1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
|
\chapter[The tactic language]{The tactic language\label{TacticLanguage}}
%\geometry{a4paper,body={5in,8in}}
This chapter gives a compact documentation of Ltac, the tactic
language available in {\Coq}. We start by giving the syntax, and next,
we present the informal semantics. If you want to know more regarding
this language and especially about its foundations, you can refer
to~\cite{Del00}. Chapter~\ref{Tactics-examples} is devoted to giving
examples of use of this language on small but also with non-trivial
problems.
\section{Syntax}
\def\tacexpr{\textrm{\textsl{expr}}}
\def\tacexprlow{\textrm{\textsl{tacexpr$_1$}}}
\def\tacexprinf{\textrm{\textsl{tacexpr$_2$}}}
\def\tacexprpref{\textrm{\textsl{tacexpr$_3$}}}
\def\atom{\textrm{\textsl{atom}}}
%%\def\recclause{\textrm{\textsl{rec\_clause}}}
\def\letclause{\textrm{\textsl{let\_clause}}}
\def\matchrule{\textrm{\textsl{match\_rule}}}
\def\contextrule{\textrm{\textsl{context\_rule}}}
\def\contexthyp{\textrm{\textsl{context\_hyp}}}
\def\tacarg{\nterm{tacarg}}
\def\cpattern{\nterm{cpattern}}
The syntax of the tactic language is given Figures~\ref{ltac}
and~\ref{ltac_aux}. See Chapter~\ref{BNF-syntax} for a description of
the BNF metasyntax used in these grammar rules. Various already
defined entries will be used in this chapter: entries
{\naturalnumber}, {\integer}, {\ident}, {\qualid}, {\term},
{\cpattern} and {\atomictac} represent respectively the natural and
integer numbers, the authorized identificators and qualified names,
{\Coq}'s terms and patterns and all the atomic tactics described in
Chapter~\ref{Tactics}. The syntax of {\cpattern} is the same as that
of terms, but it is extended with pattern matching metavariables. In
{\cpattern}, a pattern-matching metavariable is represented with the
syntax {\tt ?id} where {\tt id} is an {\ident}. The notation {\tt \_}
can also be used to denote metavariable whose instance is
irrelevant. In the notation {\tt ?id}, the identifier allows us to
keep instantiations and to make constraints whereas {\tt \_} shows
that we are not interested in what will be matched. On the right hand
side of pattern-matching clauses, the named metavariable are used
without the question mark prefix. There is also a special notation for
second-order pattern-matching problems: in an applicative pattern of
the form {\tt @?id id$_1$ \ldots id$_n$}, the variable {\tt id}
matches any complex expression with (possible) dependencies in the
variables {\tt id$_1$ \ldots id$_n$} and returns a functional term of
the form {\tt fun id$_1$ \ldots id$_n$ => {\term}}.
The main entry of the grammar is {\tacexpr}. This language is used in
proof mode but it can also be used in toplevel definitions as shown in
Figure~\ref{ltactop}.
\begin{Remarks}
\item The infix tacticals ``\dots\ {\tt ||} \dots'' and ``\dots\ {\tt
;} \dots'' are associative.
\item In {\tacarg}, there is an overlap between {\qualid} as a
direct tactic argument and {\qualid} as a particular case of
{\term}. The resolution is done by first looking for a reference of
the tactic language and if it fails, for a reference to a term. To
force the resolution as a reference of the tactic language, use the
form {\tt ltac :} {\qualid}. To force the resolution as a reference to
a term, use the syntax {\tt ({\qualid})}.
\item As shown by the figure, tactical {\tt ||} binds more than the
prefix tacticals {\tt try}, {\tt repeat}, {\tt do} and
{\tt abstract} which themselves bind more than the postfix tactical
``{\tt \dots\ ;[ \dots\ ]}'' which binds more than ``\dots\ {\tt ;}
\dots''.
For instance
\begin{quote}
{\tt try repeat \tac$_1$ ||
\tac$_2$;\tac$_3$;[\tac$_{31}$|\dots|\tac$_{3n}$];\tac$_4$.}
\end{quote}
is understood as
\begin{quote}
{\tt (try (repeat (\tac$_1$ || \tac$_2$)));} \\
{\tt ((\tac$_3$;[\tac$_{31}$|\dots|\tac$_{3n}$]);\tac$_4$).}
\end{quote}
\end{Remarks}
\begin{figure}[htbp]
\begin{centerframe}
\begin{tabular}{lcl}
{\tacexpr} & ::= &
{\tacexpr} {\tt ;} {\tacexpr}\\
& | & {\tacexpr} {\tt ; [} \nelist{\tacexpr}{|} {\tt ]}\\
& | & {\tacexprpref}\\
\\
{\tacexprpref} & ::= &
{\tt do} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} {\tacexprpref}\\
& | & {\tt progress} {\tacexprpref}\\
& | & {\tt repeat} {\tacexprpref}\\
& | & {\tt try} {\tacexprpref}\\
& | & {\tt timeout} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} {\tacexprpref}\\
& | & {\tacexprinf} \\
\\
{\tacexprinf} & ::= &
{\tacexprlow} {\tt ||} {\tacexprpref}\\
& | & {\tacexprlow}\\
\\
{\tacexprlow} & ::= &
{\tt fun} \nelist{\name}{} {\tt =>} {\atom}\\
& | &
{\tt let} \zeroone{\tt rec} \nelist{\letclause}{\tt with} {\tt in}
{\atom}\\
& | &
{\tt match goal with} \nelist{\contextrule}{\tt |} {\tt end}\\
& | &
{\tt match reverse goal with} \nelist{\contextrule}{\tt |} {\tt end}\\
& | &
{\tt match} {\tacexpr} {\tt with} \nelist{\matchrule}{\tt |} {\tt end}\\
& | &
{\tt lazymatch goal with} \nelist{\contextrule}{\tt |} {\tt end}\\
