name {\ident} in the
environment of the current section. The name {\ident} disappears
when the current section is eventually closed, and, all
persistent objects (such as theorems) defined within the
section and depending on {\ident} are prefixed by the local definition
{\tt let {\ident} := {\term} in}.
\begin{ErrMsgs}
\item \errindex{{\ident} already exists}
\end{ErrMsgs}
\begin{Variants}
\item {\tt Let {\ident} : {\term$_1$} := {\term$_2$}.}
\end{Variants}
\SeeAlso Sections \ref{Section} (section mechanism), \ref{Opaque},
\ref{Transparent} (opaque/transparent constants), \ref{unfold} (tactic
{\tt unfold}).
%%
%% Inductive Types
%%
\subsection{Inductive definitions
\index{Inductive definitions}
\label{gal_Inductive_Definitions}
\comindex{Inductive}
\label{Inductive}}
We gradually explain simple inductive types, simple
annotated inductive types, simple parametric inductive types,
mutually inductive types. We explain also co-inductive types.
\subsubsection{Simple inductive types}
The definition of a simple inductive type has the following form:
\medskip
{\tt
\begin{tabular}{l}
Inductive {\ident} : {\sort} := \\
\begin{tabular}{clcl}
& {\ident$_1$} &:& {\type$_1$} \\
| & {\ldots} && \\
| & {\ident$_n$} &:& {\type$_n$}
\end{tabular}
\end{tabular}
}
\medskip
The name {\ident} is the name of the inductively defined type and
{\sort} is the universes where it lives.
The names {\ident$_1$}, {\ldots}, {\ident$_n$}
are the names of its constructors and {\type$_1$}, {\ldots},
{\type$_n$} their respective types. The types of the constructors have
to satisfy a {\em positivity condition} (see Section~\ref{Positivity})
for {\ident}. This condition ensures the soundness of the inductive
definition. If this is the case, the constants {\ident},
{\ident$_1$}, {\ldots}, {\ident$_n$} are added to the environment with
their respective types. Accordingly to the universe where
the inductive type lives ({\it e.g.} its type {\sort}), {\Coq} provides a
number of destructors for {\ident}. Destructors are named
{\ident}{\tt\_ind}, {\ident}{\tt \_rec} or {\ident}{\tt \_rect} which
respectively correspond to elimination principles on {\tt Prop}, {\tt
Set} and {\tt Type}. The type of the destructors expresses structural
induction/recursion principles over objects of {\ident}. We give below
two examples of the use of the {\tt Inductive} definitions.
The set of natural numbers is defined as:
\begin{coq_example}
Inductive nat : Set :=
| O : nat
| S : nat -> nat.
\end{coq_example}
The type {\tt nat} is defined as the least \verb:Set: containing {\tt
O} and closed by the {\tt S} constructor. The constants {\tt nat},
{\tt O} and {\tt S} are added to the environment.
Now let us have a look at the elimination principles. They are three
of them:
{\tt nat\_ind}, {\tt nat\_rec} and {\tt nat\_rect}. The type of {\tt
nat\_ind} is:
\begin{coq_example}
Check nat_ind.
\end{coq_example}
This is the well known structural induction principle over natural
numbers, i.e. the second-order form of Peano's induction principle.
It allows to prove some universal property of natural numbers ({\tt
forall n:nat, P n}) by induction on {\tt n}.
The types of {\tt nat\_rec} and {\tt nat\_rect} are similar, except
that they pertain to {\tt (P:nat->Set)} and {\tt (P:nat->Type)}
respectively . They correspond to primitive induction principles
(allowing dependent types) respectively over sorts \verb:Set: and
\verb:Type:. The constant {\ident}{\tt \_ind} is always provided,
whereas {\ident}{\tt \_rec} and {\ident}{\tt \_rect} can be impossible
to derive (for example, when {\ident} is a proposition).
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{Variants}
\item
\begin{coq_example*}
Inductive nat : Set := O | S (_:nat).
\end{coq_example*}
In the case where inductive types have no annotations (next section
gives an example of such annotations),
%the positivity condition implies that
a constructor can be defined by only giving the type of
its arguments.
