1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
\chapter{Proof schemes}
\section{Generation of induction principles with {\tt Scheme}}
\label{Scheme}
\index{Schemes}
\comindex{Scheme}
The {\tt Scheme} command is a high-level tool for generating
automatically (possibly mutual) induction principles for given types
and sorts. Its syntax follows the schema:
\begin{quote}
{\tt Scheme {\ident$_1$} := Induction for \ident'$_1$ Sort {\sort$_1$} \\
with\\
\mbox{}\hspace{0.1cm} \dots\\
with {\ident$_m$} := Induction for {\ident'$_m$} Sort
{\sort$_m$}}
\end{quote}
where \ident'$_1$ \dots\ \ident'$_m$ are different inductive type
identifiers belonging to the same package of mutual inductive
definitions. This command generates {\ident$_1$}\dots{} {\ident$_m$}
to be mutually recursive definitions. Each term {\ident$_i$} proves a
general principle of mutual induction for objects in type {\term$_i$}.
\begin{Variants}
\item {\tt Scheme {\ident$_1$} := Minimality for \ident'$_1$ Sort {\sort$_1$} \\
with\\
\mbox{}\hspace{0.1cm} \dots\ \\
with {\ident$_m$} := Minimality for {\ident'$_m$} Sort
{\sort$_m$}}
Same as before but defines a non-dependent elimination principle more
natural in case of inductively defined relations.
\item {\tt Scheme Equality for \ident$_1$\comindex{Scheme Equality}}
Tries to generate a boolean equality and a proof of the
decidability of the usual equality. If \ident$_i$ involves
some other inductive types, their equality has to be defined first.
\item {\tt Scheme Induction for \ident$_1$ Sort {\sort$_1$} \\
with\\
\mbox{}\hspace{0.1cm} \dots\\
with Induction for {\ident$_m$} Sort
{\sort$_m$}}
If you do not provide the name of the schemes, they will be automatically
computed from the sorts involved (works also with Minimality).
\end{Variants}
\label{Scheme-examples}
\firstexample
\example{Induction scheme for \texttt{tree} and \texttt{forest}}
The definition of principle of mutual induction for {\tt tree} and
{\tt forest} over the sort {\tt Set} is defined by the command:
\begin{coq_eval}
Reset Initial.
Variables A B : Set.
\end{coq_eval}
\begin{coq_example*}
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| leaf : B -> forest
| cons : tree -> forest -> forest.
Scheme tree_forest_rec := Induction for tree Sort Set
with forest_tree_rec := Induction for forest Sort Set.
\end{coq_example*}
You may now look at the type of {\tt tree\_forest\_rec}:
\begin{coq_example}
Check tree_forest_rec.
\end{coq_example}
This principle involves two different predicates for {\tt trees} and
{\tt forests}; it also has three premises each one corresponding to a
constructor of one of the inductive definitions.
The principle {\tt forest\_tree\_rec} shares exactly the same
premises, only the conclusion now refers to the property of forests.
\begin{coq_example}
Check forest_tree_rec.
\end{coq_example}
\example{Predicates {\tt odd} and {\tt even} on naturals}
Let {\tt odd} and {\tt even} be inductively defined as:
% Reset Initial.
\begin{coq_eval}
Open Scope nat_scope.
\end{coq_eval}
\begin{coq_example*}
Inductive odd : nat -> Prop :=
oddS : forall n:nat, even n -> odd (S n)
with even : nat -> Prop :=
| evenO : even 0
| evenS : forall n:nat, odd n -> even (S n).
\end{coq_example*}
The following command generates a powerful elimination
principle:
\begin{coq_example}
Scheme odd_even := Minimality for odd Sort Prop
with even_odd := Minimality for even Sort Prop.
\end{coq_example}
The type of {\tt odd\_even} for instance will be:
\begin{coq_example}
Check odd_even.
\end{coq_example}
The type of {\tt even\_odd} shares the same premises but the
conclusion is {\tt (n:nat)(even n)->(Q n)}.
\subsection{Automatic declaration of schemes}
\comindex{Set Equality Schemes}
\comindex{Set Elimination Schemes}
It is possible to deactivate the automatic declaration of the induction
principles when defining a new inductive type with the
{\tt Unset Elimination Schemes} command. It may be
reactivated at any time with {\tt Set Elimination Schemes}.
