1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
|
%\documentstyle[11pt]{article}
%\input{title}
%\include{macros}
%\makeindex
%\begin{document}
%\coverpage{The module {\tt Equality}}{Cristina CORNES}
%\tableofcontents
\chapter[Tactics for inductive types and families]{Tactics for inductive types and families\label{Addoc-equality}}
This chapter details a few special tactics useful for inferring facts
from inductive hypotheses. They can be considered as tools that
macro-generate complicated uses of the basic elimination tactics for
inductive types.
Sections \ref{inversion_introduction} to \ref{inversion_using} present
inversion tactics and Section~\ref{scheme} describes
a command {\tt Scheme} for automatic generation of induction schemes
for mutual inductive types.
%\end{document}
%\documentstyle[11pt]{article}
%\input{title}
%\begin{document}
%\coverpage{Module Inv: Inversion Tactics}{Cristina CORNES}
\section[Generalities about inversion]{Generalities about inversion\label{inversion_introduction}}
When working with (co)inductive predicates, we are very often faced to
some of these situations:
\begin{itemize}
\item we have an inconsistent instance of an inductive predicate in the
local context of hypotheses. Thus, the current goal can be trivially
proved by absurdity.
\item we have a hypothesis that is an instance of an inductive
predicate, and the instance has some variables whose constraints we
would like to derive.
\end{itemize}
The inversion tactics are very useful to simplify the work in these
cases. Inversion tools can be classified in three groups:
\begin{enumerate}
\item tactics for inverting an instance without stocking the inversion
lemma in the context:
(\texttt{Dependent}) \texttt{Inversion} and
(\texttt{Dependent}) \texttt{Inversion\_clear}.
\item commands for generating and stocking in the context the inversion
lemma corresponding to an instance: \texttt{Derive}
(\texttt{Dependent}) \texttt{Inversion}, \texttt{Derive}
(\texttt{Dependent}) \texttt{Inversion\_clear}.
\item tactics for inverting an instance using an already defined
inversion lemma: \texttt{Inversion \ldots using}.
\end{enumerate}
These tactics work for inductive types of arity $(\vec{x}:\vec{T})s$
where $s \in \{Prop,Set,Type\}$. Sections \ref{inversion_primitive},
\ref{inversion_derivation} and \ref{inversion_using}
describe respectively each group of tools.
As inversion proofs may be large in size, we recommend the user to
stock the lemmas whenever the same instance needs to be inverted
several times.\\
Let's consider the relation \texttt{Le} over natural numbers and the
following variables:
\begin{coq_eval}
Restore State "Initial".
\end{coq_eval}
\begin{coq_example*}
Inductive Le : nat -> nat -> Set :=
| LeO : forall n:nat, Le 0%N n
| LeS : forall n m:nat, Le n m -> Le (S n) (S m).
Variable P : nat -> nat -> Prop.
Variable Q : forall n m:nat, Le n m -> Prop.
\end{coq_example*}
For example purposes we defined \verb+Le: nat->nat->Set+
but we may have defined
it \texttt{Le} of type \verb+nat->nat->Prop+ or \verb+nat->nat->Type+.
\section[Inverting an instance]{Inverting an instance\label{inversion_primitive}}
\subsection{The non dependent case}
\begin{itemize}
\item \texttt{Inversion\_clear} \ident~\\
\index{Inversion-clear@{\tt Inversion\_clear}}
Let the type of \ident~ in the local context be $(I~\vec{t})$,
where $I$ is a (co)inductive predicate. Then,
\texttt{Inversion} applied to \ident~ derives for each possible
constructor $c_i$ of $(I~\vec{t})$, {\bf all} the necessary
conditions that should hold for the instance $(I~\vec{t})$ to be
proved by $c_i$. Finally it erases \ident~ from the context.
For example, consider the goal:
\begin{coq_eval}
Lemma ex : forall n m:nat, Le (S n) m -> P n m.
intros.
\end{coq_eval}
\begin{coq_example}
Show.
