1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
|
\chapter[The Module System]{The Module System\label{chapter:Modules}}
The module system extends the Calculus of Inductive Constructions
providing a convenient way to structure large developments as well as
a mean of massive abstraction.
%It is described in details in Judicael's thesis and Jacek's thesis
\section{Modules and module types}
\paragraph{Access path.} It is denoted by $p$, it can be either a module
variable $X$ or, if $p'$ is an access path and $id$ an identifier, then
$p'.id$ is an access path.
\paragraph{Structure element.} It is denoted by \elem\ and is either a
definition of a constant, an assumption, a definition of an inductive,
a definition of a module, an alias of module or a module type abbreviation.
\paragraph{Structure expression.} It is denoted by $S$ and can be:
\begin{itemize}
\item an access path $p$
\item a plain structure $\struct{\nelist{\elem}{;}}$
\item a functor $\functor{X}{S}{S'}$, where $X$ is a module variable,
$S$ and $S'$ are structure expression
\item an application $S\,p$, where $S$ is a structure expression and $p$
an access path
\item a refined structure $\with{S}{p}{p'}$ or $\with{S}{p}{t:T}$ where $S$
is a structure expression, $p$ and $p'$ are access paths, $t$ is a term
and $T$ is the type of $t$.
\end{itemize}
\paragraph{Module definition,} is written $\Mod{X}{S}{S'}$ and
consists of a module variable $X$, a module type
$S$ which can be any structure expression and optionally a module implementation $S'$
which can be any structure expression except a refined structure.
\paragraph{Module alias,} is written $\ModA{X}{p}$ and
consists of a module variable $X$ and a module path $p$.
\paragraph{Module type abbreviation,} is written $\ModType{Y}{S}$, where
$Y$ is an identifier and $S$ is any structure expression .
\section{Typing Modules}
In order to introduce the typing system we first slightly extend
the syntactic class of terms and environments given in
section~\ref{Terms}. The environments, apart from definitions of
constants and inductive types now also hold any other structure elements.
Terms, apart from variables, constants and complex terms,
include also access paths.
We also need additional typing judgments:
\begin{itemize}
\item \WFT{E}{S}, denoting that a structure $S$ is well-formed,
\item \WTM{E}{p}{S}, denoting that the module pointed by $p$ has type $S$ in
environment $E$.
\item \WEV{E}{S}{\overline{S}}, denoting that a structure $S$ is evaluated to
a structure $\overline{S}$ in weak head normal form.
\item \WS{E}{S_1}{S_2}, denoting that a structure $S_1$ is a subtype of a
structure $S_2$.
\item \WS{E}{\elem_1}{\elem_2}, denoting that a structure element
$\elem_1$ is more precise that a structure element $\elem_2$.
\end{itemize}
The rules for forming structures are the following:
\begin{description}
\item[WF-STR]
\inference{%
\frac{
\WF{E;E'}{}
}{%%%%%%%%%%%%%%%%%%%%%
\WFT{E}{\struct{E'}}
}
}
\item[WF-FUN]
\inference{%
\frac{
\WFT{E;\ModS{X}{S}}{\overline{S'}}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%
\WFT{E}{\functor{X}{S}{S'}}
}
}
\end{description}
Evaluation of structures to weak head normal form:
\begin{description}
\item[WEVAL-APP]
\inference{%
\frac{
\begin{array}{c}
\WEV{E}{S}{\functor{X}{S_1}{S_2}}~~~~~\WEV{E}{S_1}{\overline{S_1}}\\
\WTM{E}{p}{S_3}\qquad \WS{E}{S_3}{\overline{S_1}}
\end{array}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\WEV{E}{S\,p}{S_2\{p/X,t_1/p_1.c_1,\ldots,t_n/p_n.c_n\}}
}
}
\end{description}
In the last rule, $\{t_1/p_1.c_1,\ldots,t_n/p_n.c_n\}$ is the resulting
substitution from the inlining mechanism. We substitute in $S$ the
inlined fields $p_i.c_i$ form $\ModS{X}{S_1}$ by the corresponding delta-reduced term $t_i$ in $p$.