\end{Variants}
\subsubsection{Simple annotated inductive types}
In an annotated inductive types, the universe where the inductive
type is defined is no longer a simple sort, but what is called an
arity, which is a type whose conclusion is a sort.
As an example of annotated inductive types, let us define the
$even$ predicate:
\begin{coq_example}
Inductive even : nat -> Prop :=
| even_0 : even O
| even_SS : forall n:nat, even n -> even (S (S n)).
\end{coq_example}
The type {\tt nat->Prop} means that {\tt even} is a unary predicate
(inductively defined) over natural numbers. The type of its two
constructors are the defining clauses of the predicate {\tt even}. The
type of {\tt even\_ind} is:
\begin{coq_example}
Check even_ind.
\end{coq_example}
From a mathematical point of view it asserts that the natural numbers
satisfying the predicate {\tt even} are exactly in the smallest set of
naturals satisfying the clauses {\tt even\_0} or {\tt even\_SS}. This
is why, when we want to prove any predicate {\tt P} over elements of
{\tt even}, it is enough to prove it for {\tt O} and to prove that if
any natural number {\tt n} satisfies {\tt P} its double successor {\tt
(S (S n))} satisfies also {\tt P}. This is indeed analogous to the
structural induction principle we got for {\tt nat}.
\begin{ErrMsgs}
\item \errindex{Non strictly positive occurrence of {\ident} in {\type}}
\item \errindex{The conclusion of {\type} is not valid; it must be
built from {\ident}}
\end{ErrMsgs}
\subsubsection{Parametrized inductive types}
In the previous example, each constructor introduces a
different instance of the predicate {\tt even}. In some cases,
all the constructors introduces the same generic instance of the
inductive definition, in which case, instead of an annotation, we use
a context of parameters which are binders shared by all the
constructors of the definition.
% Inductive types may be parameterized. Parameters differ from inductive
% type annotations in the fact that recursive invokations of inductive
% types must always be done with the same values of parameters as its
% specification.
The general scheme is:
\begin{center}
{\tt Inductive} {\ident} {\binder$_1$}\ldots{\binder$_k$} : {\term} :=
{\ident$_1$}: {\term$_1$} | {\ldots} | {\ident$_n$}: \term$_n$
{\tt .}
\end{center}
Parameters differ from inductive type annotations in the fact that the
conclusion of each type of constructor {\term$_i$} invoke the inductive
type with the same values of parameters as its specification.
A typical example is the definition of polymorphic lists:
\begin{coq_example*}
Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.
\end{coq_example*}
Note that in the type of {\tt nil} and {\tt cons}, we write {\tt
(list A)} and not just {\tt list}.\\ The constants {\tt nil} and
{\tt cons} will have respectively types:
\begin{coq_example}
Check nil.
Check cons.
\end{coq_example}
Types of destructors are also quantified with {\tt (A:Set)}.
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{Variants}
\item
\begin{coq_example*}
Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A).
\end{coq_example*}
This is an alternative definition of lists where we specify the
arguments of the constructors rather than their full type.
\end{Variants}
\begin{ErrMsgs}
\item \errindex{The {\num}th argument of {\ident} must be {\ident'} in
{\type}}
\end{ErrMsgs}
\paragraph{New from \Coq{} V8.1} The condition on parameters for
inductive definitions has been relaxed since \Coq{} V8.1. It is now
possible in the type of a constructor, to invoke recursively the
inductive definition on an argument which is not the parameter itself.
One can define~:
\begin{coq_example}
Inductive list2 (A:Set) : Set :=
| nil2 : list2 A
| cons2 : A -> list2 (A*A) -> list2 A.
\end{coq_example}
\begin{coq_eval}
Reset list2.
\end{coq_eval}
that can also be written by specifying only the type of the arguments:
\begin{coq_example*}
Inductive list2 (A:Set) : Set := nil2 | cons2 (_:A) (_:list2 (A*A)).
\end{coq_example*}
But the following definition will give an error:
\begin{coq_example}
Inductive listw (A:Set) : Set :=
| nilw : listw (A*A)
| consw : A -> listw (A*A) -> listw (A*A).
\end{coq_example}
Because the conclusion of the type of constructors should be {\tt
listw A} in both cases.
A parametrized inductive definition can be defined using
annotations instead of parameters but it will sometimes give a
different (bigger) sort for the inductive definition and will produce
a less convenient rule for case elimination.