& | &
{\tt lazymatch reverse goal with} \nelist{\contextrule}{\tt |} {\tt end}\\
& | &
{\tt lazymatch} {\tacexpr} {\tt with} \nelist{\matchrule}{\tt |} {\tt end}\\
& | & {\tt abstract} {\atom}\\
& | & {\tt abstract} {\atom} {\tt using} {\ident} \\
& | & {\tt first [} \nelist{\tacexpr}{\tt |} {\tt ]}\\
& | & {\tt solve [} \nelist{\tacexpr}{\tt |} {\tt ]}\\
& | & {\tt idtac} \sequence{\messagetoken}{}\\
& | & {\tt fail} \zeroone{\naturalnumber} \sequence{\messagetoken}{}\\
& | & {\tt fresh} ~|~ {\tt fresh} {\qstring}\\
& | & {\tt context} {\ident} {\tt [} {\term} {\tt ]}\\
& | & {\tt eval} {\nterm{redexpr}} {\tt in} {\term}\\
& | & {\tt type of} {\term}\\
& | & {\tt external} {\qstring} {\qstring} \nelist{\tacarg}{}\\
& | & {\tt constr :} {\term}\\
& | & \atomictac\\
& | & {\qualid} \nelist{\tacarg}{}\\
& | & {\atom}\\
\\
{\atom} & ::= &
{\qualid} \\
& | & ()\\
& | & {\integer}\\
& | & {\tt (} {\tacexpr} {\tt )}\\
\\
{\messagetoken}\!\!\!\!\!\! & ::= & {\qstring} ~|~ {\ident} ~|~ {\integer} \\
\end{tabular}
\end{centerframe}
\caption{Syntax of the tactic language}
\label{ltac}
\end{figure}
\begin{figure}[htbp]
\begin{centerframe}
\begin{tabular}{lcl}
\tacarg & ::= &
{\qualid}\\
& $|$ & {\tt ()} \\
& $|$ & {\tt ltac :} {\atom}\\
& $|$ & {\term}\\
\\
\letclause & ::= & {\ident} \sequence{\name}{} {\tt :=} {\tacexpr}\\
\\
\contextrule & ::= &
\nelist{\contexthyp}{\tt ,} {\tt |-}{\cpattern} {\tt =>} {\tacexpr}\\
& $|$ & {\tt |-} {\cpattern} {\tt =>} {\tacexpr}\\
& $|$ & {\tt \_ =>} {\tacexpr}\\
\\
\contexthyp & ::= & {\name} {\tt :} {\cpattern}\\
& $|$ & {\name} {\tt :=} {\cpattern} \zeroone{{\tt :} {\cpattern}}\\
\\
\matchrule & ::= &
{\cpattern} {\tt =>} {\tacexpr}\\
& $|$ & {\tt context} {\zeroone{\ident}} {\tt [} {\cpattern} {\tt ]}
{\tt =>} {\tacexpr}\\
& $|$ & {\tt appcontext} {\zeroone{\ident}} {\tt [} {\cpattern} {\tt ]}
{\tt =>} {\tacexpr}\\
& $|$ & {\tt \_ =>} {\tacexpr}\\
\end{tabular}
\end{centerframe}
\caption{Syntax of the tactic language (continued)}
\label{ltac_aux}
\end{figure}
\begin{figure}[ht]
\begin{centerframe}
\begin{tabular}{lcl}
\nterm{top} & ::= & \zeroone{\tt Local} {\tt Ltac} \nelist{\nterm{ltac\_def}} {\tt with} \\
\\
\nterm{ltac\_def} & ::= & {\ident} \sequence{\ident}{} {\tt :=}
{\tacexpr}\\
& $|$ &{\qualid} \sequence{\ident}{} {\tt ::=}{\tacexpr}
\end{tabular}
\end{centerframe}
\caption{Tactic toplevel definitions}
\label{ltactop}
\end{figure}
%%
%% Semantics
%%
\section{Semantics}
%\index[tactic]{Tacticals}
\index{Tacticals}
%\label{Tacticals}
Tactic expressions can only be applied in the context of a goal. The
evaluation yields either a term, an integer or a tactic. Intermediary
results can be terms or integers but the final result must be a tactic
which is then applied to the current goal.
There is a special case for {\tt match goal} expressions of which
the clauses evaluate to tactics. Such expressions can only be used as
end result of a tactic expression (never as argument of a non recursive local
definition or of an application).
The rest of this section explains the semantics of every construction
of Ltac.
%% \subsection{Values}
%% Values are given by Figure~\ref{ltacval}. All these values are tactic values,
%% i.e. to be applied to a goal, except {\tt Fun}, {\tt Rec} and $arg$ values.
%% \begin{figure}[ht]
%% \noindent{}\framebox[6in][l]
%% {\parbox{6in}
%% {\begin{center}
%% \begin{tabular}{lp{0.1in}l}
%% $vexpr$ & ::= & $vexpr$ {\tt ;} $vexpr$\\
%% & | & $vexpr$ {\tt ; [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt
%% ]}\\
%% & | & $vatom$\\
%% \\
%% $vatom$ & ::= & {\tt Fun} \nelist{\inputfun}{} {\tt ->} {\tacexpr}\\
%% %& | & {\tt Rec} \recclause\\
%% & | &
%% {\tt Rec} \nelist{\recclause}{\tt And} {\tt In}
%% {\tacexpr}\\
%% & | &
%% {\tt Match Context With} {\it (}$context\_rule$ {\tt |}{\it )}$^*$
%% $context\_rule$\\
%% & | & {\tt (} $vexpr$ {\tt )}\\
%% & | & $vatom$ {\tt Orelse} $vatom$\\
%% & | & {\tt Do} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} $vatom$\\
%% & | & {\tt Repeat} $vatom$\\
%% & | & {\tt Try} $vatom$\\
%% & | & {\tt First [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt ]}\\
%% & | & {\tt Solve [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt ]}\\
%% & | & {\tt Idtac}\\
%% & | & {\tt Fail}\\
%% & | & {\primitivetactic}\\
%% & | & $arg$
%% \end{tabular}
%% \end{center}}}
%% \caption{Values of ${\cal L}_{tac}$}
%% \label{ltacval}
%% \end{figure}
%% \subsection{Evaluation}
\subsubsection[Sequence]{Sequence\tacindex{;}
\index{Tacticals!;@{\tt {\tac$_1$};\tac$_2$}}}
A sequence is an expression of the following form:
\begin{quote}
{\tacexpr}$_1$ {\tt ;} {\tacexpr}$_2$
\end{quote}
The expressions {\tacexpr}$_1$ and {\tacexpr}$_2$ are evaluated
to $v_1$ and $v_2$ which have to be tactic values. The tactic $v_1$ is
then applied and $v_2$ is applied to every subgoal generated by the
application of $v_1$. Sequence is left-associative.