\begin{description}
\item[WEVAL-WITH-MOD]
\inference{%
\frac{
\begin{array}{c}
\WEV{E}{S}{\structe{\ModS{X}{S_1}}}~~~~~\WEV{E;\elem_1;\ldots;\elem_i}{S_1}{\overline{S_1}}\\
\WTM{E}{p}{S_2}\qquad \WS{E;\elem_1;\ldots;\elem_i}{S_2}{\overline{S_1}}
\end{array}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{array}{c}
\WEVT{E}{\with{S}{x}{p}}{\structes{\ModA{X}{p}}{p/X}}
\end{array}
}
}
\item[WEVAL-WITH-MOD-REC]
\inference{%
\frac{
\begin{array}{c}
\WEV{E}{S}{\structe{\ModS{X_1}{S_1}}}\\
\WEV{E;\elem_1;\ldots;\elem_i}{\with{S_1}{p}{p_1}}{\overline{S_2}}
\end{array}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{array}{c}
\WEVT{E}{\with{S}{X_1.p}{p_1}}{\structes{\ModS{X}{\overline{S_2}}}{p_1/X_1.p}}
\end{array}
}
}
\item[WEVAL-WITH-DEF]
\inference{%
\frac{
\begin{array}{c}
\WEV{E}{S}{\structe{\Assum{}{c}{T_1}}}\\
\WS{E;\elem_1;\ldots;\elem_i}{\Def{}{c}{t}{T}}{\Assum{}{c}{T_1}}
\end{array}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{array}{c}
\WEVT{E}{\with{S}{c}{t:T}}{\structe{\Def{}{c}{t}{T}}}
\end{array}
}
}
\item[WEVAL-WITH-DEF-REC]
\inference{%
\frac{
\begin{array}{c}
\WEV{E}{S}{\structe{\ModS{X_1}{S_1}}}\\
\WEV{E;\elem_1;\ldots;\elem_i}{\with{S_1}{p}{p_1}}{\overline{S_2}}
\end{array}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{array}{c}
\WEVT{E}{\with{S}{X_1.p}{t:T}}{\structe{\ModS{X}{\overline{S_2}}}}
\end{array}
}
}
\item[WEVAL-PATH-MOD]
\inference{%
\frac{
\begin{array}{c}
\WEV{E}{p}{\structe{ \Mod{X}{S}{S_1}}}\\
\WEV{E;\elem_1;\ldots;\elem_i}{S}{\overline{S}}
\end{array}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\WEV{E}{p.X}{\overline{S}}
}
}
\inference{%
\frac{
\begin{array}{c}
\WF{E}{}~~~~~~\Mod{X}{S}{S_1}\in E\\
\WEV{E}{S}{\overline{S}}
\end{array}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\WEV{E}{X}{\overline{S}}
}
}
\item[WEVAL-PATH-ALIAS]
\inference{%
\frac{
\begin{array}{c}
\WEV{E}{p}{\structe{\ModA{X}{p_1}}}\\
\WEV{E;\elem_1;\ldots;\elem_i}{p_1}{\overline{S}}
\end{array}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\WEV{E}{p.X}{\overline{S}}
}
}
\inference{%
\frac{
\begin{array}{c}
\WF{E}{}~~~~~~~\ModA{X}{p_1}\in E\\
\WEV{E}{p_1}{\overline{S}}
\end{array}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\WEV{E}{X}{\overline{S}}
}
}
\item[WEVAL-PATH-TYPE]
\inference{%
\frac{
\begin{array}{c}
\WEV{E}{p}{\structe{\ModType{Y}{S}}}\\
\WEV{E;\elem_1;\ldots;\elem_i}{S}{\overline{S}}
\end{array}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\WEV{E}{p.Y}{\overline{S}}
}
}
\item[WEVAL-PATH-TYPE]
\inference{%
\frac{
\begin{array}{c}
\WF{E}{}~~~~~~~\ModType{Y}{S}\in E\\
\WEV{E}{S}{\overline{S}}
\end{array}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\WEV{E}{Y}{\overline{S}}
}
}
\end{description}
Rules for typing module:
\begin{description}
\item[MT-EVAL]
\inference{%
\frac{
\WEV{E}{p}{\overline{S}}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\WTM{E}{p}{\overline{S}}
}
}
\item[MT-STR]
\inference{%
\frac{
\WTM{E}{p}{S}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\WTM{E}{p}{S/p}
}
}
\end{description}
The last rule, called strengthening is used to make all module fields
manifestly equal to themselves. The notation $S/p$ has the following
meaning:
\begin{itemize}
\item if $S\lra\struct{\elem_1;\dots;\elem_n}$ then
$S/p=\struct{\elem_1/p;\dots;\elem_n/p}$ where $\elem/p$ is defined as
follows:
\begin{itemize}
\item $\Def{}{c}{t}{T}/p\footnote{Opaque definitions are processed as assumptions.} ~=~ \Def{}{c}{t}{T}$
\item $\Assum{}{c}{U}/p ~=~ \Def{}{c}{p.c}{U}$