\end{coq_example}
To prove the goal we may need to reason by cases on \texttt{H} and to
derive that \texttt{m} is necessarily of
the form $(S~m_0)$ for certain $m_0$ and that $(Le~n~m_0)$.
Deriving these conditions corresponds to prove that the
only possible constructor of \texttt{(Le (S n) m)} is
\texttt{LeS} and that we can invert the
\texttt{->} in the type of \texttt{LeS}.
This inversion is possible because \texttt{Le} is the smallest set closed by
the constructors \texttt{LeO} and \texttt{LeS}.
\begin{coq_example}
inversion_clear H.
\end{coq_example}
Note that \texttt{m} has been substituted in the goal for \texttt{(S m0)}
and that the hypothesis \texttt{(Le n m0)} has been added to the
context.
\item \texttt{Inversion} \ident~\\
\index{Inversion@{\tt Inversion}}
This tactic differs from {\tt Inversion\_clear} in the fact that
it adds the equality constraints in the context and
it does not erase the hypothesis \ident.
In the previous example, {\tt Inversion\_clear}
has substituted \texttt{m} by \texttt{(S m0)}. Sometimes it is
interesting to have the equality \texttt{m=(S m0)} in the
context to use it after. In that case we can use \texttt{Inversion} that
does not clear the equalities:
\begin{coq_example*}
Undo.
\end{coq_example*}
\begin{coq_example}
inversion H.
\end{coq_example}
\begin{coq_eval}
Undo.
\end{coq_eval}
Note that the hypothesis \texttt{(S m0)=m} has been deduced and
\texttt{H} has not been cleared from the context.
\end{itemize}
\begin{Variants}
\item \texttt{Inversion\_clear } \ident~ \texttt{in} \ident$_1$ \ldots
\ident$_n$\\
\index{Inversion_clear...in@{\tt Inversion\_clear...in}}
Let \ident$_1$ \ldots \ident$_n$, be identifiers in the local context. This
tactic behaves as generalizing \ident$_1$ \ldots \ident$_n$, and then performing
{\tt Inversion\_clear}.
\item \texttt{Inversion } \ident~ \texttt{in} \ident$_1$ \ldots \ident$_n$\\
\index{Inversion ... in@{\tt Inversion ... in}}
Let \ident$_1$ \ldots \ident$_n$, be identifiers in the local context. This
tactic behaves as generalizing \ident$_1$ \ldots \ident$_n$, and then performing
\texttt{Inversion}.
\item \texttt{Simple Inversion} \ident~ \\
\index{Simple Inversion@{\tt Simple Inversion}}
It is a very primitive inversion tactic that derives all the necessary
equalities but it does not simplify
the constraints as \texttt{Inversion} and
{\tt Inversion\_clear} do.
\end{Variants}
\subsection{The dependent case}
\begin{itemize}
\item \texttt{Dependent Inversion\_clear} \ident~\\
\index{Dependent Inversion-clear@{\tt Dependent Inversion\_clear}}
Let the type of \ident~ in the local context be $(I~\vec{t})$,
where $I$ is a (co)inductive predicate, and let the goal depend both on
$\vec{t}$ and \ident. Then,
\texttt{Dependent Inversion\_clear} applied to \ident~ derives
for each possible constructor $c_i$ of $(I~\vec{t})$, {\bf all} the
necessary conditions that should hold for the instance $(I~\vec{t})$ to be
proved by $c_i$. It also substitutes \ident~ for the corresponding
term in the goal and it erases \ident~ from the context.
For example, consider the goal:
\begin{coq_eval}
Lemma ex_dep : forall (n m:nat) (H:Le (S n) m), Q (S n) m H.
intros.
\end{coq_eval}
\begin{coq_example}
Show.
\end{coq_example}
As \texttt{H} occurs in the goal, we may want to reason by cases on its
structure and so, we would like inversion tactics to
substitute \texttt{H} by the corresponding term in constructor form.
Neither \texttt{Inversion} nor {\tt Inversion\_clear} make such a
substitution. To have such a behavior we use the dependent inversion tactics:
\begin{coq_example}
dependent inversion_clear H.