\\
You can also activate the automatic declaration of those boolean equalities
(see the second variant of {\tt Scheme}) with the {\tt Set Equality Schemes}
command. However you have to be careful with this option since
\Coq~ may now reject well-defined inductive types because it cannot compute
a boolean equality for them.
\subsection{\tt Combined Scheme}
\label{CombinedScheme}
\comindex{Combined Scheme}
The {\tt Combined Scheme} command is a tool for combining
induction principles generated by the {\tt Scheme} command.
Its syntax follows the schema :
\begin{quote}
{\tt Combined Scheme {\ident$_0$} from {\ident$_1$}, .., {\ident$_n$}}
\end{quote}
where
\ident$_1$ \ldots \ident$_n$ are different inductive principles that must belong to
the same package of mutual inductive principle definitions. This command
generates {\ident$_0$} to be the conjunction of the principles: it is
built from the common premises of the principles and concluded by the
conjunction of their conclusions.
\Example
We can define the induction principles for trees and forests using:
\begin{coq_example}
Scheme tree_forest_ind := Induction for tree Sort Prop
with forest_tree_ind := Induction for forest Sort Prop.
\end{coq_example}
Then we can build the combined induction principle which gives the
conjunction of the conclusions of each individual principle:
\begin{coq_example}
Combined Scheme tree_forest_mutind from tree_forest_ind, forest_tree_ind.
\end{coq_example}
The type of {\tt tree\_forest\_mutrec} will be:
\begin{coq_example}
Check tree_forest_mutind.
\end{coq_example}
\section{Generation of induction principles with {\tt Functional Scheme}}
\label{FunScheme}
\comindex{Functional Scheme}
The {\tt Functional Scheme} command is a high-level experimental
tool for generating automatically induction principles
corresponding to (possibly mutually recursive) functions. Its
syntax follows the schema:
\begin{quote}
{\tt Functional Scheme {\ident$_1$} := Induction for \ident'$_1$ Sort {\sort$_1$} \\
with\\
\mbox{}\hspace{0.1cm} \dots\ \\
with {\ident$_m$} := Induction for {\ident'$_m$} Sort
{\sort$_m$}}
\end{quote}
where \ident'$_1$ \dots\ \ident'$_m$ are different mutually defined function
names (they must be in the same order as when they were defined).
This command generates the induction principles
\ident$_1$\dots\ident$_m$, following the recursive structure and case
analyses of the functions \ident'$_1$ \dots\ \ident'$_m$.
\Rem
There is a difference between obtaining an induction scheme by using
\texttt{Functional Scheme} on a function defined by \texttt{Function}
or not. Indeed \texttt{Function} generally produces smaller
principles, closer to the definition written by the user.
\firstexample
\example{Induction scheme for \texttt{div2}}
\label{FunScheme-examples}
We define the function \texttt{div2} as follows:
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Require Import Arith.
Fixpoint div2 (n:nat) : nat :=
match n with
| O => 0
| S O => 0
| S (S n') => S (div2 n')
end.
\end{coq_example*}
The definition of a principle of induction corresponding to the
recursive structure of \texttt{div2} is defined by the command:
\begin{coq_example}
Functional Scheme div2_ind := Induction for div2 Sort Prop.
\end{coq_example}
You may now look at the type of {\tt div2\_ind}:
\begin{coq_example}
Check div2_ind.
\end{coq_example}
We can now prove the following lemma using this principle:
\begin{coq_example*}
Lemma div2_le' : forall n:nat, div2 n <= n.
intro n.
pattern n , (div2 n).
\end{coq_example*}
\begin{coq_example}
apply div2_ind; intros.
\end{coq_example}
\begin{coq_example*}
auto with arith.
auto with arith.
simpl; auto with arith.
Qed.
\end{coq_example*}
We can use directly the \texttt{functional induction}
(\ref{FunInduction}) tactic instead of the pattern/apply trick:
\tacindex{functional induction}
\begin{coq_example*}
Reset div2_le'.
Lemma div2_le : forall n:nat, div2 n <= n.
intro n.
\end{coq_example*}
\begin{coq_example}
functional induction (div2 n).
\end{coq_example}
\begin{coq_example*}
auto with arith.
auto with arith.
auto with arith.
Qed.
