1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Author: Benjamin Grégoire as part of the bytecode-based virtual reduction
machine, Oct 2004 *)
(* Extension: Arnaud Spiwack (support for native arithmetic), May 2005 *)
open Util
open Names
open Cbytecodes
open Cemitcodes
open Term
open Declarations
open Pre_env
(* Compilation of variables + computing free variables *)
(* The virtual machine doesn't distinguish closures and their environment *)
(* Representation of function environments : *)
(* [clos_t | code | fv1 | fv2 | ... | fvn ] *)
(* ^ *)
(* The offset for accessing free variables is 1 (we must skip the code *)
(* pointer). *)
(* While compiling, free variables are stored in [in_env] in order *)
(* opposite to machine representation, so we can add new free variables *)
(* easily (i.e. without changing the position of previous variables) *)
(* Function arguments are on the stack in the same order as the *)
(* application : f arg1 ... argn *)
(* - the stack is then : *)
(* arg1 : ... argn : extra args : return addr : ... *)
(* In the function body [arg1] is represented by de Bruijn [n], and *)
(* [argn] by de Bruijn [1] *)
(* Representation of environements of mutual fixpoints : *)
(* [t1|C1| ... |tc|Cc| ... |t(nbr)|C(nbr)| fv1 | fv2 | .... | fvn | type] *)
(* ^<----------offset---------> *)
(* type = [Ct1 | .... | Ctn] *)
(* Ci is the code pointer of the i-th body *)
(* At runtime, a fixpoint environment (which is the same as the fixpoint *)
(* itself) is a pointer to the field holding its code pointer. *)
(* In each fixpoint body, de Bruijn [nbr] represents the first fixpoint *)
(* and de Bruijn [1] the last one. *)
(* Access to these variables is performed by the [Koffsetclosure n] *)
(* instruction that shifts the environment pointer of [n] fields. *)
(* This allows to represent mutual fixpoints in just one block. *)
(* [Ct1 | ... | Ctn] is an array holding code pointers of the fixpoint *)
(* types. They are used in conversion tests (which requires that *)
(* fixpoint types must be convertible). Their environment is the one of *)
(* the last fixpoint : *)
(* [t1|C1| ... |tc|Cc| ... |t(nbr)|C(nbr)| fv1 | fv2 | .... | fvn | type] *)
(* ^ *)
(* Representation of mutual cofix : *)
(* a1 = [A_t | accumulate | [Cfx_t | fcofix1 ] ] *)
(* ... *)
(* anbr = [A_t | accumulate | [Cfx_t | fcofixnbr ] ] *)
(* *)
(* fcofix1 = [clos_t | code1 | a1 |...| anbr | fv1 |...| fvn | type] *)
(* ^ *)
(* ... *)
(* fcofixnbr = [clos_t | codenbr | a1 |...| anbr | fv1 |...| fvn | type] *)
(* ^ *)
(* The [ai] blocks are functions that accumulate their arguments: *)
(* ai arg1 argp ---> *)
(* ai' = [A_t | accumulate | [Cfx_t | fcofixi] | arg1 | ... | argp ] *)
(* If such a block is matched against, we have to force evaluation, *)
(* function [fcofixi] is then applied to [ai'] [arg1] ... [argp] *)
(* Once evaluation is completed [ai'] is updated with the result: *)
(* ai' <-- *)
(* [A_t | accumulate | [Cfxe_t |fcofixi|result] | arg1 | ... | argp ] *)
(* This representation is nice because the application of the cofix is *)
(* evaluated only once (it simulates a lazy evaluation) *)
(* Moreover, when cofix don't have arguments, it is possible to create *)
(* a cycle, e.g.: *)
(* cofix one := cons 1 one *)
(* a1 = [A_t | accumulate | [Cfx_t|fcofix1] ] *)
(* fcofix1 = [clos_t | code | a1] *)
(* The result of evaluating [a1] is [cons_t | 1 | a1]. *)
(* When [a1] is updated : *)
(* a1 = [A_t | accumulate | [Cfxe_t | fcofix1 | [cons_t | 1 | a1]] ] *)
(* The cycle is created ... *)
(* *)