\end{coq_example}
Note that \texttt{H} has been substituted by \texttt{(LeS n m0 l)} and
\texttt{m} by \texttt{(S m0)}.
\end{itemize}
\begin{Variants}
\item \texttt{Dependent Inversion\_clear } \ident~ \texttt{ with } \term\\
\index{Dependent Inversion_clear...with@{\tt Dependent Inversion\_clear...with}}
\noindent Behaves as \texttt{Dependent Inversion\_clear} but allows to give
explicitly the good generalization of the goal. It is useful when
the system fails to generalize the goal automatically. If
\ident~ has type $(I~\vec{t})$ and $I$ has type
$(\vec{x}:\vec{T})s$, then \term~ must be of type
$I:(\vec{x}:\vec{T})(I~\vec{x})\rightarrow s'$ where $s'$ is the
type of the goal.
\item \texttt{Dependent Inversion} \ident~\\
\index{Dependent Inversion@{\tt Dependent Inversion}}
This tactic differs from \texttt{Dependent Inversion\_clear} in the fact that
it also adds the equality constraints in the context and
it does not erase the hypothesis \ident~.
\item \texttt{Dependent Inversion } \ident~ \texttt{ with } \term \\
\index{Dependent Inversion...with@{\tt Dependent Inversion...with}}
Analogous to \texttt{Dependent Inversion\_clear .. with..} above.
\end{Variants}
\section[Deriving the inversion lemmas]{Deriving the inversion lemmas\label{inversion_derivation}}
\subsection{The non dependent case}
The tactics (\texttt{Dependent}) \texttt{Inversion} and (\texttt{Dependent})
{\tt Inversion\_clear} work on a
certain instance $(I~\vec{t})$ of an inductive predicate. At each
application, they inspect the given instance and derive the
corresponding inversion lemma. If we have to invert the same
instance several times it is recommended to stock the lemma in the
context and to reuse it whenever we need it.
The families of commands \texttt{Derive Inversion}, \texttt{Derive
Dependent Inversion}, \texttt{Derive} \\ {\tt Inversion\_clear} and \texttt{Derive Dependent Inversion\_clear}
allow to generate inversion lemmas for given instances and sorts. Next
section describes the tactic \texttt{Inversion}$\ldots$\texttt{using} that refines the
goal with a specified inversion lemma.
\begin{itemize}
\item \texttt{Derive Inversion\_clear} \ident~ \texttt{with}
$(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\
\index{Derive Inversion_clear...with@{\tt Derive Inversion\_clear...with}}
Let $I$ be an inductive predicate and $\vec{x}$ the variables
occurring in $\vec{t}$. This command generates and stocks
the inversion lemma for the sort \sort~ corresponding to the instance
$(\vec{x}:\vec{T})(I~\vec{t})$ with the name \ident~ in the {\bf
global} environment. When applied it is equivalent to have
inverted the instance with the tactic {\tt Inversion\_clear}.
For example, to generate the inversion lemma for the instance
\texttt{(Le (S n) m)} and the sort \texttt{Prop} we do:
\begin{coq_example}
Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort
Prop.
\end{coq_example}
Let us inspect the type of the generated lemma:
\begin{coq_example}
Check leminv.
\end{coq_example}
\end{itemize}
%\variants
%\begin{enumerate}
%\item \verb+Derive Inversion_clear+ \ident$_1$ \ident$_2$ \\
%\index{Derive Inversion_clear@{\tt Derive Inversion\_clear}}
% Let \ident$_1$ have type $(I~\vec{t})$ in the local context ($I$
% an inductive predicate). Then, this command has the same semantics
% as \verb+Derive Inversion_clear+ \ident$_2$~ \verb+with+
% $(\vec{x}:\vec{T})(I~\vec{t})$ \verb+Sort Prop+ where $\vec{x}$ are the free
% variables of $(I~\vec{t})$ declared in the local context (variables
% of the global context are considered as constants).