\end{coq_example*}
\Rem There is a difference between obtaining an induction scheme for a
function by using \texttt{Function} (see Section~\ref{Function}) and by
using \texttt{Functional Scheme} after a normal definition using
\texttt{Fixpoint} or \texttt{Definition}. See \ref{Function} for
details.
\example{Induction scheme for \texttt{tree\_size}}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
We define trees by the following mutual inductive type:
\begin{coq_example*}
Variable A : Set.
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| empty : forest
| cons : tree -> forest -> forest.
\end{coq_example*}
We define the function \texttt{tree\_size} that computes the size
of a tree or a forest. Note that we use \texttt{Function} which
generally produces better principles.
\begin{coq_example*}
Function tree_size (t:tree) : nat :=
match t with
| node A f => S (forest_size f)
end
with forest_size (f:forest) : nat :=
match f with
| empty => 0
| cons t f' => (tree_size t + forest_size f')
end.
\end{coq_example*}
\Rem \texttt{Function} generates itself non mutual induction
principles {\tt tree\_size\_ind} and {\tt forest\_size\_ind}:
\begin{coq_example}
Check tree_size_ind.
\end{coq_example}
The definition of mutual induction principles following the recursive
structure of \texttt{tree\_size} and \texttt{forest\_size} is defined
by the command:
\begin{coq_example*}
Functional Scheme tree_size_ind2 := Induction for tree_size Sort Prop
with forest_size_ind2 := Induction for forest_size Sort Prop.
\end{coq_example*}
You may now look at the type of {\tt tree\_size\_ind2}:
\begin{coq_example}
Check tree_size_ind2.
\end{coq_example}
\section{Generation of inversion principles with \tt Derive Inversion}
\label{Derive-Inversion}
\comindex{Derive Inversion}
The syntax of {\tt Derive Inversion} follows the schema:
\begin{quote}
{\tt Derive Inversion {\ident} with forall
$(\vec{x} : \vec{T})$, $I~\vec{t}$ Sort \sort}
\end{quote}
This command generates an inversion principle for the
\texttt{inversion \dots\ using} tactic.
\tacindex{inversion \dots\ using}
Let $I$ be an inductive predicate and $\vec{x}$ the variables
occurring in $\vec{t}$. This command generates and stocks the
inversion lemma for the sort \sort~ corresponding to the instance
$\forall (\vec{x}:\vec{T}), I~\vec{t}$ with the name {\ident} in the {\bf
global} environment. When applied, it is equivalent to having inverted
the instance with the tactic {\tt inversion}.
\begin{Variants}
\item \texttt{Derive Inversion\_clear {\ident} with forall
$(\vec{x}:\vec{T})$, $I~\vec{t}$ Sort \sort}\\
\comindex{Derive Inversion\_clear}
When applied, it is equivalent to having
inverted the instance with the tactic \texttt{inversion}
replaced by the tactic \texttt{inversion\_clear}.
\item \texttt{Derive Dependent Inversion {\ident} with forall
$(\vec{x}:\vec{T})$, $I~\vec{t}$ Sort \sort}\\
\comindex{Derive Dependent Inversion}
When applied, it is equivalent to having
inverted the instance with the tactic \texttt{dependent inversion}.
\item \texttt{Derive Dependent Inversion\_clear {\ident} with forall
$(\vec{x}:\vec{T})$, $I~\vec{t}$ Sort \sort}\\
\comindex{Derive Dependent Inversion\_clear}
When applied, it is equivalent to having
inverted the instance with the tactic \texttt{dependent inversion\_clear}.
\end{Variants}
\Example
Let us consider the relation \texttt{Le} over natural numbers and the
following variable:
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Inductive Le : nat -> nat -> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le n m -> Le (S n) (S m).
Variable P : nat -> nat -> Prop.
\end{coq_example*}
To generate the inversion lemma for the instance
\texttt{(Le (S n) m)} and the sort \texttt{Prop}, we do:
\begin{coq_example*}
Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort Prop.
\end{coq_example*}
\begin{coq_example}
Check leminv.
\end{coq_example}
Then we can use the proven inversion lemma:
\begin{coq_eval}
Lemma ex : forall n m:nat, Le (S n) m -> P n m.
intros.
\end{coq_eval}
\begin{coq_example}
Show.
\end{coq_example}
\begin{coq_example}
inversion H using leminv.
\end{coq_example}
|