1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i*)
open Pp
open Util
open Names
open Nameops
open Libnames
open Glob_term
open Term
open Mod_subst
(*i*)
(**********************************************************************)
(* This is the subtype of glob_constr allowed in syntactic extensions *)
(* For AList: first constr is iterator, second is terminator;
first id is where each argument of the list has to be substituted
in iterator and snd id is alternative name just for printing;
boolean is associativity *)
type aconstr =
(* Part common to glob_constr and cases_pattern *)
| ARef of global_reference
| AVar of identifier
| AApp of aconstr * aconstr list
| AList of identifier * identifier * aconstr * aconstr * bool
(* Part only in glob_constr *)
| ALambda of name * aconstr * aconstr
| AProd of name * aconstr * aconstr
| ABinderList of identifier * identifier * aconstr * aconstr
| ALetIn of name * aconstr * aconstr
| ACases of case_style * aconstr option *
(aconstr * (name * (inductive * int * name list) option)) list *
(cases_pattern list * aconstr) list
| ALetTuple of name list * (name * aconstr option) * aconstr * aconstr
| AIf of aconstr * (name * aconstr option) * aconstr * aconstr
| ARec of fix_kind * identifier array *
(name * aconstr option * aconstr) list array * aconstr array *
aconstr array
| ASort of glob_sort
| AHole of Evd.hole_kind
| APatVar of patvar
| ACast of aconstr * aconstr cast_type
type scope_name = string
type tmp_scope_name = scope_name
type subscopes = tmp_scope_name option * scope_name list
type notation_var_instance_type =
| NtnTypeConstr | NtnTypeConstrList | NtnTypeBinderList
type notation_var_internalization_type =
| NtnInternTypeConstr | NtnInternTypeBinder | NtnInternTypeIdent
type interpretation =
(identifier * (subscopes * notation_var_instance_type)) list * aconstr
(**********************************************************************)
(* Re-interpret a notation as a glob_constr, taking care of binders *)
let name_to_ident = function
| Anonymous -> error "This expression should be a simple identifier."
| Name id -> id
let to_id g e id = let e,na = g e (Name id) in e,name_to_ident na
let rec cases_pattern_fold_map loc g e = function
| PatVar (_,na) ->
let e',na' = g e na in e', PatVar (loc,na')
| PatCstr (_,cstr,patl,na) ->
let e',na' = g e na in
let e',patl' = list_fold_map (cases_pattern_fold_map loc g) e patl in
e', PatCstr (loc,cstr,patl',na')
let rec subst_glob_vars l = function
| GVar (_,id) as r -> (try List.assoc id l with Not_found -> r)
| GProd (loc,Name id,bk,t,c) ->
let id =
try match List.assoc id l with GVar(_,id') -> id' | _ -> id
with Not_found -> id in
GProd (loc,Name id,bk,subst_glob_vars l t,subst_glob_vars l c)
| GLambda (loc,Name id,bk,t,c) ->
let id =
try match List.assoc id l with GVar(_,id') -> id' | _ -> id
with Not_found -> id in
GLambda (loc,Name id,bk,subst_glob_vars l t,subst_glob_vars l c)
| r -> map_glob_constr (subst_glob_vars l) r (* assume: id is not binding *)
let ldots_var = id_of_string ".."
let glob_constr_of_aconstr_with_binders loc g f e = function
| AVar id -> GVar (loc,id)
| AApp (a,args) -> GApp (loc,f e a, List.map (f e) args)
| AList (x,y,iter,tail,swap) ->
let t = f e tail in let it = f e iter in
let innerl = (ldots_var,t)::(if swap then [] else [x,GVar(loc,y)]) in
let inner = GApp (loc,GVar (loc,ldots_var),[subst_glob_vars innerl it]) in
let outerl = (ldots_var,inner)::(if swap then [x,GVar(loc,y)] else []) in
subst_glob_vars outerl it
| ABinderList (x,y,iter,tail) ->
let t = f e tail in let it = f e iter in
let innerl = [(ldots_var,t);(x,GVar(loc,y))] in
let inner = GApp (loc,GVar (loc,ldots_var),[subst_glob_vars innerl it]) in
let outerl = [(ldots_var,inner)] in
subst_glob_vars outerl it
| ALambda (na,ty,c) ->
let e',na = g e na in GLambda (loc,na,Explicit,f e ty,f e' c)
| AProd (na,ty,c) ->
let e',na = g e na in GProd (loc,na,Explicit,f e ty,f e' c)
| ALetIn (na,b,c) ->
let e',na = g e na in GLetIn (loc,na,f e b,f e' c)
| ACases (sty,rtntypopt,tml,eqnl) ->
let e',tml' = List.fold_right (fun (tm,(na,t)) (e',tml') ->
let e',t' = match t with
| None -> e',None
| Some (ind,npar,nal) ->
let e',nal' = List.fold_right (fun na (e',nal) ->
let e',na' = g e' na in e',na'::nal) nal (e',[]) in
e',Some (loc,ind,npar,nal') in
let e',na' = g e' na in
(e',(f e tm,(na',t'))::tml')) tml (e,[]) in
let fold (idl,e) na = let (e,na) = g e na in ((name_cons na idl,e),na) in
let eqnl' = List.map (fun (patl,rhs) ->
let ((idl,e),patl) =
list_fold_map (cases_pattern_fold_map loc fold) ([],e) patl in
(loc,idl,patl,f e rhs)) eqnl in
GCases (loc,sty,Option.map (f e') rtntypopt,tml',eqnl')
| ALetTuple (nal,(na,po),b,c) ->
let e',nal = list_fold_map g e nal in
let e'',na = g e na in
GLetTuple (loc,nal,(na,Option.map (f e'') po),f e b,f e' c)
| AIf (c,(na,po),b1,b2) ->
let e',na = g e na in
GIf (loc,f e c,(na,Option.map (f e') po),f e b1,f e b2)
| ARec (fk,idl,dll,tl,bl) ->
let e,dll = array_fold_map (list_fold_map (fun e (na,oc,b) ->
let e,na = g e na in
(e,(na,Explicit,Option.map (f e) oc,f e b)))) e dll in
let e',idl = array_fold_map (to_id g) e idl in
GRec (loc,fk,idl,dll,Array.map (f e) tl,Array.map (f e') bl)
| ACast (c,k) -> GCast (loc,f e c,
match k with
| CastConv (k,t) -> CastConv (k,f e t)
| CastCoerce -> CastCoerce)
| ASort x -> GSort (loc,x)
| AHole x -> GHole (loc,x)
| APatVar n -> GPatVar (loc,(false,n))
| ARef x -> GRef (loc,x)
let rec glob_constr_of_aconstr loc x =
let rec aux () x =
glob_constr_of_aconstr_with_binders loc (fun () id -> ((),id)) aux () x
in aux () x
(****************************************************************************)
(* Translating a glob_constr into a notation, interpreting recursive patterns *)
let add_id r id = r := (id :: pi1 !r, pi2 !r, pi3 !r)
let add_name r = function Anonymous -> () | Name id -> add_id r id
let split_at_recursive_part c =
let sub = ref None in
let rec aux = function
| GApp (loc0,GVar(loc,v),c::l) when v = ldots_var ->
if !sub <> None then
(* Not narrowed enough to find only one recursive part *)
raise Not_found
else
(sub := Some c;
if l = [] then GVar (loc,ldots_var)
else GApp (loc0,GVar (loc,ldots_var),l))
| c -> map_glob_constr aux c in
let outer_iterator = aux c in
match !sub with
| None -> (* No recursive pattern found *) raise Not_found
| Some c ->
match outer_iterator with
| GVar (_,v) when v = ldots_var -> (* Not enough context *) raise Not_found
| _ -> outer_iterator, c
let on_true_do b f c = if b then (f c; b) else b
let compare_glob_constr f add t1 t2 = match t1,t2 with
| GRef (_,r1), GRef (_,r2) -> eq_gr r1 r2
| GVar (_,v1), GVar (_,v2) -> on_true_do (v1 = v2) add (Name v1)
| GApp (_,f1,l1), GApp (_,f2,l2) -> f f1 f2 & list_for_all2eq f l1 l2
| GLambda (_,na1,bk1,ty1,c1), GLambda (_,na2,bk2,ty2,c2) when na1 = na2 && bk1 = bk2 -> on_true_do (f ty1 ty2 & f c1 c2) add na1
| GProd (_,na1,bk1,ty1,c1), GProd (_,na2,bk2,ty2,c2) when na1 = na2 && bk1 = bk2 ->
on_true_do (f ty1 ty2 & f c1 c2) add na1
| GHole _, GHole _ -> true
| GSort (_,s1), GSort (_,s2) -> s1 = s2
| GLetIn (_,na1,b1,c1), GLetIn (_,na2,b2,c2) when na1 = na2 ->
on_true_do (f b1 b2 & f c1 c2) add na1
| (GCases _ | GRec _
| GPatVar _ | GEvar _ | GLetTuple _ | GIf _ | GCast _),_
| _,(GCases _ | GRec _
| GPatVar _ | GEvar _ | GLetTuple _ | GIf _ | GCast _)
-> error "Unsupported construction in recursive notations."