%\item \verb+Derive Inversion+ \ident$_1$~ \ident$_2$~\\
%\index{Derive Inversion@{\tt Derive Inversion}}
% Analogous to the previous command.
%\item \verb+Derive Inversion+ $num$ \ident~ \ident~ \\
%\index{Derive Inversion@{\tt Derive Inversion}}
% This command behaves as \verb+Derive Inversion+ \ident~ {\it
% namehyp} performed on the goal number $num$.
%
%\item \verb+Derive Inversion_clear+ $num$ \ident~ \ident~ \\
%\index{Derive Inversion_clear@{\tt Derive Inversion\_clear}}
% This command behaves as \verb+Derive Inversion_clear+ \ident~
% \ident~ performed on the goal number $num$.
%\end{enumerate}
A derived inversion lemma is adequate for inverting the instance
with which it was generated, \texttt{Derive} applied to
different instances yields different lemmas. In general, if we generate
the inversion lemma with
an instance $(\vec{x}:\vec{T})(I~\vec{t})$ and a sort $s$, the inversion lemma will
expect a predicate of type $(\vec{x}:\vec{T})s$ as first argument. \\
\begin{Variant}
\item \texttt{Derive Inversion} \ident~ \texttt{with}
$(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort\\
\index{Derive Inversion...with@{\tt Derive Inversion...with}}
Analogous of \texttt{Derive Inversion\_clear .. with ..} but
when applied it is equivalent to having
inverted the instance with the tactic \texttt{Inversion}.
\end{Variant}
\subsection{The dependent case}
\begin{itemize}
\item \texttt{Derive Dependent Inversion\_clear} \ident~ \texttt{with}
$(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\
\index{Derive Dependent Inversion\_clear...with@{\tt Derive Dependent Inversion\_clear...with}}
Let $I$ be an inductive predicate. This command generates and stocks
the dependent inversion lemma for the sort \sort~ corresponding to the instance
$(\vec{x}:\vec{T})(I~\vec{t})$ with the name \ident~ in the {\bf
global} environment. When applied it is equivalent to having
inverted the instance with the tactic \texttt{Dependent Inversion\_clear}.
\end{itemize}
\begin{coq_example}
Derive Dependent Inversion_clear leminv_dep with
(forall n m:nat, Le (S n) m) Sort Prop.
\end{coq_example}
\begin{coq_example}
Check leminv_dep.
\end{coq_example}
\begin{Variants}
\item \texttt{Derive Dependent Inversion} \ident~ \texttt{with}
$(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\
\index{Derive Dependent Inversion...with@{\tt Derive Dependent Inversion...with}}
Analogous to \texttt{Derive Dependent Inversion\_clear}, but when
applied it is equivalent to having
inverted the instance with the tactic \texttt{Dependent Inversion}.
\end{Variants}
\section[Using already defined inversion lemmas]{Using already defined inversion lemmas\label{inversion_using}}
\begin{itemize}
\item \texttt{Inversion} \ident \texttt{ using} \ident$'$ \\
\index{Inversion...using@{\tt Inversion...using}}
Let \ident~ have type $(I~\vec{t})$ ($I$ an inductive
predicate) in the local context, and \ident$'$ be a (dependent) inversion
lemma. Then, this tactic refines the current goal with the specified
lemma.
\begin{coq_eval}
Abort.
\end{coq_eval}
\begin{coq_example}
Show.
\end{coq_example}
\begin{coq_example}
inversion H using leminv.
\end{coq_example}
\end{itemize}
\variant
\begin{enumerate}
\item \texttt{Inversion} \ident~ \texttt{using} \ident$'$ \texttt{in} \ident$_1$\ldots \ident$_n$\\
\index{Inversion...using...in@{\tt Inversion...using...in}}
This tactic behaves as generalizing \ident$_1$\ldots \ident$_n$,
then doing \texttt{Use Inversion} \ident~\ident$'$.