\subsubsection[General sequence]{General sequence\tacindex{;[\ldots$\mid$\ldots$\mid$\ldots]}}
%\tacindex{; [ | ]}
%\index{; [ | ]@{\tt ;[\ldots$\mid$\ldots$\mid$\ldots]}}
\index{Tacticals!; [ \mid ]@{\tt {\tac$_0$};[{\tac$_1$}$\mid$\ldots$\mid$\tac$_n$]}}
A general sequence has the following form:
\begin{quote}
{\tacexpr}$_0$ {\tt ; [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |}
{\tacexpr}$_n$ {\tt ]}
\end{quote}
The expressions {\tacexpr}$_i$ are evaluated to $v_i$, for $i=0,...,n$
and all have to be tactics. The tactic $v_0$ is applied and $v_i$ is
applied to the $i$-th generated subgoal by the application of $v_0$,
for $=1,...,n$. It fails if the application of $v_0$ does not generate
exactly $n$ subgoals.
\begin{Variants}
\item If no tactic is given for the $i$-th generated subgoal, it
behaves as if the tactic {\tt idtac} were given. For instance, {\tt
split ; [ | auto ]} is a shortcut for
{\tt split ; [ idtac | auto ]}.
\item {\tacexpr}$_0$ {\tt ; [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |}
{\tacexpr}$_i$ {\tt |} {\tt ..} {\tt |} {\tacexpr}$_{i+1+j}$ {\tt |}
$...$ {\tt |} {\tacexpr}$_n$ {\tt ]}
In this variant, {\tt idtac} is used for the subgoals numbered from
$i+1$ to $i+j$ (assuming $n$ is the number of subgoals).
Note that {\tt ..} is part of the syntax, while $...$ is the meta-symbol used
to describe a list of {\tacexpr} of arbitrary length.
\item {\tacexpr}$_0$ {\tt ; [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |}
{\tacexpr}$_i$ {\tt |} {\tacexpr} {\tt ..} {\tt |}
{\tacexpr}$_{i+1+j}$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]}
In this variant, {\tacexpr} is used instead of {\tt idtac} for the
subgoals numbered from $i+1$ to $i+j$.
\end{Variants}
\subsubsection[For loop]{For loop\tacindex{do}
\index{Tacticals!do@{\tt do}}}
There is a for loop that repeats a tactic {\num} times:
\begin{quote}
{\tt do} {\num} {\tacexpr}
\end{quote}
{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is
applied {\num} times. Supposing ${\num}>1$, after the first
application of $v$, $v$ is applied, at least once, to the generated
subgoals and so on. It fails if the application of $v$ fails before
the {\num} applications have been completed.
\subsubsection[Repeat loop]{Repeat loop\tacindex{repeat}
\index{Tacticals!repeat@{\tt repeat}}}
We have a repeat loop with:
\begin{quote}
{\tt repeat} {\tacexpr}
\end{quote}
{\tacexpr} is evaluated to $v$. If $v$ denotes a tactic, this tactic
is applied to the goal. If the application fails, the tactic is
applied recursively to all the generated subgoals until it eventually
fails. The recursion stops in a subgoal when the tactic has failed.
The tactic {\tt repeat {\tacexpr}} itself never fails.
\subsubsection[Error catching]{Error catching\tacindex{try}
\index{Tacticals!try@{\tt try}}}
We can catch the tactic errors with:
\begin{quote}
{\tt try} {\tacexpr}
\end{quote}
{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is
applied. If the application of $v$ fails, it catches the error and
leaves the goal unchanged. If the level of the exception is positive,
then the exception is re-raised with its level decremented.
\subsubsection[Detecting progress]{Detecting progress\tacindex{progress}}
We can check if a tactic made progress with:
\begin{quote}
{\tt progress} {\tacexpr}
\end{quote}
{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is
applied. If the application of $v$ produced one subgoal equal to the
initial goal (up to syntactical equality), then an error of level 0 is
raised.
\ErrMsg \errindex{Failed to progress}
\subsubsection[Branching]{Branching\tacindex{$\mid\mid$}
\index{Tacticals!orelse@{\tt $\mid\mid$}}}
We can easily branch with the following structure:
\begin{quote}
{\tacexpr}$_1$ {\tt ||} {\tacexpr}$_2$
\end{quote}
{\tacexpr}$_1$ and {\tacexpr}$_2$ are evaluated to $v_1$ and
$v_2$. $v_1$ and $v_2$ must be tactic values. $v_1$ is applied and if
it fails to progress then $v_2$ is applied. Branching is left-associative.
\subsubsection[First tactic to work]{First tactic to work\tacindex{first}
\index{Tacticals!first@{\tt first}}}
We may consider the first tactic to work (i.e. which does not fail) among a
panel of tactics:
\begin{quote}
{\tt first [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]}
\end{quote}
{\tacexpr}$_i$ are evaluated to $v_i$ and $v_i$ must be tactic values, for
$i=1,...,n$. Supposing $n>1$, it applies $v_1$, if it works, it stops else it
tries to apply $v_2$ and so on. It fails when there is no applicable tactic.
\ErrMsg \errindex{No applicable tactic}
\subsubsection[Solving]{Solving\tacindex{solve}
\index{Tacticals!solve@{\tt solve}}}
We may consider the first to solve (i.e. which generates no subgoal) among a
panel of tactics:
\begin{quote}
{\tt solve [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]}
\end{quote}
{\tacexpr}$_i$ are evaluated to $v_i$ and $v_i$ must be tactic values, for
$i=1,...,n$. Supposing $n>1$, it applies $v_1$, if it solves, it stops else it
tries to apply $v_2$ and so on. It fails if there is no solving tactic.
\ErrMsg \errindex{Cannot solve the goal}
\subsubsection[Identity]{Identity\tacindex{idtac}
\index{Tacticals!idtac@{\tt idtac}}}
The constant {\tt idtac} is the identity tactic: it leaves any goal
unchanged but it appears in the proof script.
\variant {\tt idtac \nelist{\messagetoken}{}}
This prints the given tokens. Strings and integers are printed
literally. If a (term) variable is given, its contents are printed.
\subsubsection[Failing]{Failing\tacindex{fail}
\index{Tacticals!fail@{\tt fail}}}
The tactic {\tt fail} is the always-failing tactic: it does not solve
any goal. It is useful for defining other tacticals since it can be
catched by {\tt try} or {\tt match goal}.
\begin{Variants}
\item {\tt fail $n$}\\
The number $n$ is the failure level. If no level is specified, it
defaults to $0$. The level is used by {\tt try} and {\tt match goal}.