| (GRef _ | GVar _ | GApp _ | GLambda _ | GProd _
| GHole _ | GSort _ | GLetIn _), _
-> false
let rec eq_glob_constr t1 t2 = compare_glob_constr eq_glob_constr (fun _ -> ()) t1 t2
let subtract_loc loc1 loc2 = make_loc (fst (unloc loc1),fst (unloc loc2)-1)
let check_is_hole id = function GHole _ -> () | t ->
user_err_loc (loc_of_glob_constr t,"",
strbrk "In recursive notation with binders, " ++ pr_id id ++
strbrk " is expected to come without type.")
let compare_recursive_parts found f (iterator,subc) =
let diff = ref None in
let terminator = ref None in
let rec aux c1 c2 = match c1,c2 with
| GVar(_,v), term when v = ldots_var ->
(* We found the pattern *)
assert (!terminator = None); terminator := Some term;
true
| GApp (_,GVar(_,v),l1), GApp (_,term,l2) when v = ldots_var ->
(* We found the pattern, but there are extra arguments *)
(* (this allows e.g. alternative (recursive) notation of application) *)
assert (!terminator = None); terminator := Some term;
list_for_all2eq aux l1 l2
| GVar (_,x), GVar (_,y) when x<>y ->
(* We found the position where it differs *)
let lassoc = (!terminator <> None) in
let x,y = if lassoc then y,x else x,y in
!diff = None && (diff := Some (x,y,Some lassoc); true)
| GLambda (_,Name x,_,t_x,c), GLambda (_,Name y,_,t_y,term)
| GProd (_,Name x,_,t_x,c), GProd (_,Name y,_,t_y,term) ->
(* We found a binding position where it differs *)
check_is_hole x t_x;
check_is_hole y t_y;
!diff = None && (diff := Some (x,y,None); aux c term)
| _ ->
compare_glob_constr aux (add_name found) c1 c2 in
if aux iterator subc then
match !diff with
| None ->
let loc1 = loc_of_glob_constr iterator in
let loc2 = loc_of_glob_constr (Option.get !terminator) in
(* Here, we would need a loc made of several parts ... *)
user_err_loc (subtract_loc loc1 loc2,"",
str "Both ends of the recursive pattern are the same.")
| Some (x,y,Some lassoc) ->
let newfound = (pi1 !found, (x,y) :: pi2 !found, pi3 !found) in
let iterator =
f (if lassoc then subst_glob_vars [y,GVar(dummy_loc,x)] iterator
else iterator) in
(* found have been collected by compare_constr *)
found := newfound;
AList (x,y,iterator,f (Option.get !terminator),lassoc)
| Some (x,y,None) ->
let newfound = (pi1 !found, pi2 !found, (x,y) :: pi3 !found) in
let iterator = f iterator in
(* found have been collected by compare_constr *)
found := newfound;
ABinderList (x,y,iterator,f (Option.get !terminator))
else
raise Not_found
let aconstr_and_vars_of_glob_constr a =
let found = ref ([],[],[]) in
let rec aux c =
let keepfound = !found in
(* n^2 complexity but small and done only once per notation *)
try compare_recursive_parts found aux' (split_at_recursive_part c)
with Not_found ->
found := keepfound;
match c with
| GApp (_,GVar (loc,f),[c]) when f = ldots_var ->
(* Fall on the second part of the recursive pattern w/o having
found the first part *)
user_err_loc (loc,"",
str "Cannot find where the recursive pattern starts.")
| c ->
aux' c
and aux' = function
| GVar (_,id) -> add_id found id; AVar id
| GApp (_,g,args) -> AApp (aux g, List.map aux args)
| GLambda (_,na,bk,ty,c) -> add_name found na; ALambda (na,aux ty,aux c)
| GProd (_,na,bk,ty,c) -> add_name found na; AProd (na,aux ty,aux c)
| GLetIn (_,na,b,c) -> add_name found na; ALetIn (na,aux b,aux c)
| GCases (_,sty,rtntypopt,tml,eqnl) ->
let f (_,idl,pat,rhs) = List.iter (add_id found) idl; (pat,aux rhs) in
ACases (sty,Option.map aux rtntypopt,
List.map (fun (tm,(na,x)) ->
add_name found na;
Option.iter
(fun (_,_,_,nl) -> List.iter (add_name found) nl) x;
(aux tm,(na,Option.map (fun (_,ind,n,nal) -> (ind,n,nal)) x))) tml,
List.map f eqnl)
| GLetTuple (loc,nal,(na,po),b,c) ->
add_name found na;
List.iter (add_name found) nal;
ALetTuple (nal,(na,Option.map aux po),aux b,aux c)
| GIf (loc,c,(na,po),b1,b2) ->
add_name found na;
AIf (aux c,(na,Option.map aux po),aux b1,aux b2)
| GRec (_,fk,idl,dll,tl,bl) ->
Array.iter (add_id found) idl;
let dll = Array.map (List.map (fun (na,bk,oc,b) ->
if bk <> Explicit then
error "Binders marked as implicit not allowed in notations.";
add_name found na; (na,Option.map aux oc,aux b))) dll in
ARec (fk,idl,dll,Array.map aux tl,Array.map aux bl)
| GCast (_,c,k) -> ACast (aux c,
match k with CastConv (k,t) -> CastConv (k,aux t)
| CastCoerce -> CastCoerce)
| GSort (_,s) -> ASort s
| GHole (_,w) -> AHole w
| GRef (_,r) -> ARef r
| GPatVar (_,(_,n)) -> APatVar n
| GEvar _ ->
error "Existential variables not allowed in notations."