\SeeAlso Sections~\ref{Cic-inductive-definitions} and~\ref{Tac-induction}.
\subsubsection{Mutually defined inductive types
\comindex{Inductive}
\label{Mutual-Inductive}}
The definition of a block of mutually inductive types has the form:
\medskip
{\tt
\begin{tabular}{l}
Inductive {\ident$_1$} : {\type$_1$} := \\
\begin{tabular}{clcl}
& {\ident$_1^1$} &:& {\type$_1^1$} \\
| & {\ldots} && \\
| & {\ident$_{n_1}^1$} &:& {\type$_{n_1}^1$}
\end{tabular} \\
with\\
~{\ldots} \\
with {\ident$_m$} : {\type$_m$} := \\
\begin{tabular}{clcl}
& {\ident$_1^m$} &:& {\type$_1^m$} \\
| & {\ldots} \\
| & {\ident$_{n_m}^m$} &:& {\type$_{n_m}^m$}.
\end{tabular}
\end{tabular}
}
\medskip
\noindent It has the same semantics as the above {\tt Inductive}
definition for each \ident$_1$, {\ldots}, \ident$_m$. All names
\ident$_1$, {\ldots}, \ident$_m$ and \ident$_1^1$, \dots,
\ident$_{n_m}^m$ are simultaneously added to the environment. Then
well-typing of constructors can be checked. Each one of the
\ident$_1$, {\ldots}, \ident$_m$ can be used on its own.
It is also possible to parametrize these inductive definitions.
However, parameters correspond to a local
context in which the whole set of inductive declarations is done. For
this reason, the parameters must be strictly the same for each
inductive types The extended syntax is:
\medskip
{\tt
\begin{tabular}{l}
Inductive {\ident$_1$} {\params} : {\type$_1$} := \\
\begin{tabular}{clcl}
& {\ident$_1^1$} &:& {\type$_1^1$} \\
| & {\ldots} && \\
| & {\ident$_{n_1}^1$} &:& {\type$_{n_1}^1$}
\end{tabular} \\
with\\
~{\ldots} \\
with {\ident$_m$} {\params} : {\type$_m$} := \\
\begin{tabular}{clcl}
& {\ident$_1^m$} &:& {\type$_1^m$} \\
| & {\ldots} \\
| & {\ident$_{n_m}^m$} &:& {\type$_{n_m}^m$}.
\end{tabular}
\end{tabular}
}
\medskip
\Example
The typical example of a mutual inductive data type is the one for
trees and forests. We assume given two types $A$ and $B$ as variables.
It can be declared the following way.
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Variables A B : Set.
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| leaf : B -> forest
| cons : tree -> forest -> forest.
\end{coq_example*}
This declaration generates automatically six induction
principles. They are respectively
called {\tt tree\_rec}, {\tt tree\_ind}, {\tt
tree\_rect}, {\tt forest\_rec}, {\tt forest\_ind}, {\tt
forest\_rect}. These ones are not the most general ones but are
just the induction principles corresponding to each inductive part
seen as a single inductive definition.
To illustrate this point on our example, we give the types of {\tt
tree\_rec} and {\tt forest\_rec}.
\begin{coq_example}
Check tree_rec.
Check forest_rec.
\end{coq_example}
Assume we want to parametrize our mutual inductive definitions with
the two type variables $A$ and $B$, the declaration should be done the
following way:
\begin{coq_eval}
Reset tree.
\end{coq_eval}
\begin{coq_example*}
Inductive tree (A B:Set) : Set :=
node : A -> forest A B -> tree A B
with forest (A B:Set) : Set :=
| leaf : B -> forest A B
| cons : tree A B -> forest A B -> forest A B.
\end{coq_example*}
Assume we define an inductive definition inside a section. When the
section is closed, the variables declared in the section and occurring
free in the declaration are added as parameters to the inductive
definition.
\SeeAlso Section~\ref{Section}.
\subsubsection{Co-inductive types
\label{CoInductiveTypes}
\comindex{CoInductive}}
The objects of an inductive type are well-founded with respect to the
constructors of the type. In other words, such objects contain only a
{\it finite} number of constructors. Co-inductive types arise from
relaxing this condition, and admitting types whose objects contain an
infinity of constructors. Infinite objects are introduced by a
non-ending (but effective) process of construction, defined in terms
of the constructors of the type.