If $0$, it makes {\tt match goal} considering the next clause
(backtracking). If non zero, the current {\tt match goal} block or
{\tt try} command is aborted and the level is decremented.
\item {\tt fail \nelist{\messagetoken}{}}\\
The given tokens are used for printing the failure message.
\item {\tt fail $n$ \nelist{\messagetoken}{}}\\
This is a combination of the previous variants.
\end{Variants}
\ErrMsg \errindex{Tactic Failure {\it message} (level $n$)}.
\subsubsection[Timeout]{Timeout\tacindex{timeout}
\index{Tacticals!timeout@{\tt timeout}}}
We can force a tactic to stop if it has not finished after a certain
amount of time:
\begin{quote}
{\tt timeout} {\num} {\tacexpr}
\end{quote}
{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is
normally applied, except that it is interrupted after ${\num}$ seconds
if it is still running. In this case the outcome is a failure.
Warning: For the moment, {\tt timeout} is based on elapsed time in
seconds, which is very
machine-dependent: a script that works on a quick machine may fail
on a slow one. The converse is even possible if you combine a
{\tt timeout} with some other tacticals. This tactical is hence
proposed only for convenience during debug or other development
phases, we strongly advise you to not leave any {\tt timeout} in
final scripts. Note also that this tactical isn't available on
the native Windows port of Coq.
\subsubsection[Local definitions]{Local definitions\index{Ltac!let}
\index{Ltac!let rec}
\index{let!in Ltac}
\index{let rec!in Ltac}}
Local definitions can be done as follows:
\begin{quote}
{\tt let} {\ident}$_1$ {\tt :=} {\tacexpr}$_1$\\
{\tt with} {\ident}$_2$ {\tt :=} {\tacexpr}$_2$\\
...\\
{\tt with} {\ident}$_n$ {\tt :=} {\tacexpr}$_n$ {\tt in}\\
{\tacexpr}
\end{quote}
each {\tacexpr}$_i$ is evaluated to $v_i$, then, {\tacexpr} is
evaluated by substituting $v_i$ to each occurrence of {\ident}$_i$,
for $i=1,...,n$. There is no dependencies between the {\tacexpr}$_i$
and the {\ident}$_i$.
Local definitions can be recursive by using {\tt let rec} instead of
{\tt let}. In this latter case, the definitions are evaluated lazily
so that the {\tt rec} keyword can be used also in non recursive cases
so as to avoid the eager evaluation of local definitions.
\subsubsection{Application}
An application is an expression of the following form:
\begin{quote}
{\qualid} {\tacarg}$_1$ ... {\tacarg}$_n$
\end{quote}
The reference {\qualid} must be bound to some defined tactic
definition expecting at least $n$ arguments. The expressions
{\tacexpr}$_i$ are evaluated to $v_i$, for $i=1,...,n$.
%If {\tacexpr} is a {\tt Fun} or {\tt Rec} value then the body is evaluated by
%substituting $v_i$ to the formal parameters, for $i=1,...,n$. For recursive
%clauses, the bodies are lazily substituted (when an identifier to be evaluated
%is the name of a recursive clause).
%\subsection{Application of tactic values}
\subsubsection[Function construction]{Function construction\index{fun!in Ltac}
\index{Ltac!fun}}
A parameterized tactic can be built anonymously (without resorting to
local definitions) with:
\begin{quote}
{\tt fun} {\ident${}_1$} ... {\ident${}_n$} {\tt =>} {\tacexpr}
\end{quote}
Indeed, local definitions of functions are a syntactic sugar for
binding a {\tt fun} tactic to an identifier.
\subsubsection[Pattern matching on terms]{Pattern matching on terms\index{Ltac!match}
\index{match!in Ltac}}
We can carry out pattern matching on terms with:
\begin{quote}
{\tt match} {\tacexpr} {\tt with}\\
~~~{\cpattern}$_1$ {\tt =>} {\tacexpr}$_1$\\
~{\tt |} {\cpattern}$_2$ {\tt =>} {\tacexpr}$_2$\\
~...\\
~{\tt |} {\cpattern}$_n$ {\tt =>} {\tacexpr}$_n$\\
~{\tt |} {\tt \_} {\tt =>} {\tacexpr}$_{n+1}$\\
{\tt end}
\end{quote}
The expression {\tacexpr} is evaluated and should yield a term which
is matched against {\cpattern}$_1$. The matching is non-linear: if a
metavariable occurs more than once, it should match the same
expression every time. It is first-order except on the
variables of the form {\tt @?id} that occur in head position of an
application. For these variables, the matching is second-order and
returns a functional term.
If the matching with {\cpattern}$_1$ succeeds, then {\tacexpr}$_1$ is
evaluated into some value by substituting the pattern matching
instantiations to the metavariables. If {\tacexpr}$_1$ evaluates to a
tactic and the {\tt match} expression is in position to be applied to
a goal (e.g. it is not bound to a variable by a {\tt let in}), then
this tactic is applied. If the tactic succeeds, the list of resulting
subgoals is the result of the {\tt match} expression. If
{\tacexpr}$_1$ does not evaluate to a tactic or if the {\tt match}
expression is not in position to be applied to a goal, then the result
of the evaluation of {\tacexpr}$_1$ is the result of the {\tt match}
expression.
If the matching with {\cpattern}$_1$ fails, or if it succeeds but the
evaluation of {\tacexpr}$_1$ fails, or if the evaluation of
{\tacexpr}$_1$ succeeds but returns a tactic in execution position
whose execution fails, then {\cpattern}$_2$ is used and so on. The
pattern {\_} matches any term and shunts all remaining patterns if
any. If all clauses fail (in particular, there is no pattern {\_})
then a no-matching-clause error is raised.
\begin{ErrMsgs}
\item \errindex{No matching clauses for match}
No pattern can be used and, in particular, there is no {\tt \_} pattern.
\item \errindex{Argument of match does not evaluate to a term}
This happens when {\tacexpr} does not denote a term.
\end{ErrMsgs}
\begin{Variants}
\item \index{lazymatch!in Ltac}
\index{Ltac!lazymatch}
Using {\tt lazymatch} instead of {\tt match} has an effect if the
right-hand-side of a clause returns a tactic. With {\tt match}, the
tactic is applied to the current goal (and the next clause is tried if
it fails). With {\tt lazymatch}, the tactic is directly returned as
the result of the whole {\tt lazymatch} block without being first
tried to be applied to the goal. Typically, if the {\tt lazymatch}
block is bound to some variable $x$ in a {\tt let in}, then tactic
expression gets bound to the variable $x$.