in
let t = aux a in
(* Side effect *)
t, !found
let rec list_rev_mem_assoc x = function
| [] -> false
| (_,x')::l -> x = x' || list_rev_mem_assoc x l
let check_variables vars recvars (found,foundrec,foundrecbinding) =
let useless_vars = List.map snd recvars in
let vars = List.filter (fun (y,_) -> not (List.mem y useless_vars)) vars in
let check_recvar x =
if List.mem x found then
errorlabstrm "" (pr_id x ++
strbrk " should only be used in the recursive part of a pattern.") in
List.iter (fun (x,y) -> check_recvar x; check_recvar y)
(foundrec@foundrecbinding);
let check_bound x =
if not (List.mem x found) then
if List.mem_assoc x foundrec or List.mem_assoc x foundrecbinding
or list_rev_mem_assoc x foundrec or list_rev_mem_assoc x foundrecbinding
then
error ((string_of_id x)^" should not be bound in a recursive pattern of the right-hand side.")
else
error ((string_of_id x)^" is unbound in the right-hand side.") in
let check_pair s x y where =
if not (List.mem (x,y) where) then
errorlabstrm "" (strbrk "in the right-hand side, " ++ pr_id x ++
str " and " ++ pr_id y ++ strbrk " should appear in " ++ str s ++
str " position as part of a recursive pattern.") in
let check_type (x,typ) =
match typ with
| NtnInternTypeConstr ->
begin
try check_pair "term" x (List.assoc x recvars) foundrec
with Not_found -> check_bound x
end
| NtnInternTypeBinder ->
begin
try check_pair "binding" x (List.assoc x recvars) foundrecbinding
with Not_found -> check_bound x
end
| NtnInternTypeIdent -> check_bound x in
List.iter check_type vars
let aconstr_of_glob_constr vars recvars a =
let a,found = aconstr_and_vars_of_glob_constr a in
check_variables vars recvars found;
a
(* Substitution of kernel names, avoiding a list of bound identifiers *)
let aconstr_of_constr avoiding t =
aconstr_of_glob_constr [] [] (Detyping.detype false avoiding [] t)
let rec subst_pat subst pat =
match pat with
| PatVar _ -> pat
| PatCstr (loc,((kn,i),j),cpl,n) ->
let kn' = subst_ind subst kn
and cpl' = list_smartmap (subst_pat subst) cpl in
if kn' == kn && cpl' == cpl then pat else
PatCstr (loc,((kn',i),j),cpl',n)
let rec subst_aconstr subst bound raw =
match raw with
| ARef ref ->
let ref',t = subst_global subst ref in
if ref' == ref then raw else
aconstr_of_constr bound t
| AVar _ -> raw
| AApp (r,rl) ->
let r' = subst_aconstr subst bound r
and rl' = list_smartmap (subst_aconstr subst bound) rl in
if r' == r && rl' == rl then raw else
AApp(r',rl')
| AList (id1,id2,r1,r2,b) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
AList (id1,id2,r1',r2',b)
| ALambda (n,r1,r2) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
ALambda (n,r1',r2')
| AProd (n,r1,r2) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
AProd (n,r1',r2')
| ABinderList (id1,id2,r1,r2) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
ABinderList (id1,id2,r1',r2')
| ALetIn (n,r1,r2) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
ALetIn (n,r1',r2')
| ACases (sty,rtntypopt,rl,branches) ->
let rtntypopt' = Option.smartmap (subst_aconstr subst bound) rtntypopt
and rl' = list_smartmap
(fun (a,(n,signopt) as x) ->
let a' = subst_aconstr subst bound a in
let signopt' = Option.map (fun ((indkn,i),n,nal as z) ->
let indkn' = subst_ind subst indkn in
if indkn == indkn' then z else ((indkn',i),n,nal)) signopt in
if a' == a && signopt' == signopt then x else (a',(n,signopt')))
rl
and branches' = list_smartmap
(fun (cpl,r as branch) ->
let cpl' = list_smartmap (subst_pat subst) cpl
and r' = subst_aconstr subst bound r in
if cpl' == cpl && r' == r then branch else
(cpl',r'))
branches
in
if rtntypopt' == rtntypopt && rtntypopt == rtntypopt' &
rl' == rl && branches' == branches then raw else
ACases (sty,rtntypopt',rl',branches')
| ALetTuple (nal,(na,po),b,c) ->
let po' = Option.smartmap (subst_aconstr subst bound) po
and b' = subst_aconstr subst bound b
and c' = subst_aconstr subst bound c in
if po' == po && b' == b && c' == c then raw else
ALetTuple (nal,(na,po'),b',c')
| AIf (c,(na,po),b1,b2) ->
let po' = Option.smartmap (subst_aconstr subst bound) po
and b1' = subst_aconstr subst bound b1
and b2' = subst_aconstr subst bound b2
and c' = subst_aconstr subst bound c in
if po' == po && b1' == b1 && b2' == b2 && c' == c then raw else
AIf (c',(na,po'),b1',b2')
| ARec (fk,idl,dll,tl,bl) ->
let dll' =
array_smartmap (list_smartmap (fun (na,oc,b as x) ->
let oc' = Option.smartmap (subst_aconstr subst bound) oc in
let b' = subst_aconstr subst bound b in
if oc' == oc && b' == b then x else (na,oc',b'))) dll in
let tl' = array_smartmap (subst_aconstr subst bound) tl in
let bl' = array_smartmap (subst_aconstr subst bound) bl in
if dll' == dll && tl' == tl && bl' == bl then raw else
ARec (fk,idl,dll',tl',bl')
| APatVar _ | ASort _ -> raw
| AHole (Evd.ImplicitArg (ref,i,b)) ->
let ref',t = subst_global subst ref in
if ref' == ref then raw else
AHole (Evd.InternalHole)
| AHole (Evd.BinderType _ | Evd.QuestionMark _ | Evd.CasesType
| Evd.InternalHole | Evd.TomatchTypeParameter _ | Evd.GoalEvar
| Evd.ImpossibleCase | Evd.MatchingVar _) -> raw
| ACast (r1,k) ->
match k with
CastConv (k, r2) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
ACast (r1',CastConv (k,r2'))
| CastCoerce ->
let r1' = subst_aconstr subst bound r1 in
if r1' == r1 then raw else
ACast (r1',CastCoerce)
let subst_interpretation subst (metas,pat) =
let bound = List.map fst metas in
(metas,subst_aconstr subst bound pat)
(* Pattern-matching glob_constr and aconstr *)
let abstract_return_type_context pi mklam tml rtno =
Option.map (fun rtn ->
let nal =
List.flatten (List.map (fun (_,(na,t)) ->
match t with Some x -> (pi x)@[na] | None -> [na]) tml) in
List.fold_right mklam nal rtn)
rtno
let abstract_return_type_context_glob_constr =
abstract_return_type_context (fun (_,_,_,nal) -> nal)
(fun na c -> GLambda(dummy_loc,na,Explicit,GHole(dummy_loc,Evd.InternalHole),c))
let abstract_return_type_context_aconstr =
abstract_return_type_context pi3
(fun na c -> ALambda(na,AHole Evd.InternalHole,c))
exception No_match
let rec alpha_var id1 id2 = function