An example of a co-inductive type is the type of infinite sequences of
natural numbers, usually called streams. It can be introduced in \Coq\
using the \texttt{CoInductive} command:
\begin{coq_example}
CoInductive Stream : Set :=
Seq : nat -> Stream -> Stream.
\end{coq_example}
The syntax of this command is the same as the command \texttt{Inductive}
(see Section~\ref{gal_Inductive_Definitions}). Notice that no
principle of induction is derived from the definition of a
co-inductive type, since such principles only make sense for inductive
ones. For co-inductive ones, the only elimination principle is case
analysis. For example, the usual destructors on streams
\texttt{hd:Stream->nat} and \texttt{tl:Str->Str} can be defined as
follows:
\begin{coq_example}
Definition hd (x:Stream) := let (a,s) := x in a.
Definition tl (x:Stream) := let (a,s) := x in s.
\end{coq_example}
Definition of co-inductive predicates and blocks of mutually
co-inductive definitions are also allowed. An example of a
co-inductive predicate is the extensional equality on streams:
\begin{coq_example}
CoInductive EqSt : Stream -> Stream -> Prop :=
eqst :
forall s1 s2:Stream,
hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.
\end{coq_example}
In order to prove the extensionally equality of two streams $s_1$ and
$s_2$ we have to construct an infinite proof of equality, that is,
an infinite object of type $(\texttt{EqSt}\;s_1\;s_2)$. We will see
how to introduce infinite objects in Section~\ref{CoFixpoint}.
%%
%% (Co-)Fixpoints
%%
\subsection{Definition of recursive functions}
\subsubsection{Definition of functions by recursion over inductive objects}
This section describes the primitive form of definition by recursion
over inductive objects. See Section~\ref{Function} for more advanced
constructions. The command:
\begin{center}
\texttt{Fixpoint {\ident} {\params} {\tt \{struct}
\ident$_0$ {\tt \}} : type$_0$ := \term$_0$
\comindex{Fixpoint}\label{Fixpoint}}
\end{center}
allows to define functions by pattern-matching over inductive objects
using a fixed point construction.
The meaning of this declaration is to define {\it ident} a recursive
function with arguments specified by the binders in {\params} such
that {\it ident} applied to arguments corresponding to these binders
has type \type$_0$, and is equivalent to the expression \term$_0$. The
type of the {\ident} is consequently {\tt forall {\params} {\tt,}
\type$_0$} and the value is equivalent to {\tt fun {\params} {\tt
=>} \term$_0$}.
To be accepted, a {\tt Fixpoint} definition has to satisfy some
syntactical constraints on a special argument called the decreasing
argument. They are needed to ensure that the {\tt Fixpoint} definition
always terminates. The point of the {\tt \{struct \ident {\tt \}}}
annotation is to let the user tell the system which argument decreases
along the recursive calls. For instance, one can define the addition
function as :
\begin{coq_example}
Fixpoint add (n m:nat) {struct n} : nat :=
match n with
| O => m
| S p => S (add p m)
end.
\end{coq_example}
The {\tt \{struct \ident {\tt \}}} annotation may be left implicit, in
this case the system try successively arguments from left to right
until it finds one that satisfies the decreasing condition. Note that
some fixpoints may have several arguments that fit as decreasing
arguments, and this choice influences the reduction of the
fixpoint. Hence an explicit annotation must be used if the leftmost
decreasing argument is not the desired one. Writing explicit
annotations can also speed up type-checking of large mutual fixpoints.
The {\tt match} operator matches a value (here \verb:n:) with the
various constructors of its (inductive) type. The remaining arguments
give the respective values to be returned, as functions of the
parameters of the corresponding constructor. Thus here when \verb:n:
equals \verb:O: we return \verb:m:, and when \verb:n: equals
\verb:(S p): we return \verb:(S (add p m)):.
The {\tt match} operator is formally described
in detail in Section~\ref{Caseexpr}. The system recognizes that in
the inductive call {\tt (add p m)} the first argument actually
decreases because it is a {\em pattern variable} coming from {\tt match
n with}.