\item \index{context!in pattern}
There is a special form of patterns to match a subterm against the
pattern:
\begin{quote}
{\tt context} {\ident} {\tt [} {\cpattern} {\tt ]}
\end{quote}
It matches any term with a subterm matching {\cpattern}. If there is
a match, the optional {\ident} is assigned the ``matched context'', i.e.
the initial term where the matched subterm is replaced by a
hole. The example below will show how to use such term contexts.
If the evaluation of the right-hand-side of a valid match fails, the
next matching subterm is tried. If no further subterm matches, the
next clause is tried. Matching subterms are considered top-bottom and
from left to right (with respect to the raw printing obtained by
setting option {\tt Printing All}, see Section~\ref{SetPrintingAll}).
\begin{coq_example}
Ltac f x :=
match x with
context f [S ?X] =>
idtac X; (* To display the evaluation order *)
assert (p := eq_refl 1 : X=1); (* To filter the case X=1 *)
let x:= context f[O] in assert (x=O) (* To observe the context *)
end.
Goal True.
f (3+4).
\end{coq_example}
\item \index{appcontext!in pattern}
For historical reasons, {\tt context} considers $n$-ary applications
such as {\tt (f 1 2)} as a whole, and not as a sequence of unary
applications {\tt ((f 1) 2)}. Hence {\tt context [f ?x]} will fail
to find a matching subterm in {\tt (f 1 2)}: if the pattern is a partial
application, the matched subterms will be necessarily be
applications with exactly the same number of arguments.
Alternatively, one may now use the following variant of {\tt context}:
\begin{quote}
{\tt appcontext} {\ident} {\tt [} {\cpattern} {\tt ]}
\end{quote}
The behavior of {\tt appcontext} is the same as the one of {\tt
context}, except that a matching subterm could be a partial
part of a longer application. For instance, in {\tt (f 1 2)},
an {\tt appcontext [f ?x]} will find the matching subterm {\tt (f 1)}.
\end{Variants}
\subsubsection[Pattern matching on goals]{Pattern matching on goals\index{Ltac!match goal}
\index{Ltac!match reverse goal}
\index{match goal!in Ltac}
\index{match reverse goal!in Ltac}}
We can make pattern matching on goals using the following expression:
\begin{quote}
\begin{tabbing}
{\tt match goal with}\\
~~\={\tt |} $hyp_{1,1}${\tt ,}...{\tt ,}$hyp_{1,m_1}$
~~{\tt |-}{\cpattern}$_1${\tt =>} {\tacexpr}$_1$\\
\>{\tt |} $hyp_{2,1}${\tt ,}...{\tt ,}$hyp_{2,m_2}$
~~{\tt |-}{\cpattern}$_2${\tt =>} {\tacexpr}$_2$\\
~~...\\
\>{\tt |} $hyp_{n,1}${\tt ,}...{\tt ,}$hyp_{n,m_n}$
~~{\tt |-}{\cpattern}$_n${\tt =>} {\tacexpr}$_n$\\
\>{\tt |\_}~~~~{\tt =>} {\tacexpr}$_{n+1}$\\
{\tt end}
\end{tabbing}
\end{quote}
If each hypothesis pattern $hyp_{1,i}$, with $i=1,...,m_1$
is matched (non-linear first-order unification) by an hypothesis of
the goal and if {\cpattern}$_1$ is matched by the conclusion of the
goal, then {\tacexpr}$_1$ is evaluated to $v_1$ by substituting the
pattern matching to the metavariables and the real hypothesis names
bound to the possible hypothesis names occurring in the hypothesis
patterns. If $v_1$ is a tactic value, then it is applied to the
goal. If this application fails, then another combination of
hypotheses is tried with the same proof context pattern. If there is
no other combination of hypotheses then the second proof context
pattern is tried and so on. If the next to last proof context pattern
fails then {\tacexpr}$_{n+1}$ is evaluated to $v_{n+1}$ and $v_{n+1}$
is applied. Note also that matching against subterms (using the {\tt
context} {\ident} {\tt [} {\cpattern} {\tt ]}) is available and may
itself induce extra backtrackings.
\ErrMsg \errindex{No matching clauses for match goal}
No clause succeeds, i.e. all matching patterns, if any,
fail at the application of the right-hand-side.
\medskip
It is important to know that each hypothesis of the goal can be
matched by at most one hypothesis pattern. The order of matching is
the following: hypothesis patterns are examined from the right to the
left (i.e. $hyp_{i,m_i}$ before $hyp_{i,1}$). For each hypothesis
pattern, the goal hypothesis are matched in order (fresher hypothesis
first), but it possible to reverse this order (older first) with
the {\tt match reverse goal with} variant.
\variant
\index{lazymatch goal!in Ltac}
\index{Ltac!lazymatch goal}
\index{lazymatch reverse goal!in Ltac}
\index{Ltac!lazymatch reverse goal}
Using {\tt lazymatch} instead of {\tt match} has an effect if the
right-hand-side of a clause returns a tactic. With {\tt match}, the
tactic is applied to the current goal (and the next clause is tried if
it fails). With {\tt lazymatch}, the tactic is directly returned as
the result of the whole {\tt lazymatch} block without being first
tried to be applied to the goal. Typically, if the {\tt lazymatch}
block is bound to some variable $x$ in a {\tt let in}, then tactic
expression gets bound to the variable $x$.
\begin{coq_example}
Ltac test_lazy :=
lazymatch goal with
| _ => idtac "here"; fail
| _ => idtac "wasn't lazy"; trivial
end.
Ltac test_eager :=
match goal with
| _ => idtac "here"; fail
| _ => idtac "wasn't lazy"; trivial
end.
Goal True.
test_lazy || idtac "was lazy".
test_eager || idtac "was lazy".
\end{coq_example}
\subsubsection[Filling a term context]{Filling a term context\index{context!in expression}}
The following expression is not a tactic in the sense that it does not
produce subgoals but generates a term to be used in tactic
expressions:
\begin{quote}
{\tt context} {\ident} {\tt [} {\tacexpr} {\tt ]}
\end{quote}
{\ident} must denote a context variable bound by a {\tt context}
pattern of a {\tt match} expression. This expression evaluates
replaces the hole of the value of {\ident} by the value of
{\tacexpr}.