| (i1,i2)::_ when i1=id1 -> i2 = id2
| (i1,i2)::_ when i2=id2 -> i1 = id1
| _::idl -> alpha_var id1 id2 idl
| [] -> id1 = id2
let alpha_eq_val (x,y) = x = y
let bind_env alp (sigma,sigmalist,sigmabinders as fullsigma) var v =
try
let vvar = List.assoc var sigma in
if alpha_eq_val (v,vvar) then fullsigma
else raise No_match
with Not_found ->
(* Check that no capture of binding variables occur *)
if List.exists (fun (id,_) ->occur_glob_constr id v) alp then raise No_match;
(* TODO: handle the case of multiple occs in different scopes *)
((var,v)::sigma,sigmalist,sigmabinders)
let bind_binder (sigma,sigmalist,sigmabinders) x bl =
(sigma,sigmalist,(x,List.rev bl)::sigmabinders)
let match_fix_kind fk1 fk2 =
match (fk1,fk2) with
| GCoFix n1, GCoFix n2 -> n1 = n2
| GFix (nl1,n1), GFix (nl2,n2) ->
n1 = n2 &&
array_for_all2 (fun (n1,_) (n2,_) -> n2 = None || n1 = n2) nl1 nl2
| _ -> false
let match_opt f sigma t1 t2 = match (t1,t2) with
| None, None -> sigma
| Some t1, Some t2 -> f sigma t1 t2
| _ -> raise No_match
let match_names metas (alp,sigma) na1 na2 = match (na1,na2) with
| (_,Name id2) when List.mem id2 (fst metas) ->
let rhs = match na1 with
| Name id1 -> GVar (dummy_loc,id1)
| Anonymous -> GHole (dummy_loc,Evd.InternalHole) in
alp, bind_env alp sigma id2 rhs
| (Name id1,Name id2) -> (id1,id2)::alp,sigma
| (Anonymous,Anonymous) -> alp,sigma
| _ -> raise No_match
let rec match_cases_pattern_binders metas acc pat1 pat2 =
match (pat1,pat2) with
| PatVar (_,na1), PatVar (_,na2) -> match_names metas acc na1 na2
| PatCstr (_,c1,patl1,na1), PatCstr (_,c2,patl2,na2)
when c1 = c2 & List.length patl1 = List.length patl2 ->
List.fold_left2 (match_cases_pattern_binders metas)
(match_names metas acc na1 na2) patl1 patl2
| _ -> raise No_match
let glue_letin_with_decls = true
let rec match_iterated_binders islambda decls = function
| GLambda (_,na,bk,t,b) when islambda ->
match_iterated_binders islambda ((na,bk,None,t)::decls) b
| GProd (_,(Name _ as na),bk,t,b) when not islambda ->
match_iterated_binders islambda ((na,bk,None,t)::decls) b
| GLetIn (loc,na,c,b) when glue_letin_with_decls ->
match_iterated_binders islambda
((na,Explicit (*?*), Some c,GHole(loc,Evd.BinderType na))::decls) b
| b -> (decls,b)
let remove_sigma x (sigmavar,sigmalist,sigmabinders) =
(List.remove_assoc x sigmavar,sigmalist,sigmabinders)
let rec match_abinderlist_with_app match_fun metas sigma rest x iter termin =
let rec aux sigma acc rest =
try
let sigma = match_fun (ldots_var::fst metas,snd metas) sigma rest iter in
let rest = List.assoc ldots_var (pi1 sigma) in
let b = match List.assoc x (pi3 sigma) with [b] -> b | _ ->assert false in
let sigma = remove_sigma x (remove_sigma ldots_var sigma) in
aux sigma (b::acc) rest
with No_match when acc <> [] ->
acc, match_fun metas sigma rest termin in
let bl,sigma = aux sigma [] rest in
bind_binder sigma x bl
let match_alist match_fun metas sigma rest x iter termin lassoc =
let rec aux sigma acc rest =
try
let sigma = match_fun (ldots_var::fst metas,snd metas) sigma rest iter in
let rest = List.assoc ldots_var (pi1 sigma) in
let t = List.assoc x (pi1 sigma) in
let sigma = remove_sigma x (remove_sigma ldots_var sigma) in
aux sigma (t::acc) rest
with No_match when acc <> [] ->
acc, match_fun metas sigma rest termin in
let l,sigma = aux sigma [] rest in
(pi1 sigma, (x,if lassoc then l else List.rev l)::pi2 sigma, pi3 sigma)
let does_not_come_from_already_eta_expanded_var =
(* This is hack to avoid looping on a rule with rhs of the form *)
(* "?f (fun ?x => ?g)" since otherwise, matching "F H" expands in *)
(* "F (fun x => H x)" and "H x" is recursively matched against the same *)
(* rule, giving "H (fun x' => x x')" and so on. *)
(* Ideally, we would need the type of the expression to know which of *)
(* the arguments applied to it can be eta-expanded without looping. *)
(* The following test is then an approximation of what can be done *)
(* optimally (whether other looping situations can occur remains to be *)
(* checked). *)
function GVar _ -> false | _ -> true
let rec match_ inner u alp (tmetas,blmetas as metas) sigma a1 a2 =
match (a1,a2) with
(* Matching notation variable *)
| r1, AVar id2 when List.mem id2 tmetas -> bind_env alp sigma id2 r1
(* Matching recursive notations for terms *)
| r1, AList (x,_,iter,termin,lassoc) ->
match_alist (match_hd u alp) metas sigma r1 x iter termin lassoc
(* Matching recursive notations for binders: ad hoc cases supporting let-in *)
| GLambda (_,na1,bk,t1,b1), ABinderList (x,_,ALambda (Name id2,_,b2),termin)->
let (decls,b) = match_iterated_binders true [(na1,bk,None,t1)] b1 in
(* TODO: address the possibility that termin is a Lambda itself *)
match_in u alp metas (bind_binder sigma x decls) b termin
| GProd (_,na1,bk,t1,b1), ABinderList (x,_,AProd (Name id2,_,b2),termin)
when na1 <> Anonymous ->
let (decls,b) = match_iterated_binders false [(na1,bk,None,t1)] b1 in
(* TODO: address the possibility that termin is a Prod itself *)
match_in u alp metas (bind_binder sigma x decls) b termin
(* Matching recursive notations for binders: general case *)
| r, ABinderList (x,_,iter,termin) ->
match_abinderlist_with_app (match_hd u alp) metas sigma r x iter termin
(* Matching individual binders as part of a recursive pattern *)
| GLambda (_,na,bk,t,b1), ALambda (Name id,_,b2) when List.mem id blmetas ->
match_in u alp metas (bind_binder sigma id [(na,bk,None,t)]) b1 b2
| GProd (_,na,bk,t,b1), AProd (Name id,_,b2)
when List.mem id blmetas & na <> Anonymous ->
match_in u alp metas (bind_binder sigma id [(na,bk,None,t)]) b1 b2
(* Matching compositionally *)
| GVar (_,id1), AVar id2 when alpha_var id1 id2 alp -> sigma
| GRef (_,r1), ARef r2 when (eq_gr r1 r2) -> sigma
| GPatVar (_,(_,n1)), APatVar n2 when n1=n2 -> sigma
| GApp (loc,f1,l1), AApp (f2,l2) ->
let n1 = List.length l1 and n2 = List.length l2 in
let f1,l1,f2,l2 =
if n1 < n2 then
let l21,l22 = list_chop (n2-n1) l2 in f1,l1, AApp (f2,l21), l22
else if n1 > n2 then
let l11,l12 = list_chop (n1-n2) l1 in GApp (loc,f1,l11),l12, f2,l2