\Example The following definition is not correct and generates an
error message:
\begin{coq_eval}
Set Printing Depth 50.
(********** The following is not correct and should produce **********)
(********* Error: Recursive call to wrongplus ... **********)
\end{coq_eval}
\begin{coq_example}
Fixpoint wrongplus (n m:nat) {struct n} : nat :=
match m with
| O => n
| S p => S (wrongplus n p)
end.
\end{coq_example}
because the declared decreasing argument {\tt n} actually does not
decrease in the recursive call. The function computing the addition
over the second argument should rather be written:
\begin{coq_example*}
Fixpoint plus (n m:nat) {struct m} : nat :=
match m with
| O => n
| S p => S (plus n p)
end.
\end{coq_example*}
The ordinary match operation on natural numbers can be mimicked in the
following way.
\begin{coq_example*}
Fixpoint nat_match
(C:Set) (f0:C) (fS:nat -> C -> C) (n:nat) {struct n} : C :=
match n with
| O => f0
| S p => fS p (nat_match C f0 fS p)
end.
\end{coq_example*}
The recursive call may not only be on direct subterms of the recursive
variable {\tt n} but also on a deeper subterm and we can directly
write the function {\tt mod2} which gives the remainder modulo 2 of a
natural number.
\begin{coq_example*}
Fixpoint mod2 (n:nat) : nat :=
match n with
| O => O
| S p => match p with
| O => S O
| S q => mod2 q
end
end.
\end{coq_example*}
In order to keep the strong normalization property, the fixed point
reduction will only be performed when the argument in position of the
decreasing argument (which type should be in an inductive definition)
starts with a constructor.
The {\tt Fixpoint} construction enjoys also the {\tt with} extension
to define functions over mutually defined inductive types or more
generally any mutually recursive definitions.
\begin{Variants}
\item {\tt Fixpoint {\ident$_1$} {\params$_1$} :{\type$_1$} := {\term$_1$}\\
with {\ldots} \\
with {\ident$_m$} {\params$_m$} :{\type$_m$} := {\term$_m$}}\\
Allows to define simultaneously {\ident$_1$}, {\ldots},
{\ident$_m$}.
\end{Variants}
\Example
The size of trees and forests can be defined the following way:
\begin{coq_eval}
Reset Initial.
Variables A B : Set.
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| leaf : B -> forest
| cons : tree -> forest -> forest.
\end{coq_eval}
\begin{coq_example*}
Fixpoint tree_size (t:tree) : nat :=
match t with
| node a f => S (forest_size f)
end
with forest_size (f:forest) : nat :=
match f with
| leaf b => 1
| cons t f' => (tree_size t + forest_size f')
end.
\end{coq_example*}
A generic command {\tt Scheme} is useful to build automatically various
mutual induction principles. It is described in Section~\ref{Scheme}.
\subsubsection{Definitions of recursive objects in co-inductive types}
The command:
\begin{center}
\texttt{CoFixpoint {\ident} : \type$_0$ := \term$_0$}
\comindex{CoFixpoint}\label{CoFixpoint}
\end{center}
introduces a method for constructing an infinite object of a
coinduc\-tive type. For example, the stream containing all natural
numbers can be introduced applying the following method to the number
\texttt{O} (see Section~\ref{CoInductiveTypes} for the definition of
{\tt Stream}, {\tt hd} and {\tt tl}):
\begin{coq_eval}
Reset Initial.
CoInductive Stream : Set :=
Seq : nat -> Stream -> Stream.
Definition hd (x:Stream) := match x with
| Seq a s => a
end.
Definition tl (x:Stream) := match x with
| Seq a s => s
end.
\end{coq_eval}
\begin{coq_example}
CoFixpoint from (n:nat) : Stream := Seq n (from (S n)).
\end{coq_example}
Oppositely to recursive ones, there is no decreasing argument in a
co-recursive definition. To be admissible, a method of construction
must provide at least one extra constructor of the infinite object for
each iteration. A syntactical guard condition is imposed on
co-recursive definitions in order to ensure this: each recursive call
in the definition must be protected by at least one constructor, and
only by constructors. That is the case in the former definition, where
the single recursive call of \texttt{from} is guarded by an
application of \texttt{Seq}. On the contrary, the following recursive
function does not satisfy the guard condition:
\begin{coq_eval}
Set Printing Depth 50.
