1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
\section{Module system
\index{Modules}
\label{section:Modules}}
The module system provides a way of packaging related elements
together, as well as a mean of massive abstraction.
\begin{figure}[t]
\begin{centerframe}
\begin{tabular}{rcl}
{\modtype} & ::= & {\qualid} \\
& $|$ & {\modtype} \texttt{ with Definition }{\qualid} := {\term} \\
& $|$ & {\modtype} \texttt{ with Module }{\qualid} := {\qualid} \\
& $|$ & {\qualid} \nelist{\qualid}{}\\
& $|$ & $!${\qualid} \nelist{\qualid}{}\\
&&\\
{\onemodbinding} & ::= & {\tt ( [Import|Export] \nelist{\ident}{} : {\modtype} )}\\
&&\\
{\modbindings} & ::= & \nelist{\onemodbinding}{}\\
&&\\
{\modexpr} & ::= & \nelist{\qualid}{} \\
& $|$ & $!$\nelist{\qualid}{}
\end{tabular}
\end{centerframe}
\caption{Syntax of modules}
\end{figure}
In the syntax of module application, the $!$ prefix indicates that
any {\tt Inline} directive in the type of the functor arguments
will be ignored (see \ref{Inline} below).
\subsection{\tt Module {\ident}
\comindex{Module}}
This command is used to start an interactive module named {\ident}.
\begin{Variants}
\item{\tt Module {\ident} {\modbindings}}
Starts an interactive functor with parameters given by {\modbindings}.
\item{\tt Module {\ident} \verb.:. {\modtype}}
Starts an interactive module specifying its module type.
\item{\tt Module {\ident} {\modbindings} \verb.:. {\modtype}}
Starts an interactive functor with parameters given by
{\modbindings}, and output module type {\modtype}.
\item{\tt Module {\ident} \verb.<:. {\modtype$_1$} \verb.<:. $\ldots$ \verb.<:.{ \modtype$_n$}}
Starts an interactive module satisfying each {\modtype$_i$}.
\item{\tt Module {\ident} {\modbindings} \verb.<:. {\modtype$_1$} \verb.<:. $\ldots$ \verb.<:. {\modtype$_n$}}
Starts an interactive functor with parameters given by
{\modbindings}. The output module type is verified against each
module type {\modtype$_i$}.
\item\texttt{Module [Import|Export]}
Behaves like \texttt{Module}, but automatically imports or exports
the module.
\end{Variants}
\subsubsection{Reserved commands inside an interactive module:
\comindex{Include}}
\begin{enumerate}
\item {\tt Include {\module}}
Includes the content of {\module} in the current interactive
module. Here {\module} can be a module expresssion or a module type
expression. If {\module} is a high-order module or module type
expression then the system tries to instanciate {\module}
by the current interactive module.
\item {\tt Include {\module$_1$} \verb.<+. $\ldots$ \verb.<+. {\module$_n$}}
is a shortcut for {\tt Include {\module$_1$}} $\ldots$ {\tt Include {\module$_n$}}
\end{enumerate}
\subsection{\tt End {\ident}
\comindex{End}}
This command closes the interactive module {\ident}. If the module type
was given the content of the module is matched against it and an error
is signaled if the matching fails. If the module is basic (is not a
functor) its components (constants, inductive types, submodules etc) are
now available through the dot notation.
\begin{ErrMsgs}
\item \errindex{No such label {\ident}}
\item \errindex{Signature components for label {\ident} do not match}
\item \errindex{This is not the last opened module}
\end{ErrMsgs}
\subsection{\tt Module {\ident} := {\modexpr}
\comindex{Module}}
This command defines the module identifier {\ident} to be equal to
{\modexpr}.
\begin{Variants}
\item{\tt Module {\ident} {\modbindings} := {\modexpr}}
Defines a functor with parameters given by {\modbindings} and body {\modexpr}.
% Particular cases of the next 2 items
%\item{\tt Module {\ident} \verb.:. {\modtype} := {\modexpr}}
%
% Defines a module with body {\modexpr} and interface {\modtype}.