else f1,l1, f2, l2 in
let may_use_eta = does_not_come_from_already_eta_expanded_var f1 in
List.fold_left2 (match_ may_use_eta u alp metas)
(match_in u alp metas sigma f1 f2) l1 l2
| GLambda (_,na1,_,t1,b1), ALambda (na2,t2,b2) ->
match_binders u alp metas na1 na2 (match_in u alp metas sigma t1 t2) b1 b2
| GProd (_,na1,_,t1,b1), AProd (na2,t2,b2) ->
match_binders u alp metas na1 na2 (match_in u alp metas sigma t1 t2) b1 b2
| GLetIn (_,na1,t1,b1), ALetIn (na2,t2,b2) ->
match_binders u alp metas na1 na2 (match_in u alp metas sigma t1 t2) b1 b2
| GCases (_,sty1,rtno1,tml1,eqnl1), ACases (sty2,rtno2,tml2,eqnl2)
when sty1 = sty2
& List.length tml1 = List.length tml2
& List.length eqnl1 = List.length eqnl2 ->
let rtno1' = abstract_return_type_context_glob_constr tml1 rtno1 in
let rtno2' = abstract_return_type_context_aconstr tml2 rtno2 in
let sigma =
try Option.fold_left2 (match_in u alp metas) sigma rtno1' rtno2'
with Option.Heterogeneous -> raise No_match
in
let sigma = List.fold_left2
(fun s (tm1,_) (tm2,_) ->
match_in u alp metas s tm1 tm2) sigma tml1 tml2 in
List.fold_left2 (match_equations u alp metas) sigma eqnl1 eqnl2
| GLetTuple (_,nal1,(na1,to1),b1,c1), ALetTuple (nal2,(na2,to2),b2,c2)
when List.length nal1 = List.length nal2 ->
let sigma = match_opt (match_binders u alp metas na1 na2) sigma to1 to2 in
let sigma = match_in u alp metas sigma b1 b2 in
let (alp,sigma) =
List.fold_left2 (match_names metas) (alp,sigma) nal1 nal2 in
match_in u alp metas sigma c1 c2
| GIf (_,a1,(na1,to1),b1,c1), AIf (a2,(na2,to2),b2,c2) ->
let sigma = match_opt (match_binders u alp metas na1 na2) sigma to1 to2 in
List.fold_left2 (match_in u alp metas) sigma [a1;b1;c1] [a2;b2;c2]
| GRec (_,fk1,idl1,dll1,tl1,bl1), ARec (fk2,idl2,dll2,tl2,bl2)
when match_fix_kind fk1 fk2 & Array.length idl1 = Array.length idl2 &
array_for_all2 (fun l1 l2 -> List.length l1 = List.length l2) dll1 dll2
->
let alp,sigma = array_fold_left2
(List.fold_left2 (fun (alp,sigma) (na1,_,oc1,b1) (na2,oc2,b2) ->
let sigma =
match_in u alp metas
(match_opt (match_in u alp metas) sigma oc1 oc2) b1 b2
in match_names metas (alp,sigma) na1 na2)) (alp,sigma) dll1 dll2 in
let sigma = array_fold_left2 (match_in u alp metas) sigma tl1 tl2 in
let alp,sigma = array_fold_right2 (fun id1 id2 alsig ->
match_names metas alsig (Name id1) (Name id2)) idl1 idl2 (alp,sigma) in
array_fold_left2 (match_in u alp metas) sigma bl1 bl2
| GCast(_,c1, CastConv(_,t1)), ACast(c2, CastConv (_,t2)) ->
match_in u alp metas (match_in u alp metas sigma c1 c2) t1 t2
| GCast(_,c1, CastCoerce), ACast(c2, CastCoerce) ->
match_in u alp metas sigma c1 c2
| GSort (_,GType _), ASort (GType None) when not u -> sigma
| GSort (_,s1), ASort s2 when s1 = s2 -> sigma
| GPatVar _, AHole _ -> (*Don't hide Metas, they bind in ltac*) raise No_match
| a, AHole _ -> sigma
(* On the fly eta-expansion so as to use notations of the form
"exists x, P x" for "ex P"; expects type not given because don't know
otherwise how to ensure it corresponds to a well-typed eta-expansion;
ensure at least one constructor is consumed to avoid looping *)
| b1, ALambda (Name id,AHole _,b2) when inner ->
let id' = Namegen.next_ident_away id (free_glob_vars b1) in
match_in u alp metas (bind_binder sigma id
[(Name id',Explicit,None,GHole(dummy_loc,Evd.BinderType (Name id')))])
(mkGApp dummy_loc b1 (GVar (dummy_loc,id'))) b2
| (GRec _ | GEvar _), _
| _,_ -> raise No_match
and match_in u = match_ true u
and match_hd u = match_ false u
and match_binders u alp metas na1 na2 sigma b1 b2 =
let (alp,sigma) = match_names metas (alp,sigma) na1 na2 in
match_in u alp metas sigma b1 b2
and match_equations u alp metas sigma (_,_,patl1,rhs1) (patl2,rhs2) =
(* patl1 and patl2 have the same length because they respectively
correspond to some tml1 and tml2 that have the same length *)
let (alp,sigma) =
List.fold_left2 (match_cases_pattern_binders metas)
(alp,sigma) patl1 patl2 in
match_in u alp metas sigma rhs1 rhs2
let match_aconstr u c (metas,pat) =
let vars = list_split_by (fun (_,(_,x)) -> x <> NtnTypeBinderList) metas in
let vars = (List.map fst (fst vars), List.map fst (snd vars)) in
let terms,termlists,binders = match_ false u [] vars ([],[],[]) c pat in
(* Reorder canonically the substitution *)
let find x =
try List.assoc x terms
with Not_found ->
(* Happens for binders bound to Anonymous *)
(* Find a better way to propagate Anonymous... *)
GVar (dummy_loc,x) in
List.fold_right (fun (x,(scl,typ)) (terms',termlists',binders') ->
match typ with
| NtnTypeConstr ->
((find x, scl)::terms',termlists',binders')
| NtnTypeConstrList ->
(terms',(List.assoc x termlists,scl)::termlists',binders')
| NtnTypeBinderList ->
(terms',termlists',(List.assoc x binders,scl)::binders'))
metas ([],[],[])
(* Matching cases pattern *)
let bind_env_cases_pattern (sigma,sigmalist,x as fullsigma) var v =
try
let vvar = List.assoc var sigma in
if v=vvar then fullsigma else raise No_match
with Not_found ->
(* TODO: handle the case of multiple occs in different scopes *)
(var,v)::sigma,sigmalist,x
let rec match_cases_pattern metas sigma a1 a2 = match (a1,a2) with
| r1, AVar id2 when List.mem id2 metas -> bind_env_cases_pattern sigma id2 r1
| PatVar (_,Anonymous), AHole _ -> sigma
| PatCstr (loc,(ind,_ as r1),[],_), ARef (ConstructRef r2) when r1 = r2 ->
sigma
| PatCstr (loc,(ind,_ as r1),args1,_), AApp (ARef (ConstructRef r2),l2)
when r1 = r2 ->
let nparams = Inductive.inductive_params (Global.lookup_inductive ind) in
if List.length l2 <> nparams + List.length args1
then
(* TODO: revert partially applied notations of the form
"Notation P := (@pair)." *)
raise No_match
else
let (p2,args2) = list_chop nparams l2 in
(* All parameters must be _ *)
List.iter (function AHole _ -> () | _ -> raise No_match) p2;
List.fold_left2 (match_cases_pattern metas) sigma args1 args2
| r1, AList (x,_,iter,termin,lassoc) ->
match_alist (fun (metas,_) -> match_cases_pattern metas)
(metas,[]) (pi1 sigma,pi2 sigma,()) r1 x iter termin lassoc
| _ -> raise No_match