(********** The following is not correct and should produce **********)
(***************** Error: Unguarded recursive call *******************)
\end{coq_eval}
\begin{coq_example}
CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream :=
if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl s).
\end{coq_example}
The elimination of co-recursive definition is done lazily, i.e. the
definition is expanded only when it occurs at the head of an
application which is the argument of a case analysis expression. In
any other context, it is considered as a canonical expression which is
completely evaluated. We can test this using the command
\texttt{Eval}, which computes the normal forms of a term:
\begin{coq_example}
Eval compute in (from 0).
Eval compute in (hd (from 0)).
Eval compute in (tl (from 0)).
\end{coq_example}
\begin{Variants}
\item{\tt CoFixpoint {\ident$_1$} {\params} :{\type$_1$} :=
{\term$_1$}}\\ As for most constructions, arguments of co-fixpoints
expressions can be introduced before the {\tt :=} sign.
\item{\tt CoFixpoint {\ident$_1$} :{\type$_1$} := {\term$_1$}\\
with\\
\mbox{}\hspace{0.1cm} $\ldots$ \\
with {\ident$_m$} : {\type$_m$} := {\term$_m$}}\\
As in the \texttt{Fixpoint} command (see Section~\ref{Fixpoint}), it
is possible to introduce a block of mutually dependent methods.
\end{Variants}
%%
%% Theorems & Lemmas
%%
\subsection{Assertions and proofs}
\label{Assertions}
An assertion states a proposition (or a type) of which the proof (or
an inhabitant of the type) is interactively built using tactics. The
interactive proof mode is described in
Chapter~\ref{Proof-handling} and the tactics in Chapter~\ref{Tactics}.
The basic assertion command is:
\subsubsection{\tt Theorem {\ident} \zeroone{\binders} : {\type}.
\comindex{Theorem}}
After the statement is asserted, {\Coq} needs a proof. Once a proof of
{\type} under the assumptions represented by {\binders} is given and
validated, the proof is generalized into a proof of {\tt forall
\zeroone{\binders}, {\type}} and the theorem is bound to the name
{\ident} in the environment.
\begin{ErrMsgs}
\item \errindex{The term {\form} has type {\ldots} which should be Set,
Prop or Type}
\item \errindexbis{{\ident} already exists}{already exists}
The name you provided is already defined. You have then to choose
another name.
\end{ErrMsgs}
\begin{Variants}
\item {\tt Lemma {\ident} \zeroone{\binders} : {\type}.}\comindex{Lemma}\\
{\tt Remark {\ident} \zeroone{\binders} : {\type}.}\comindex{Remark}\\
{\tt Fact {\ident} \zeroone{\binders} : {\type}.}\comindex{Fact}\\
{\tt Corollary {\ident} \zeroone{\binders} : {\type}.}\comindex{Corollary}\\
{\tt Proposition {\ident} \zeroone{\binders} : {\type}.}\comindex{Proposition}
These commands are synonyms of \texttt{Theorem {\ident} \zeroone{\binders} : {\type}}.
\item {\tt Theorem \nelist{{\ident} \zeroone{\binders}: {\type}}{with}.}
This command is useful for theorems that are proved by simultaneous
induction over a mutually inductive assumption, or that assert mutually
dependent statements in some mutual co-inductive type. It is equivalent
to {\tt Fixpoint} or {\tt CoFixpoint}
(see Section~\ref{CoFixpoint}) but using tactics to build the proof of
the statements (or the body of the specification, depending on the
point of view). The inductive or co-inductive types on which the
induction or coinduction has to be done is assumed to be non ambiguous
and is guessed by the system.
Like in a {\tt Fixpoint} or {\tt CoFixpoint} definition, the induction
hypotheses have to be used on {\em structurally smaller} arguments
(for a {\tt Fixpoint}) or be {\em guarded by a constructor} (for a {\tt
CoFixpoint}). The verification that recursive proof arguments are
correct is done only at the time of registering the lemma in the
environment. To know if the use of induction hypotheses is correct at
some time of the interactive development of a proof, use the command
{\tt Guarded} (see Section~\ref{Guarded}).