%\item{\tt Module {\ident} \verb.<:. {\modtype} := {\modexpr}}
%
% Defines a module with body {\modexpr}, satisfying {\modtype}.
\item{\tt Module {\ident} {\modbindings} \verb.:. {\modtype} :=
{\modexpr}}
Defines a functor with parameters given by {\modbindings} (possibly none),
and output module type {\modtype}, with body {\modexpr}.
\item{\tt Module {\ident} {\modbindings} \verb.<:. {\modtype$_1$} \verb.<:. $\ldots$ \verb.<:. {\modtype$_n$}:=
{\modexpr}}
Defines a functor with parameters given by {\modbindings} (possibly none)
with body {\modexpr}. The body is checked against each {\modtype$_i$}.
\item{\tt Module {\ident} {\modbindings} := {\modexpr$_1$} \verb.<+. $\ldots$ \verb.<+. {\modexpr$_n$}}
is equivalent to an interactive module where each {\modexpr$_i$} are included.
\end{Variants}
\subsection{\tt Module Type {\ident}
\comindex{Module Type}}
This command is used to start an interactive module type {\ident}.
\begin{Variants}
\item{\tt Module Type {\ident} {\modbindings}}
Starts an interactive functor type with parameters given by {\modbindings}.
\end{Variants}
\subsubsection{Reserved commands inside an interactive module type:
\comindex{Include}\comindex{Inline}}
\label{Inline}
\begin{enumerate}
\item {\tt Include {\module}}
Same as {\tt Include} inside a module.
\item {\tt Include {\module$_1$} \verb.<+. $\ldots$ \verb.<+. {\module$_n$}}
is a shortcut for {\tt Include {\module$_1$}} $\ldots$ {\tt Include {\module$_n$}}
\item {\tt {\assumptionkeyword} Inline {\assums} }
The instance of this assumption will be automatically expanded at functor
application, except when this functor application is prefixed by a $!$ annotation.
\end{enumerate}
\subsection{\tt End {\ident}
\comindex{End}}
This command closes the interactive module type {\ident}.
\begin{ErrMsgs}
\item \errindex{This is not the last opened module type}
\end{ErrMsgs}
\subsection{\tt Module Type {\ident} := {\modtype}}
Defines a module type {\ident} equal to {\modtype}.
\begin{Variants}
\item {\tt Module Type {\ident} {\modbindings} := {\modtype}}
Defines a functor type {\ident} specifying functors taking arguments
{\modbindings} and returning {\modtype}.
\item{\tt Module Type {\ident} {\modbindings} := {\modtype$_1$} \verb.<+. $\ldots$ \verb.<+. {\modtype$_n$}}
is equivalent to an interactive module type were each {\modtype$_i$} are included.
\end{Variants}
\subsection{\tt Declare Module {\ident} : {\modtype}}
Declares a module {\ident} of type {\modtype}.
\begin{Variants}
\item{\tt Declare Module {\ident} {\modbindings} \verb.:. {\modtype}}
Declares a functor with parameters {\modbindings} and output module
type {\modtype}.
\end{Variants}
\subsubsection{Example}
Let us define a simple module.
\begin{coq_example}
Module M.
Definition T := nat.
Definition x := 0.
Definition y : bool.
exact true.
Defined.
End M.
\end{coq_example}
Inside a module one can define constants, prove theorems and do any
other things that can be done in the toplevel. Components of a closed
module can be accessed using the dot notation:
\begin{coq_example}
Print M.x.
\end{coq_example}
A simple module type:
\begin{coq_example}
Module Type SIG.
Parameter T : Set.
Parameter x : T.
End SIG.
\end{coq_example}
Now we can create a new module from \texttt{M}, giving it a less
precise specification: the \texttt{y} component is dropped as well
as the body of \texttt{x}.
\begin{coq_eval}
Set Printing Depth 50.
(********** The following is not correct and should produce **********)
(***************** Error: N.y not a defined object *******************)
\end{coq_eval}
\begin{coq_example}
Module N : SIG with Definition T := nat := M.
Print N.T.
Print N.x.
Print N.y.
\end{coq_example}
\begin{coq_eval}
Reset N.