let match_aconstr_cases_pattern c (metas,pat) =
let vars = List.map fst metas in
let terms,termlists,() = match_cases_pattern vars ([],[],()) c pat in
(* Reorder canonically the substitution *)
List.fold_right (fun (x,(scl,typ)) (terms',termlists') ->
match typ with
| NtnTypeConstr -> ((List.assoc x terms, scl)::terms',termlists')
| NtnTypeConstrList -> (terms',(List.assoc x termlists,scl)::termlists')
| NtnTypeBinderList -> assert false)
metas ([],[])
(**********************************************************************)
(*s Concrete syntax for terms *)
type notation = string
type explicitation = ExplByPos of int * identifier option | ExplByName of identifier
type binder_kind = Default of binding_kind | Generalized of binding_kind * binding_kind * bool
type abstraction_kind = AbsLambda | AbsPi
type proj_flag = int option (* [Some n] = proj of the n-th visible argument *)
type prim_token = Numeral of Bigint.bigint | String of string
type cases_pattern_expr =
| CPatAlias of loc * cases_pattern_expr * identifier
| CPatCstr of loc * reference * cases_pattern_expr list
| CPatCstrExpl of loc * reference * cases_pattern_expr list
| CPatAtom of loc * reference option
| CPatOr of loc * cases_pattern_expr list
| CPatNotation of loc * notation * cases_pattern_notation_substitution
| CPatPrim of loc * prim_token
| CPatRecord of Util.loc * (reference * cases_pattern_expr) list
| CPatDelimiters of loc * string * cases_pattern_expr
and cases_pattern_notation_substitution =
cases_pattern_expr list * (** for constr subterms *)
cases_pattern_expr list list (** for recursive notations *)
type constr_expr =
| CRef of reference
| CFix of loc * identifier located * fix_expr list
| CCoFix of loc * identifier located * cofix_expr list
| CArrow of loc * constr_expr * constr_expr
| CProdN of loc * (name located list * binder_kind * constr_expr) list * constr_expr
| CLambdaN of loc * (name located list * binder_kind * constr_expr) list * constr_expr
| CLetIn of loc * name located * constr_expr * constr_expr
| CAppExpl of loc * (proj_flag * reference) * constr_expr list
| CApp of loc * (proj_flag * constr_expr) *
(constr_expr * explicitation located option) list
| CRecord of loc * constr_expr option * (reference * constr_expr) list
| CCases of loc * case_style * constr_expr option *
(constr_expr * (name located option * constr_expr option)) list *
(loc * cases_pattern_expr list located list * constr_expr) list
| CLetTuple of loc * name located list * (name located option * constr_expr option) *
constr_expr * constr_expr
| CIf of loc * constr_expr * (name located option * constr_expr option)
* constr_expr * constr_expr
| CHole of loc * Evd.hole_kind option
| CPatVar of loc * (bool * patvar)
| CEvar of loc * existential_key * constr_expr list option
| CSort of loc * glob_sort
| CCast of loc * constr_expr * constr_expr cast_type
| CNotation of loc * notation * constr_notation_substitution
| CGeneralization of loc * binding_kind * abstraction_kind option * constr_expr
| CPrim of loc * prim_token
| CDelimiters of loc * string * constr_expr
and fix_expr =
identifier located * (identifier located option * recursion_order_expr) * local_binder list * constr_expr * constr_expr
and cofix_expr =
identifier located * local_binder list * constr_expr * constr_expr
and recursion_order_expr =
| CStructRec
| CWfRec of constr_expr
| CMeasureRec of constr_expr * constr_expr option (* measure, relation *)
and local_binder =
| LocalRawDef of name located * constr_expr
| LocalRawAssum of name located list * binder_kind * constr_expr
and constr_notation_substitution =
constr_expr list * (* for constr subterms *)
constr_expr list list * (* for recursive notations *)
local_binder list list (* for binders subexpressions *)
type typeclass_constraint = name located * binding_kind * constr_expr
and typeclass_context = typeclass_constraint list
type constr_pattern_expr = constr_expr
(***********************)
(* For binders parsing *)
let default_binder_kind = Default Explicit
let names_of_local_assums bl =
List.flatten (List.map (function LocalRawAssum(l,_,_)->l|_->[]) bl)
let names_of_local_binders bl =
List.flatten (List.map (function LocalRawAssum(l,_,_)->l|LocalRawDef(l,_)->[l]) bl)
(**********************************************************************)
(* Miscellaneous *)
let error_invalid_pattern_notation loc =
user_err_loc (loc,"",str "Invalid notation for pattern.")
(**********************************************************************)
(* Functions on constr_expr *)
let constr_loc = function
| CRef (Ident (loc,_)) -> loc
| CRef (Qualid (loc,_)) -> loc
| CFix (loc,_,_) -> loc
| CCoFix (loc,_,_) -> loc
| CArrow (loc,_,_) -> loc
| CProdN (loc,_,_) -> loc
| CLambdaN (loc,_,_) -> loc
| CLetIn (loc,_,_,_) -> loc
| CAppExpl (loc,_,_) -> loc
| CApp (loc,_,_) -> loc
| CRecord (loc,_,_) -> loc
| CCases (loc,_,_,_,_) -> loc
| CLetTuple (loc,_,_,_,_) -> loc
| CIf (loc,_,_,_,_) -> loc
| CHole (loc, _) -> loc
| CPatVar (loc,_) -> loc
| CEvar (loc,_,_) -> loc
| CSort (loc,_) -> loc
| CCast (loc,_,_) -> loc
| CNotation (loc,_,_) -> loc
| CGeneralization (loc,_,_,_) -> loc
| CPrim (loc,_) -> loc
| CDelimiters (loc,_,_) -> loc
let cases_pattern_expr_loc = function
| CPatAlias (loc,_,_) -> loc
| CPatCstr (loc,_,_) -> loc
| CPatCstrExpl (loc,_,_) -> loc
| CPatAtom (loc,_) -> loc
| CPatOr (loc,_) -> loc
| CPatNotation (loc,_,_) -> loc
| CPatRecord (loc, _) -> loc
| CPatPrim (loc,_) -> loc
| CPatDelimiters (loc,_,_) -> loc
let local_binder_loc = function
| LocalRawAssum ((loc,_)::_,_,t)
| LocalRawDef ((loc,_),t) -> join_loc loc (constr_loc t)
| LocalRawAssum ([],_,_) -> assert false
let local_binders_loc bll =
if bll = [] then dummy_loc else
join_loc (local_binder_loc (List.hd bll)) (local_binder_loc (list_last bll))
let ids_of_cases_indtype =
let add_var ids = function CRef (Ident (_,id)) -> id::ids | _ -> ids in
let rec vars_of = function
(* We deal only with the regular cases *)
| CApp (_,_,l) -> List.fold_left add_var [] (List.map fst l)
| CNotation (_,_,(l,[],[]))