\ErrMsg \errindex{not a context variable}
\subsubsection[Generating fresh hypothesis names]{Generating fresh hypothesis names\index{Ltac!fresh}
\index{fresh!in Ltac}}
Tactics sometimes have to generate new names for hypothesis. Letting
the system decide a name with the {\tt intro} tactic is not so good
since it is very awkward to retrieve the name the system gave.
The following expression returns an identifier:
\begin{quote}
{\tt fresh} \nelist{\textrm{\textsl{component}}}{}
\end{quote}
It evaluates to an identifier unbound in the goal. This fresh
identifier is obtained by concatenating the value of the
\textrm{\textsl{component}}'s (each of them is, either an {\ident} which
has to refer to a name, or directly a name denoted by a
{\qstring}). If the resulting name is already used, it is padded
with a number so that it becomes fresh. If no component is
given, the name is a fresh derivative of the name {\tt H}.
\subsubsection[Computing in a constr]{Computing in a constr\index{Ltac!eval}
\index{eval!in Ltac}}
Evaluation of a term can be performed with:
\begin{quote}
{\tt eval} {\nterm{redexpr}} {\tt in} {\term}
\end{quote}
where \nterm{redexpr} is a reduction tactic among {\tt red}, {\tt
hnf}, {\tt compute}, {\tt simpl}, {\tt cbv}, {\tt lazy}, {\tt unfold},
{\tt fold}, {\tt pattern}.
\subsubsection{Type-checking a term}
%\tacindex{type of}
\index{Ltac!type of}
\index{type of!in Ltac}
The following returns the type of {\term}:
\begin{quote}
{\tt type of} {\term}
\end{quote}
\subsubsection[Proving a subgoal as a separate lemma]{Proving a subgoal as a separate lemma\tacindex{abstract}
\index{Tacticals!abstract@{\tt abstract}}}
From the outside ``\texttt{abstract \tacexpr}'' is the same as
{\tt solve \tacexpr}. Internally it saves an auxiliary lemma called
{\ident}\texttt{\_subproof}\textit{n} where {\ident} is the name of the
current goal and \textit{n} is chosen so that this is a fresh name.
This tactical is useful with tactics such as \texttt{omega} or
\texttt{discriminate} that generate huge proof terms. With that tool
the user can avoid the explosion at time of the \texttt{Save} command
without having to cut manually the proof in smaller lemmas.
\begin{Variants}
\item \texttt{abstract {\tacexpr} using {\ident}}.\\
Give explicitly the name of the auxiliary lemma.
\end{Variants}
\ErrMsg \errindex{Proof is not complete}
\subsubsection[Calling an external tactic]{Calling an external tactic\index{Ltac!external}}
The tactic {\tt external} allows to run an executable outside the
{\Coq} executable. The communication is done via an XML encoding of
constructions. The syntax of the command is
\begin{quote}
{\tt external} "\textsl{command}" "\textsl{request}" \nelist{\tacarg}{}
\end{quote}
The string \textsl{command}, to be interpreted in the default
execution path of the operating system, is the name of the external
command. The string \textsl{request} is the name of a request to be
sent to the external command. Finally the list of tactic arguments
have to evaluate to terms. An XML tree of the following form is sent
to the standard input of the external command.
\medskip
\begin{tabular}{l}
\texttt{<REQUEST req="}\textsl{request}\texttt{">}\\
the XML tree of the first argument\\
{\ldots}\\
the XML tree of the last argument\\
\texttt{</REQUEST>}\\
\end{tabular}
\medskip
Conversely, the external command must send on its standard output an
XML tree of the following forms:
\medskip
\begin{tabular}{l}
\texttt{<TERM>}\\
the XML tree of a term\\
\texttt{</TERM>}\\
\end{tabular}
\medskip
\noindent or
\medskip
\begin{tabular}{l}
\texttt{<CALL uri="}\textsl{ltac\_qualified\_ident}\texttt{">}\\
the XML tree of a first argument\\
{\ldots}\\
the XML tree of a last argument\\
\texttt{</CALL>}\\
\end{tabular}
\medskip
\noindent where \textsl{ltac\_qualified\_ident} is the name of a
defined {\ltac} function and each subsequent XML tree is recursively a
\texttt{CALL} or a \texttt{TERM} node.
The Document Type Definition (DTD) for terms of the Calculus of
Inductive Constructions is the one developed as part of the MoWGLI
European project. It can be found in the file {\tt dev/doc/cic.dtd} of
the {\Coq} source archive.
An example of parser for this DTD, written in the Objective Caml -
Camlp4 language, can be found in the file {\tt parsing/g\_xml.ml4} of
the {\Coq} source archive.
\section[Tactic toplevel definitions]{Tactic toplevel definitions\comindex{Ltac}}
\subsection{Defining {\ltac} functions}
Basically, {\ltac} toplevel definitions are made as follows:
%{\tt Tactic Definition} {\ident} {\tt :=} {\tacexpr}\\
%
%{\tacexpr} is evaluated to $v$ and $v$ is associated to {\ident}. Next, every
%script is evaluated by substituting $v$ to {\ident}.
%
%We can define functional definitions by:\\
\begin{quote}
{\tt Ltac} {\ident} {\ident}$_1$ ... {\ident}$_n$ {\tt :=}
{\tacexpr}
\end{quote}
This defines a new {\ltac} function that can be used in any tactic
script or new {\ltac} toplevel definition.
\Rem The preceding definition can equivalently be written:
\begin{quote}
{\tt Ltac} {\ident} {\tt := fun} {\ident}$_1$ ... {\ident}$_n$
{\tt =>} {\tacexpr}
\end{quote}
Recursive and mutual recursive function definitions are also
possible with the syntax:
\begin{quote}
{\tt Ltac} {\ident}$_1$ {\ident}$_{1,1}$ ...
{\ident}$_{1,m_1}$~~{\tt :=} {\tacexpr}$_1$\\
{\tt with} {\ident}$_2$ {\ident}$_{2,1}$ ... {\ident}$_{2,m_2}$~~{\tt :=}
{\tacexpr}$_2$\\
...\\
{\tt with} {\ident}$_n$ {\ident}$_{n,1}$ ... {\ident}$_{n,m_n}$~~{\tt :=}
{\tacexpr}$_n$
\end{quote}
\medskip
It is also possible to \emph{redefine} an existing user-defined tactic
using the syntax:
\begin{quote}
{\tt Ltac} {\qualid} {\ident}$_1$ ... {\ident}$_n$ {\tt ::=}
{\tacexpr}
\end{quote}
A previous definition of \qualid must exist in the environment.
The new definition will always be used instead of the old one and
it goes accross module boundaries.