\item $\ModS{X}{S}/p ~=~ \ModA{X}{p.X}$
\item $\ModA{X}{p'}/p ~=~ \ModA{X}{p'}$
\item $\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}/p ~=~ \Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}$
\item $\Indpstr{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p'}{p} ~=~ \Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p'}$
\end{itemize}
\item if $S\lra\functor{X}{S'}{S''}$ then $S/p=S$
\end{itemize}
The notation $\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}$ denotes an
inductive definition that is definitionally equal to the inductive
definition in the module denoted by the path $p$. All rules which have
$\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}$ as premises are also valid for
$\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}$. We give the formation rule
for $\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}$ below as well as
the equality rules on inductive types and constructors. \\
The module subtyping rules:
\begin{description}
\item[MSUB-STR]
\inference{%
\frac{
\begin{array}{c}
\WS{E;\elem_1;\dots;\elem_n}{\elem_{\sigma(i)}}{\elem'_i}
\textrm{ \ for } i=1..m \\
\sigma : \{1\dots m\} \ra \{1\dots n\} \textrm{ \ injective}
\end{array}
}{
\WS{E}{\struct{\elem_1;\dots;\elem_n}}{\struct{\elem'_1;\dots;\elem'_m}}
}
}
\item[MSUB-FUN]
\inference{% T_1 -> T_2 <: T_1' -> T_2'
\frac{
\WS{E}{\overline{S_1'}}{\overline{S_1}}~~~~~~~~~~\WS{E;\ModS{X}{S_1'}}{\overline{S_2}}{\overline{S_2'}}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\WS{E}{\functor{X}{S_1}{S_2}}{\functor{X}{S_1'}{S_2'}}
}
}
% these are derived rules
% \item[MSUB-EQ]
% \inference{%
% \frac{
% \WS{E}{T_1}{T_2}~~~~~~~~~~\WTERED{}{T_1}{=}{T_1'}~~~~~~~~~~\WTERED{}{T_2}{=}{T_2'}
% }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \WS{E}{T_1'}{T_2'}
% }
% }
% \item[MSUB-REFL]
% \inference{%
% \frac{
% \WFT{E}{T}
% }{
% \WS{E}{T}{T}
% }
% }
\end{description}
Structure element subtyping rules:
\begin{description}
\item[ASSUM-ASSUM]
\inference{%
\frac{
\WTELECONV{}{T_1}{T_2}
}{
\WSE{\Assum{}{c}{T_1}}{\Assum{}{c}{T_2}}
}
}
\item[DEF-ASSUM]
\inference{%
\frac{
\WTELECONV{}{T_1}{T_2}
}{
\WSE{\Def{}{c}{t}{T_1}}{\Assum{}{c}{T_2}}
}
}
\item[ASSUM-DEF]
\inference{%
\frac{
\WTELECONV{}{T_1}{T_2}~~~~~~~~\WTECONV{}{c}{t_2}
}{
\WSE{\Assum{}{c}{T_1}}{\Def{}{c}{t_2}{T_2}}
}
}
\item[DEF-DEF]
\inference{%
\frac{
\WTELECONV{}{T_1}{T_2}~~~~~~~~\WTECONV{}{t_1}{t_2}
}{
\WSE{\Def{}{c}{t_1}{T_1}}{\Def{}{c}{t_2}{T_2}}
}
}
\item[IND-IND]
\inference{%
\frac{
\WTECONV{}{\Gamma_P}{\Gamma_P'}%
~~~~~~~~\WTECONV{\Gamma_P}{\Gamma_C}{\Gamma_C'}%
~~~~~~~~\WTECONV{\Gamma_P;\Gamma_C}{\Gamma_I}{\Gamma_I'}%
}{
\WSE{\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}}%
{\Ind{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'}}
}
}
\item[INDP-IND]
\inference{%
\frac{
\WTECONV{}{\Gamma_P}{\Gamma_P'}%
~~~~~~~~\WTECONV{\Gamma_P}{\Gamma_C}{\Gamma_C'}%
~~~~~~~~\WTECONV{\Gamma_P;\Gamma_C}{\Gamma_I}{\Gamma_I'}%
}{
\WSE{\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}}%
{\Ind{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'}}
}
}
\item[INDP-INDP]
\inference{%
\frac{
\WTECONV{}{\Gamma_P}{\Gamma_P'}%
~~~~~~\WTECONV{\Gamma_P}{\Gamma_C}{\Gamma_C'}%
~~~~~~\WTECONV{\Gamma_P;\Gamma_C}{\Gamma_I}{\Gamma_I'}%
~~~~~~\WTECONV{}{p}{p'}
}{
\WSE{\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}}%
{\Indp{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'}{p'}}
}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\item[MOD-MOD]
\inference{%