(* assume the ntn is applicative and does not instantiate the head !! *)
| CAppExpl (_,_,l) -> List.fold_left add_var [] l
| CDelimiters(_,_,c) -> vars_of c
| _ -> [] in
vars_of
let ids_of_cases_tomatch tms =
List.fold_right
(fun (_,(ona,indnal)) l ->
Option.fold_right (fun t -> (@) (ids_of_cases_indtype t))
indnal (Option.fold_right (down_located name_cons) ona l))
tms []
let is_constructor id =
try ignore (Nametab.locate_extended (qualid_of_ident id)); true
with Not_found -> true
let rec cases_pattern_fold_names f a = function
| CPatRecord (_, l) ->
List.fold_left (fun acc (r, cp) -> cases_pattern_fold_names f acc cp) a l
| CPatAlias (_,pat,id) -> f id a
| CPatCstr (_,_,patl) | CPatCstrExpl (_,_,patl) | CPatOr (_,patl) ->
List.fold_left (cases_pattern_fold_names f) a patl
| CPatNotation (_,_,(patl,patll)) ->
List.fold_left (cases_pattern_fold_names f) a (patl@List.flatten patll)
| CPatDelimiters (_,_,pat) -> cases_pattern_fold_names f a pat
| CPatAtom (_,Some (Ident (_,id))) when not (is_constructor id) -> f id a
| CPatPrim _ | CPatAtom _ -> a
let ids_of_pattern_list =
List.fold_left
(located_fold_left
(List.fold_left (cases_pattern_fold_names Idset.add)))
Idset.empty
let rec fold_constr_expr_binders g f n acc b = function
| (nal,bk,t)::l ->
let nal = snd (List.split nal) in
let n' = List.fold_right (name_fold g) nal n in
f n (fold_constr_expr_binders g f n' acc b l) t
| [] ->
f n acc b
let rec fold_local_binders g f n acc b = function
| LocalRawAssum (nal,bk,t)::l ->
let nal = snd (List.split nal) in
let n' = List.fold_right (name_fold g) nal n in
f n (fold_local_binders g f n' acc b l) t
| LocalRawDef ((_,na),t)::l ->
f n (fold_local_binders g f (name_fold g na n) acc b l) t
| [] ->
f n acc b
let fold_constr_expr_with_binders g f n acc = function
| CArrow (loc,a,b) -> f n (f n acc a) b
| CAppExpl (loc,(_,_),l) -> List.fold_left (f n) acc l
| CApp (loc,(_,t),l) -> List.fold_left (f n) (f n acc t) (List.map fst l)
| CProdN (_,l,b) | CLambdaN (_,l,b) -> fold_constr_expr_binders g f n acc b l
| CLetIn (_,na,a,b) -> fold_constr_expr_binders g f n acc b [[na],default_binder_kind,a]
| CCast (loc,a,CastConv(_,b)) -> f n (f n acc a) b
| CCast (loc,a,CastCoerce) -> f n acc a
| CNotation (_,_,(l,ll,bll)) ->
(* The following is an approximation: we don't know exactly if
an ident is binding nor to which subterms bindings apply *)
let acc = List.fold_left (f n) acc (l@List.flatten ll) in
List.fold_left (fun acc bl -> fold_local_binders g f n acc (CHole (dummy_loc,None)) bl) acc bll
| CGeneralization (_,_,_,c) -> f n acc c
| CDelimiters (loc,_,a) -> f n acc a
| CHole _ | CEvar _ | CPatVar _ | CSort _ | CPrim _ | CRef _ ->
acc
| CRecord (loc,_,l) -> List.fold_left (fun acc (id, c) -> f n acc c) acc l
| CCases (loc,sty,rtnpo,al,bl) ->
let ids = ids_of_cases_tomatch al in
let acc = Option.fold_left (f (List.fold_right g ids n)) acc rtnpo in
let acc = List.fold_left (f n) acc (List.map fst al) in
List.fold_right (fun (loc,patl,rhs) acc ->
let ids = ids_of_pattern_list patl in
f (Idset.fold g ids n) acc rhs) bl acc
| CLetTuple (loc,nal,(ona,po),b,c) ->
let n' = List.fold_right (down_located (name_fold g)) nal n in
f (Option.fold_right (down_located (name_fold g)) ona n') (f n acc b) c
| CIf (_,c,(ona,po),b1,b2) ->
let acc = f n (f n (f n acc b1) b2) c in
Option.fold_left
(f (Option.fold_right (down_located (name_fold g)) ona n)) acc po
| CFix (loc,_,l) ->
let n' = List.fold_right (fun ((_,id),_,_,_,_) -> g id) l n in
List.fold_right (fun (_,(_,o),lb,t,c) acc ->
fold_local_binders g f n'
(fold_local_binders g f n acc t lb) c lb) l acc
| CCoFix (loc,_,_) ->
Pp.msg_warn "Capture check in multiple binders not done"; acc
let free_vars_of_constr_expr c =
let rec aux bdvars l = function
| CRef (Ident (_,id)) -> if List.mem id bdvars then l else Idset.add id l
| c -> fold_constr_expr_with_binders (fun a l -> a::l) aux bdvars l c
in aux [] Idset.empty c
let occur_var_constr_expr id c = Idset.mem id (free_vars_of_constr_expr c)
let mkIdentC id = CRef (Ident (dummy_loc, id))
let mkRefC r = CRef r
let mkCastC (a,k) = CCast (dummy_loc,a,k)
let mkLambdaC (idl,bk,a,b) = CLambdaN (dummy_loc,[idl,bk,a],b)
let mkLetInC (id,a,b) = CLetIn (dummy_loc,id,a,b)
let mkProdC (idl,bk,a,b) = CProdN (dummy_loc,[idl,bk,a],b)
let mkAppC (f,l) =
let l = List.map (fun x -> (x,None)) l in
match f with
| CApp (_,g,l') -> CApp (dummy_loc, g, l' @ l)
| _ -> CApp (dummy_loc, (None, f), l)
let rec mkCProdN loc bll c =
match bll with
| LocalRawAssum ((loc1,_)::_ as idl,bk,t) :: bll ->
CProdN (loc,[idl,bk,t],mkCProdN (join_loc loc1 loc) bll c)
| LocalRawDef ((loc1,_) as id,b) :: bll ->
CLetIn (loc,id,b,mkCProdN (join_loc loc1 loc) bll c)
| [] -> c
| LocalRawAssum ([],_,_) :: bll -> mkCProdN loc bll c
let rec mkCLambdaN loc bll c =
match bll with
| LocalRawAssum ((loc1,_)::_ as idl,bk,t) :: bll ->
CLambdaN (loc,[idl,bk,t],mkCLambdaN (join_loc loc1 loc) bll c)
| LocalRawDef ((loc1,_) as id,b) :: bll ->
CLetIn (loc,id,b,mkCLambdaN (join_loc loc1 loc) bll c)
| [] -> c
| LocalRawAssum ([],_,_) :: bll -> mkCLambdaN loc bll c
let rec abstract_constr_expr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,abstract_constr_expr c bl)
| LocalRawAssum (idl,bk,t)::bl ->
List.fold_right (fun x b -> mkLambdaC([x],bk,t,b)) idl
(abstract_constr_expr c bl)
let rec prod_constr_expr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,prod_constr_expr c bl)
| LocalRawAssum (idl,bk,t)::bl ->
List.fold_right (fun x b -> mkProdC([x],bk,t,b)) idl
(prod_constr_expr c bl)
let coerce_reference_to_id = function
| Ident (_,id) -> id
| Qualid (loc,_) ->
user_err_loc (loc, "coerce_reference_to_id",
str "This expression should be a simple identifier.")
let coerce_to_id = function
| CRef (Ident (loc,id)) -> (loc,id)
| a -> user_err_loc
(constr_loc a,"coerce_to_id",
str "This expression should be a simple identifier.")
let coerce_to_name = function
| CRef (Ident (loc,id)) -> (loc,Name id)
| CHole (loc,_) -> (loc,Anonymous)
| a -> user_err_loc
(constr_loc a,"coerce_to_name",
str "This expression should be a name.")