The command can be used also with {\tt Lemma},
{\tt Remark}, etc. instead of {\tt Theorem}.
\item {\tt Definition {\ident} \zeroone{\binders} : {\type}.}
This allows to define a term of type {\type} using the proof editing mode. It
behaves as {\tt Theorem} but is intended to be used in conjunction with
{\tt Defined} (see \ref{Defined}) in order to define a
constant of which the computational behavior is relevant.
The command can be used also with {\tt Example} instead
of {\tt Definition}.
\SeeAlso Sections~\ref{Opaque} and~\ref{Transparent} ({\tt Opaque}
and {\tt Transparent}) and~\ref{unfold} (tactic {\tt unfold}).
\item {\tt Let {\ident} \zeroone{\binders} : {\type}.}
Like {\tt Definition {\ident} \zeroone{\binders} : {\type}.} except
that the definition is turned into a local definition generalized over
the declarations depending on it after closing the current section.
\item {\tt Fixpoint \nelist{{\ident} {\binders} \zeroone{\annotation} {\typecstr} \zeroone{{\tt :=} {\term}}}{with}.}
\comindex{Fixpoint}
This generalizes the syntax of {\tt Fixpoint} so that one or more
bodies can be defined interactively using the proof editing mode (when
a body is omitted, its type is mandatory in the syntax). When the
block of proofs is completed, it is intended to be ended by {\tt
Defined}.
\item {\tt CoFixpoint \nelist{{\ident} \zeroone{\binders} {\typecstr} \zeroone{{\tt :=} {\term}}}{with}.}
\comindex{CoFixpoint}
This generalizes the syntax of {\tt CoFixpoint} so that one or more bodies
can be defined interactively using the proof editing mode.
\end{Variants}
\subsubsection{{\tt Proof.} {\dots} {\tt Qed.}
\comindex{Proof}
\comindex{Qed}}
A proof starts by the keyword {\tt Proof}. Then {\Coq} enters the
proof editing mode until the proof is completed. The proof editing
mode essentially contains tactics that are described in chapter
\ref{Tactics}. Besides tactics, there are commands to manage the proof
editing mode. They are described in Chapter~\ref{Proof-handling}. When
the proof is completed it should be validated and put in the
environment using the keyword {\tt Qed}.
\medskip
\ErrMsg
\begin{enumerate}
\item \errindex{{\ident} already exists}
\end{enumerate}
\begin{Remarks}
\item Several statements can be simultaneously asserted.
\item Not only other assertions but any vernacular command can be given
while in the process of proving a given assertion. In this case, the command is
understood as if it would have been given before the statements still to be
proved.
\item {\tt Proof} is recommended but can currently be omitted. On the
opposite side, {\tt Qed} (or {\tt Defined}, see below) is mandatory to
validate a proof.
\item Proofs ended by {\tt Qed} are declared opaque. Their content
cannot be unfolded (see \ref{Conversion-tactics}), thus realizing
some form of {\em proof-irrelevance}. To be able to unfold a proof,
the proof should be ended by {\tt Defined} (see below).
\end{Remarks}
\begin{Variants}
\item \comindex{Defined}
{\tt Proof.} {\dots} {\tt Defined.}\\
Same as {\tt Proof.} {\dots} {\tt Qed.} but the proof is
then declared transparent, which means that its
content can be explicitly used for type-checking and that it
can be unfolded in conversion tactics (see
\ref{Conversion-tactics}, \ref{Opaque}, \ref{Transparent}).
%Not claimed to be part of Gallina...
%\item {\tt Proof.} {\dots} {\tt Save.}\\
% Same as {\tt Proof.} {\dots} {\tt Qed.}
%\item {\tt Goal} \type {\dots} {\tt Save} \ident \\
% Same as {\tt Lemma} \ident {\tt :} \type \dots {\tt Save.}
% This is intended to be used in the interactive mode.
\item \comindex{Admitted}
{\tt Proof.} {\dots} {\tt Admitted.}\\
Turns the current asserted statement into an axiom and exits the
proof mode.
\end{Variants}
% Local Variables:
% mode: LaTeX
% TeX-master: "Reference-Manual"
% End:
|