\frac{
\WSE{S_1}{S_2}
}{
\WSE{\ModS{X}{S_1}}{\ModS{X}{S_2}}
}
}
\item[ALIAS-MOD]
\inference{%
\frac{
\WTM{E}{p}{S_1}~~~~~~~~\WSE{S_1}{S_2}
}{
\WSE{\ModA{X}{p}}{\ModS{X}{S_2}}
}
}
\item[MOD-ALIAS]
\inference{%
\frac{
\WTM{E}{p}{S_2}~~~~~~~~
\WSE{S_1}{S_2}~~~~~~~~\WTECONV{}{X}{p}
}{
\WSE{\ModS{X}{S_1}}{\ModA{X}{p}}
}
}
\item[ALIAS-ALIAS]
\inference{%
\frac{
\WTECONV{}{p_1}{p_2}
}{
\WSE{\ModA{X}{p_1}}{\ModA{X}{p_2}}
}
}
\item[MODTYPE-MODTYPE]
\inference{%
\frac{
\WSE{S_1}{S_2}~~~~~~~~\WSE{S_2}{S_1}
}{
\WSE{\ModType{Y}{S_1}}{\ModType{Y}{S_2}}
}
}
\end{description}
New environment formation rules
\begin{description}
\item[WF-MOD]
\inference{%
\frac{
\WF{E}{}~~~~~~~~\WFT{E}{S}
}{
\WF{E;\ModS{X}{S}}{}
}
}
\item[WF-MOD]
\inference{%
\frac{
\begin{array}{c}
\WS{E}{S_2}{S_1}\\
\WF{E}{}~~~~~\WFT{E}{S_1}~~~~~\WFT{E}{S_2}
\end{array}
}{
\WF{E;\Mod{X}{S_1}{S_2}}{}
}
}
\item[WF-ALIAS]
\inference{%
\frac{
\WF{E}{}~~~~~~~~~~~\WTE{}{p}{S}
}{
\WF{E,\ModA{X}{p}}{}
}
}
\item[WF-MODTYPE]
\inference{%
\frac{
\WF{E}{}~~~~~~~~~~~\WFT{E}{S}
}{
\WF{E,\ModType{Y}{S}}{}
}
}
\item[WF-IND]
\inference{%
\frac{
\begin{array}{c}
\WF{E;\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}}{}\\
\WT{E}{}{p:\struct{\elem_1;\dots;\elem_n;\Ind{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'};\dots}}\\
\WS{E}{\Ind{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'}}{\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}}
\end{array}
}{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\WF{E;\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}}{}
}
}
\end{description}
Component access rules
\begin{description}
\item[ACC-TYPE]
\inference{%
\frac{
\WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Assum{}{c}{T};\dots}}
}{
\WTEG{p.c}{T}
}
}
\\
\inference{%
\frac{
\WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Def{}{c}{t}{T};\dots}}
}{
\WTEG{p.c}{T}
}
}
\item[ACC-DELTA]
Notice that the following rule extends the delta rule defined in
section~\ref{delta}
\inference{%
\frac{
\WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Def{}{c}{t}{U};\dots}}
}{
\WTEGRED{p.c}{\triangleright_\delta}{t}
}
}
\\
In the rules below we assume $\Gamma_P$ is $[p_1:P_1;\ldots;p_r:P_r]$,
$\Gamma_I$ is $[I_1:A_1;\ldots;I_k:A_k]$, and $\Gamma_C$ is
$[c_1:C_1;\ldots;c_n:C_n]$
\item[ACC-IND]
\inference{%
\frac{
\WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I};\dots}}
}{
\WTEG{p.I_j}{(p_1:P_1)\ldots(p_r:P_r)A_j}
}
}
\inference{%
\frac{
\WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I};\dots}}
}{
\WTEG{p.c_m}{(p_1:P_1)\ldots(p_r:P_r){C_m}{I_j}{(I_j~p_1\ldots
p_r)}_{j=1\ldots k}}
}
}
\item[ACC-INDP]
\inference{%
\frac{
\WT{E}{}{p}{\struct{\elem_1;\dots;\elem_i;\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p'};\dots}}
}{
\WTRED{E}{}{p.I_i}{\triangleright_\delta}{p'.I_i}
}
}
\inference{%
\frac{
\WT{E}{}{p}{\struct{\elem_1;\dots;\elem_i;\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p'};\dots}}
}{
\WTRED{E}{}{p.c_i}{\triangleright_\delta}{p'.c_i}
}
}
\end{description}
% %%% replaced by \triangle_\delta
% Module path equality is a transitive and reflexive closure of the
% relation generated by ACC-MODEQ and ENV-MODEQ.
% \begin{itemize}
% \item []MP-EQ-REFL
% \inference{%
% \frac{
% \WTEG{p}{T}
% }{
% \WTEG{p}{p}
% }
% }
% \item []MP-EQ-TRANS
% \inference{%
% \frac{
% \WTEGRED{p}{=}{p'}~~~~~~\WTEGRED{p'}{=}{p''}
% }{
% \WTEGRED{p'}{=}{p''}
% }
% }
% \end{itemize}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "Reference-Manual"
%%% End:
|