(* Interpret the index of a recursion order annotation *)
let split_at_annot bl na =
let names = List.map snd (names_of_local_assums bl) in
match na with
| None ->
if names = [] then error "A fixpoint needs at least one parameter."
else [], bl
| Some (loc, id) ->
let rec aux acc = function
| LocalRawAssum (bls, k, t) as x :: rest ->
let l, r = list_split_when (fun (loc, na) -> na = Name id) bls in
if r = [] then aux (x :: acc) rest
else
(List.rev (if l = [] then acc else LocalRawAssum (l, k, t) :: acc),
LocalRawAssum (r, k, t) :: rest)
| LocalRawDef _ as x :: rest -> aux (x :: acc) rest
| [] ->
user_err_loc(loc,"",
str "No parameter named " ++ Nameops.pr_id id ++ str".")
in aux [] bl
(* Used in correctness and interface *)
let map_binder g e nal = List.fold_right (down_located (name_fold g)) nal e
let map_binders f g e bl =
(* TODO: avoid variable capture in [t] by some [na] in [List.tl nal] *)
let h (e,bl) (nal,bk,t) = (map_binder g e nal,(nal,bk,f e t)::bl) in
let (e,rbl) = List.fold_left h (e,[]) bl in
(e, List.rev rbl)
let map_local_binders f g e bl =
(* TODO: avoid variable capture in [t] by some [na] in [List.tl nal] *)
let h (e,bl) = function
LocalRawAssum(nal,k,ty) ->
(map_binder g e nal, LocalRawAssum(nal,k,f e ty)::bl)
| LocalRawDef((loc,na),ty) ->
(name_fold g na e, LocalRawDef((loc,na),f e ty)::bl) in
let (e,rbl) = List.fold_left h (e,[]) bl in
(e, List.rev rbl)
let map_constr_expr_with_binders g f e = function
| CArrow (loc,a,b) -> CArrow (loc,f e a,f e b)
| CAppExpl (loc,r,l) -> CAppExpl (loc,r,List.map (f e) l)
| CApp (loc,(p,a),l) ->
CApp (loc,(p,f e a),List.map (fun (a,i) -> (f e a,i)) l)
| CProdN (loc,bl,b) ->
let (e,bl) = map_binders f g e bl in CProdN (loc,bl,f e b)
| CLambdaN (loc,bl,b) ->
let (e,bl) = map_binders f g e bl in CLambdaN (loc,bl,f e b)
| CLetIn (loc,na,a,b) -> CLetIn (loc,na,f e a,f (name_fold g (snd na) e) b)
| CCast (loc,a,CastConv (k,b)) -> CCast (loc,f e a,CastConv(k, f e b))
| CCast (loc,a,CastCoerce) -> CCast (loc,f e a,CastCoerce)
| CNotation (loc,n,(l,ll,bll)) ->
(* This is an approximation because we don't know what binds what *)
CNotation (loc,n,(List.map (f e) l,List.map (List.map (f e)) ll,
List.map (fun bl -> snd (map_local_binders f g e bl)) bll))
| CGeneralization (loc,b,a,c) -> CGeneralization (loc,b,a,f e c)
| CDelimiters (loc,s,a) -> CDelimiters (loc,s,f e a)
| CHole _ | CEvar _ | CPatVar _ | CSort _
| CPrim _ | CRef _ as x -> x
| CRecord (loc,p,l) -> CRecord (loc,p,List.map (fun (id, c) -> (id, f e c)) l)
| CCases (loc,sty,rtnpo,a,bl) ->
(* TODO: apply g on the binding variables in pat... *)
let bl = List.map (fun (loc,pat,rhs) -> (loc,pat,f e rhs)) bl in
let ids = ids_of_cases_tomatch a in
let po = Option.map (f (List.fold_right g ids e)) rtnpo in
CCases (loc, sty, po, List.map (fun (tm,x) -> (f e tm,x)) a,bl)
| CLetTuple (loc,nal,(ona,po),b,c) ->
let e' = List.fold_right (down_located (name_fold g)) nal e in
let e'' = Option.fold_right (down_located (name_fold g)) ona e in
CLetTuple (loc,nal,(ona,Option.map (f e'') po),f e b,f e' c)
| CIf (loc,c,(ona,po),b1,b2) ->
let e' = Option.fold_right (down_located (name_fold g)) ona e in
CIf (loc,f e c,(ona,Option.map (f e') po),f e b1,f e b2)
| CFix (loc,id,dl) ->
CFix (loc,id,List.map (fun (id,n,bl,t,d) ->
let (e',bl') = map_local_binders f g e bl in
let t' = f e' t in
(* Note: fix names should be inserted before the arguments... *)
let e'' = List.fold_left (fun e ((_,id),_,_,_,_) -> g id e) e' dl in
let d' = f e'' d in
(id,n,bl',t',d')) dl)
| CCoFix (loc,id,dl) ->
CCoFix (loc,id,List.map (fun (id,bl,t,d) ->
let (e',bl') = map_local_binders f g e bl in
let t' = f e' t in
let e'' = List.fold_left (fun e ((_,id),_,_,_) -> g id e) e' dl in
let d' = f e'' d in
(id,bl',t',d')) dl)
(* Used in constrintern *)
let rec replace_vars_constr_expr l = function
| CRef (Ident (loc,id)) as x ->
(try CRef (Ident (loc,List.assoc id l)) with Not_found -> x)
| c -> map_constr_expr_with_binders List.remove_assoc
replace_vars_constr_expr l c
(**********************************************************************)
(* Concrete syntax for modules and modules types *)
type with_declaration_ast =
| CWith_Module of identifier list located * qualid located
| CWith_Definition of identifier list located * constr_expr
type module_ast =
| CMident of qualid located
| CMapply of loc * module_ast * module_ast
| CMwith of loc * module_ast * with_declaration_ast
(* Returns the ranges of locs of the notation that are not occupied by args *)
(* and which are then occupied by proper symbols of the notation (or spaces) *)
let locs_of_notation loc locs ntn =
let (bl,el) = Util.unloc loc in
let locs = List.map Util.unloc locs in
let rec aux pos = function
| [] -> if pos = el then [] else [(pos,el-1)]
| (ba,ea)::l ->if pos = ba then aux ea l else (pos,ba-1)::aux ea l
in aux bl (Sort.list (fun l1 l2 -> fst l1 < fst l2) locs)
let ntn_loc loc (args,argslist,binderslist) =
locs_of_notation loc
(List.map constr_loc (args@List.flatten argslist)@
List.map local_binders_loc binderslist)
let patntn_loc loc (args,argslist) =
locs_of_notation loc
(List.map cases_pattern_expr_loc (args@List.flatten argslist))
|