If preceded by the keyword {\tt Local} the tactic definition will not
be exported outside the current module.
\subsection[Printing {\ltac} tactics]{Printing {\ltac} tactics\comindex{Print Ltac}}
Defined {\ltac} functions can be displayed using the command
\begin{quote}
{\tt Print Ltac {\qualid}.}
\end{quote}
\section[Debugging {\ltac} tactics]{Debugging {\ltac} tactics\comindex{Set Ltac Debug}
\comindex{Unset Ltac Debug}
\comindex{Test Ltac Debug}}
The {\ltac} interpreter comes with a step-by-step debugger. The
debugger can be activated using the command
\begin{quote}
{\tt Set Ltac Debug.}
\end{quote}
\noindent and deactivated using the command
\begin{quote}
{\tt Unset Ltac Debug.}
\end{quote}
To know if the debugger is on, use the command \texttt{Test Ltac Debug}.
When the debugger is activated, it stops at every step of the
evaluation of the current {\ltac} expression and it prints information
on what it is doing. The debugger stops, prompting for a command which
can be one of the following:
\medskip
\begin{tabular}{ll}
simple newline: & go to the next step\\
h: & get help\\
x: & exit current evaluation\\
s: & continue current evaluation without stopping\\
r $n$: & advance $n$ steps further\\
r {\qstring}: & advance up to the next call to ``{\tt idtac} {\qstring}''\\
\end{tabular}
\endinput
\subsection{Permutation on closed lists}
\begin{figure}[b]
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example*}
Require Import List.
Section Sort.
Variable A : Set.
Inductive permut : list A -> list A -> Prop :=
| permut_refl : forall l, permut l l
| permut_cons :
forall a l0 l1, permut l0 l1 -> permut (a :: l0) (a :: l1)
| permut_append : forall a l, permut (a :: l) (l ++ a :: nil)
| permut_trans :
forall l0 l1 l2, permut l0 l1 -> permut l1 l2 -> permut l0 l2.
End Sort.
\end{coq_example*}
\end{center}
\caption{Definition of the permutation predicate}
\label{permutpred}
\end{figure}
Another more complex example is the problem of permutation on closed
lists. The aim is to show that a closed list is a permutation of
another one. First, we define the permutation predicate as shown on
Figure~\ref{permutpred}.
\begin{figure}[p]
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example}
Ltac Permut n :=
match goal with
| |- (permut _ ?l ?l) => apply permut_refl
| |- (permut _ (?a :: ?l1) (?a :: ?l2)) =>
let newn := eval compute in (length l1) in
(apply permut_cons; Permut newn)
| |- (permut ?A (?a :: ?l1) ?l2) =>
match eval compute in n with
| 1 => fail
| _ =>
let l1' := constr:(l1 ++ a :: nil) in
(apply (permut_trans A (a :: l1) l1' l2);
[ apply permut_append | compute; Permut (pred n) ])
end
end.
Ltac PermutProve :=
match goal with
| |- (permut _ ?l1 ?l2) =>
match eval compute in (length l1 = length l2) with
| (?n = ?n) => Permut n
end
end.
\end{coq_example}
\end{minipage}}
\end{center}
\caption{Permutation tactic}
\label{permutltac}
\end{figure}
\begin{figure}[p]
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example*}
Lemma permut_ex1 :
permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil).
Proof.
PermutProve.
Qed.
Lemma permut_ex2 :
permut nat
(0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil)
(0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil).
Proof.
PermutProve.
Qed.
\end{coq_example*}
\end{minipage}}
\end{center}
\caption{Examples of {\tt PermutProve} use}
\label{permutlem}
\end{figure}
Next, we can write naturally the tactic and the result can be seen on
Figure~\ref{permutltac}. We can notice that we use two toplevel
definitions {\tt PermutProve} and {\tt Permut}. The function to be
called is {\tt PermutProve} which computes the lengths of the two
lists and calls {\tt Permut} with the length if the two lists have the
same length. {\tt Permut} works as expected. If the two lists are
equal, it concludes. Otherwise, if the lists have identical first
elements, it applies {\tt Permut} on the tail of the lists. Finally,
if the lists have different first elements, it puts the first element
of one of the lists (here the second one which appears in the {\tt
permut} predicate) at the end if that is possible, i.e., if the new
first element has been at this place previously. To verify that all
rotations have been done for a list, we use the length of the list as
an argument for {\tt Permut} and this length is decremented for each
rotation down to, but not including, 1 because for a list of length
$n$, we can make exactly $n-1$ rotations to generate at most $n$
distinct lists. Here, it must be noticed that we use the natural
numbers of {\Coq} for the rotation counter. On Figure~\ref{ltac}, we
can see that it is possible to use usual natural numbers but they are
only used as arguments for primitive tactics and they cannot be
handled, in particular, we cannot make computations with them. So, a
natural choice is to use {\Coq} data structures so that {\Coq} makes
the computations (reductions) by {\tt eval compute in} and we can get
the terms back by {\tt match}.
With {\tt PermutProve}, we can now prove lemmas such those shown on
Figure~\ref{permutlem}.
\subsection{Deciding intuitionistic propositional logic}
\begin{figure}[tbp]
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example}
Ltac Axioms :=
match goal with
| |- True => trivial
| _:False |- _ => elimtype False; assumption
| _:?A |- ?A => auto
end.
Ltac DSimplif :=
repeat
(intros;
match goal with
| id:(~ _) |- _ => red in id
| id:(_ /\ _) |- _ =>
elim id; do 2 intro; clear id
| id:(_ \/ _) |- _ =>
elim id; intro; clear id
| id:(?A /\ ?B -> ?C) |- _ =>
cut (A -> B -> C);
[ intro | intros; apply id; split; assumption ]
| id:(?A \/ ?B -> ?C) |- _ =>
cut (B -> C);
[ cut (A -> C);
[ intros; clear id
| intro; apply id; left; assumption ]
| intro; apply id; right; assumption ]
| id0:(?A -> ?B),id1:?A |- _ =>
cut B; [ intro; clear id0 | apply id0; assumption ]
| |- (_ /\ _) => split
| |- (~ _) => red
end).