\end{coq_eval}
\noindent
The definition of \texttt{N} using the module type expression
\texttt{SIG with Definition T:=nat} is equivalent to the following
one:
\begin{coq_example*}
Module Type SIG'.
Definition T : Set := nat.
Parameter x : T.
End SIG'.
Module N : SIG' := M.
\end{coq_example*}
If we just want to be sure that the our implementation satisfies a
given module type without restricting the interface, we can use a
transparent constraint
\begin{coq_example}
Module P <: SIG := M.
Print P.y.
\end{coq_example}
Now let us create a functor, i.e. a parametric module
\begin{coq_example}
Module Two (X Y: SIG).
\end{coq_example}
\begin{coq_example*}
Definition T := (X.T * Y.T)%type.
Definition x := (X.x, Y.x).
\end{coq_example*}
\begin{coq_example}
End Two.
\end{coq_example}
and apply it to our modules and do some computations
\begin{coq_example}
Module Q := Two M N.
Eval compute in (fst Q.x + snd Q.x).
\end{coq_example}
In the end, let us define a module type with two sub-modules, sharing
some of the fields and give one of its possible implementations:
\begin{coq_example}
Module Type SIG2.
Declare Module M1 : SIG.
Module M2 <: SIG.
Definition T := M1.T.
Parameter x : T.
End M2.
End SIG2.
\end{coq_example}
\begin{coq_example*}
Module Mod <: SIG2.
Module M1.
Definition T := nat.
Definition x := 1.
End M1.
Module M2 := M.
\end{coq_example*}
\begin{coq_example}
End Mod.
\end{coq_example}
Notice that \texttt{M} is a correct body for the component \texttt{M2}
since its \texttt{T} component is equal \texttt{nat} and hence
\texttt{M1.T} as specified.
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{Remarks}
\item Modules and module types can be nested components of each other.
\item One can have sections inside a module or a module type, but
not a module or a module type inside a section.
\item Commands like \texttt{Hint} or \texttt{Notation} can
also appear inside modules and module types. Note that in case of a
module definition like:
\smallskip
\noindent
{\tt Module N : SIG := M.}
\smallskip
or
\smallskip
{\tt Module N : SIG.\\
\ \ \dots\\
End N.}
\smallskip
hints and the like valid for \texttt{N} are not those defined in
\texttt{M} (or the module body) but the ones defined in
\texttt{SIG}.
\end{Remarks}
\subsection{\tt Import {\qualid}
\comindex{Import}
\label{Import}}
If {\qualid} denotes a valid basic module (i.e. its module type is a
signature), makes its components available by their short names.
Example:
\begin{coq_example}
Module Mod.
\end{coq_example}
\begin{coq_example}
Definition T:=nat.
Check T.
\end{coq_example}
\begin{coq_example}
End Mod.
Check Mod.T.
Check T. (* Incorrect ! *)
Import Mod.
Check T. (* Now correct *)
\end{coq_example}
\begin{coq_eval}
Reset Mod.
\end{coq_eval}
Some features defined in modules are activated only when a module is
imported. This is for instance the case of notations (see
Section~\ref{Notation}).
\begin{Variants}
\item{\tt Export {\qualid}}\comindex{Export}
When the module containing the command {\tt Export {\qualid}} is
imported, {\qualid} is imported as well.
\end{Variants}
\begin{ErrMsgs}
\item \errindexbis{{\qualid} is not a module}{is not a module}
% this error is impossible in the import command
% \item \errindex{Cannot mask the absolute name {\qualid} !}
\end{ErrMsgs}
\begin{Warnings}
\item Warning: Trying to mask the absolute name {\qualid} !
\end{Warnings}
\subsection{\tt Print Module {\ident}
\comindex{Print Module}}
Prints the module type and (optionally) the body of the module {\ident}.
\subsection{\tt Print Module Type {\ident}
\comindex{Print Module Type}}
Prints the module type corresponding to {\ident}.
\subsection{\tt Locate Module {\qualid}
\comindex{Locate Module}}
Prints the full name of the module {\qualid}.
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "Reference-Manual"
%%% End:
|