\end{enumerate}
\section[\tt Scheme ...]{\tt Scheme ...\index{Scheme@{\tt Scheme}}\label{Scheme}
\label{scheme}}
The {\tt Scheme} command is a high-level tool for generating
automatically (possibly mutual) induction principles for given types
and sorts. Its syntax follows the schema :
\noindent
{\tt Scheme {\ident$_1$} := Induction for \term$_1$ Sort {\sort$_1$} \\
with\\
\mbox{}\hspace{0.1cm} .. \\
with {\ident$_m$} := Induction for {\term$_m$} Sort
{\sort$_m$}}\\
\term$_1$ \ldots \term$_m$ are different inductive types belonging to
the same package of mutual inductive definitions. This command
generates {\ident$_1$}\ldots{\ident$_m$} to be mutually recursive
definitions. Each term {\ident$_i$} proves a general principle
of mutual induction for objects in type {\term$_i$}.
\Example
The definition of principle of mutual induction for {\tt tree} and
{\tt forest} over the sort {\tt Set} is defined by the command:
\begin{coq_eval}
Restore State "Initial".
Variables A B : Set.
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| leaf : B -> forest
| cons : tree -> forest -> forest.
\end{coq_eval}
\begin{coq_example*}
Scheme tree_forest_rec := Induction for tree
Sort Set
with forest_tree_rec := Induction for forest Sort Set.
\end{coq_example*}
You may now look at the type of {\tt tree\_forest\_rec} :
\begin{coq_example}
Check tree_forest_rec.
\end{coq_example}
This principle involves two different predicates for {\tt trees} and
{\tt forests}; it also has three premises each one corresponding to a
constructor of one of the inductive definitions.
The principle {\tt tree\_forest\_rec} shares exactly the same
premises, only the conclusion now refers to the property of forests.
\begin{coq_example}
Check forest_tree_rec.
\end{coq_example}
\begin{Variant}
\item {\tt Scheme {\ident$_1$} := Minimality for \term$_1$ Sort {\sort$_1$} \\
with\\
\mbox{}\hspace{0.1cm} .. \\
with {\ident$_m$} := Minimality for {\term$_m$} Sort
{\sort$_m$}}\\
Same as before but defines a non-dependent elimination principle more
natural in case of inductively defined relations.
\end{Variant}
\Example
With the predicates {\tt odd} and {\tt even} inductively defined as:
% \begin{coq_eval}
% Restore State "Initial".
% \end{coq_eval}
\begin{coq_example*}
Inductive odd : nat -> Prop :=
oddS : forall n:nat, even n -> odd (S n)
with even : nat -> Prop :=
| evenO : even 0%N
| evenS : forall n:nat, odd n -> even (S n).
\end{coq_example*}
The following command generates a powerful elimination
principle:
\begin{coq_example*}
Scheme odd_even := Minimality for odd Sort Prop
with even_odd := Minimality for even Sort Prop.
\end{coq_example*}
The type of {\tt odd\_even} for instance will be:
\begin{coq_example}
Check odd_even.
\end{coq_example}
The type of {\tt even\_odd} shares the same premises but the
conclusion is {\tt (n:nat)(even n)->(Q n)}.
\subsection[\tt Combined Scheme ...]{\tt Combined Scheme ...\index{CombinedScheme@{\tt Combined Scheme}}\label{CombinedScheme}
\label{combinedscheme}}
The {\tt Combined Scheme} command is a tool for combining
induction principles generated by the {\tt Scheme} command.
Its syntax follows the schema :
\noindent
{\tt Combined Scheme {\ident$_0$} from {\ident$_1$}, .., {\ident$_n$}}\\
\ident$_1$ \ldots \ident$_n$ are different inductive principles that must belong to
the same package of mutual inductive principle definitions. This command
generates {\ident$_0$} to be the conjunction of the principles: it is
build from the common premises of the principles and concluded by the
conjunction of their conclusions. For exemple, we can combine the
induction principles for trees and forests:
\begin{coq_example*}
Combined Scheme tree_forest_mutind from tree_ind, forest_ind.
Check tree_forest_mutind.
\end{coq_example*}
%\end{document}
|