\end{coq_example}
\end{minipage}}
\end{center}
\caption{Deciding intuitionistic propositions (1)}
\label{tautoltaca}
\end{figure}
\begin{figure}
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example}
Ltac TautoProp :=
DSimplif;
Axioms ||
match goal with
| id:((?A -> ?B) -> ?C) |- _ =>
cut (B -> C);
[ intro; cut (A -> B);
[ intro; cut C;
[ intro; clear id | apply id; assumption ]
| clear id ]
| intro; apply id; intro; assumption ]; TautoProp
| id:(~ ?A -> ?B) |- _ =>
cut (False -> B);
[ intro; cut (A -> False);
[ intro; cut B;
[ intro; clear id | apply id; assumption ]
| clear id ]
| intro; apply id; red; intro; assumption ]; TautoProp
| |- (_ \/ _) => (left; TautoProp) || (right; TautoProp)
end.
\end{coq_example}
\end{minipage}}
\end{center}
\caption{Deciding intuitionistic propositions (2)}
\label{tautoltacb}
\end{figure}
The pattern matching on goals allows a complete and so a powerful
backtracking when returning tactic values. An interesting application
is the problem of deciding intuitionistic propositional logic.
Considering the contraction-free sequent calculi {\tt LJT*} of
Roy~Dyckhoff (\cite{Dyc92}), it is quite natural to code such a tactic
using the tactic language. On Figure~\ref{tautoltaca}, the tactic {\tt
Axioms} tries to conclude using usual axioms. The {\tt DSimplif}
tactic applies all the reversible rules of Dyckhoff's system.
Finally, on Figure~\ref{tautoltacb}, the {\tt TautoProp} tactic (the
main tactic to be called) simplifies with {\tt DSimplif}, tries to
conclude with {\tt Axioms} and tries several paths using the
backtracking rules (one of the four Dyckhoff's rules for the left
implication to get rid of the contraction and the right or).
\begin{figure}[tb]
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example*}
Lemma tauto_ex1 : forall A B:Prop, A /\ B -> A \/ B.
Proof.
TautoProp.
Qed.
Lemma tauto_ex2 :
forall A B:Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B.
Proof.
TautoProp.
Qed.
\end{coq_example*}
\end{minipage}}
\end{center}
\caption{Proofs of tautologies with {\tt TautoProp}}
\label{tautolem}
\end{figure}
For example, with {\tt TautoProp}, we can prove tautologies like those of
Figure~\ref{tautolem}.
\subsection{Deciding type isomorphisms}
A more tricky problem is to decide equalities between types and modulo
isomorphisms. Here, we choose to use the isomorphisms of the simply typed
$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example,
\cite{RC95}). The axioms of this $\lb{}$-calculus are given by
Figure~\ref{isosax}.
\begin{figure}
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Open Scope type_scope.
Section Iso_axioms.
Variables A B C : Set.
Axiom Com : A * B = B * A.
Axiom Ass : A * (B * C) = A * B * C.
Axiom Cur : (A * B -> C) = (A -> B -> C).
Axiom Dis : (A -> B * C) = (A -> B) * (A -> C).
Axiom P_unit : A * unit = A.
Axiom AR_unit : (A -> unit) = unit.
Axiom AL_unit : (unit -> A) = A.
Lemma Cons : B = C -> A * B = A * C.
Proof.
intro Heq; rewrite Heq; reflexivity.
Qed.
End Iso_axioms.
\end{coq_example*}
\end{minipage}}
\end{center}
\caption{Type isomorphism axioms}
\label{isosax}
\end{figure}
The tactic to judge equalities modulo this axiomatization can be written as
shown on Figures~\ref{isosltac1} and~\ref{isosltac2}. The algorithm is quite
simple. Types are reduced using axioms that can be oriented (this done by {\tt
MainSimplif}). The normal forms are sequences of Cartesian
products without Cartesian product in the left component. These normal forms
are then compared modulo permutation of the components (this is done by {\tt
CompareStruct}). The main tactic to be called and realizing this algorithm is
{\tt IsoProve}.
\begin{figure}
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example}
Ltac DSimplif trm :=
match trm with
| (?A * ?B * ?C) =>
rewrite <- (Ass A B C); try MainSimplif
| (?A * ?B -> ?C) =>
rewrite (Cur A B C); try MainSimplif
| (?A -> ?B * ?C) =>
rewrite (Dis A B C); try MainSimplif
| (?A * unit) =>
rewrite (P_unit A); try MainSimplif
| (unit * ?B) =>
rewrite (Com unit B); try MainSimplif
| (?A -> unit) =>
rewrite (AR_unit A); try MainSimplif
| (unit -> ?B) =>
rewrite (AL_unit B); try MainSimplif
| (?A * ?B) =>
(DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
| (?A -> ?B) =>
(DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
end
with MainSimplif :=
match goal with
| |- (?A = ?B) => try DSimplif A; try DSimplif B
end.
Ltac Length trm :=
match trm with
| (_ * ?B) => let succ := Length B in constr:(S succ)
| _ => constr:1
end.
Ltac assoc := repeat rewrite <- Ass.
\end{coq_example}
\end{minipage}}
\end{center}
\caption{Type isomorphism tactic (1)}
\label{isosltac1}
\end{figure}
\begin{figure}
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example}
Ltac DoCompare n :=
match goal with
| [ |- (?A = ?A) ] => reflexivity
| [ |- (?A * ?B = ?A * ?C) ] =>
apply Cons; let newn := Length B in DoCompare newn
| [ |- (?A * ?B = ?C) ] =>
match eval compute in n with
| 1 => fail
| _ =>
pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n)
end
end.
Ltac CompareStruct :=
match goal with
| [ |- (?A = ?B) ] =>
let l1 := Length A
with l2 := Length B in
match eval compute in (l1 = l2) with
| (?n = ?n) => DoCompare n
end
end.
Ltac IsoProve := MainSimplif; CompareStruct.
\end{coq_example}
\end{minipage}}
\end{center}
\caption{Type isomorphism tactic (2)}
\label{isosltac2}
\end{figure}
Figure~\ref{isoslem} gives examples of what can be solved by {\tt IsoProve}.
\begin{figure}
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example*}
Lemma isos_ex1 :
forall A B:Set, A * unit * B = B * (unit * A).
Proof.
intros; IsoProve.
Qed.
Lemma isos_ex2 :
forall A B C:Set,
(A * unit -> B * (C * unit)) =
(A * unit -> (C -> unit) * C) * (unit -> A -> B).
Proof.
intros; IsoProve.
Qed.
\end{coq_example*}
\end{minipage}}
\end{center}
\caption{Type equalities solved by {\tt IsoProve}}
\label{isoslem}
\end{figure}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "Reference-Manual"
%%% End:
|