(* In Cfxe_t accumulators, we need to store [fcofixi] for testing *)
(* conversion of cofixpoints (which is intentional). *)
let empty_fv = { size= 0; fv_rev = [] }
let fv r = !(r.in_env)
let empty_comp_env ()=
{ nb_stack = 0;
in_stack = [];
nb_rec = 0;
pos_rec = [];
offset = 0;
in_env = ref empty_fv;
}
(*i Creation functions for comp_env *)
let rec add_param n sz l =
if n = 0 then l else add_param (n - 1) sz (n+sz::l)
let comp_env_fun arity =
{ nb_stack = arity;
in_stack = add_param arity 0 [];
nb_rec = 0;
pos_rec = [];
offset = 1;
in_env = ref empty_fv
}
let comp_env_fix_type rfv =
{ nb_stack = 0;
in_stack = [];
nb_rec = 0;
pos_rec = [];
offset = 1;
in_env = rfv
}
let comp_env_fix ndef curr_pos arity rfv =
let prec = ref [] in
for i = ndef downto 1 do
prec := Koffsetclosure (2 * (ndef - curr_pos - i)) :: !prec
done;
{ nb_stack = arity;
in_stack = add_param arity 0 [];
nb_rec = ndef;
pos_rec = !prec;
offset = 2 * (ndef - curr_pos - 1)+1;
in_env = rfv
}
let comp_env_cofix_type ndef rfv =
{ nb_stack = 0;
in_stack = [];
nb_rec = 0;
pos_rec = [];
offset = 1+ndef;
in_env = rfv
}
let comp_env_cofix ndef arity rfv =
let prec = ref [] in
for i = 1 to ndef do
prec := Kenvacc i :: !prec
done;
{ nb_stack = arity;
in_stack = add_param arity 0 [];
nb_rec = ndef;
pos_rec = !prec;
offset = ndef+1;
in_env = rfv
}
(* [push_param ] add function parameters on the stack *)
let push_param n sz r =
{ r with
nb_stack = r.nb_stack + n;
in_stack = add_param n sz r.in_stack }
(* [push_local sz r] add a new variable on the stack at position [sz] *)
let push_local sz r =
{ r with
nb_stack = r.nb_stack + 1;
in_stack = (sz + 1) :: r.in_stack }
(*i Compilation of variables *)
let find_at el l =
let rec aux n = function
| [] -> raise Not_found
| hd :: tl -> if hd = el then n else aux (n+1) tl
in aux 1 l
let pos_named id r =
let env = !(r.in_env) in
let cid = FVnamed id in
try Kenvacc(r.offset + env.size - (find_at cid env.fv_rev))
with Not_found ->
let pos = env.size in
r.in_env := { size = pos+1; fv_rev = cid:: env.fv_rev};
Kenvacc (r.offset + pos)
let pos_rel i r sz =
if i <= r.nb_stack then
Kacc(sz - (List.nth r.in_stack (i-1)))
else
let i = i - r.nb_stack in
if i <= r.nb_rec then
try List.nth r.pos_rec (i-1)
with (Failure _|Invalid_argument _) -> assert false
else
let i = i - r.nb_rec in
let db = FVrel(i) in
let env = !(r.in_env) in
try Kenvacc(r.offset + env.size - (find_at db env.fv_rev))
with Not_found ->
let pos = env.size in
r.in_env := { size = pos+1; fv_rev = db:: env.fv_rev};
Kenvacc(r.offset + pos)
(*i Examination of the continuation *)
(* Discard all instructions up to the next label. *)
(* This function is to be applied to the continuation before adding a *)
(* non-terminating instruction (branch, raise, return, appterm) *)
(* in front of it. *)
let rec discard_dead_code cont = cont
(*function
[] -> []
| (Klabel _ | Krestart ) :: _ as cont -> cont
| _ :: cont -> discard_dead_code cont
*)
(* Return a label to the beginning of the given continuation. *)
(* If the sequence starts with a branch, use the target of that branch *)
(* as the label, thus avoiding a jump to a jump. *)
let label_code = function
| Klabel lbl :: _ as cont -> (lbl, cont)
| Kbranch lbl :: _ as cont -> (lbl, cont)
| cont -> let lbl = Label.create() in (lbl, Klabel lbl :: cont)
(* Return a branch to the continuation. That is, an instruction that,
when executed, branches to the continuation or performs what the
continuation performs. We avoid generating branches to returns. *)
(* spiwack: make_branch was only used once. Changed it back to the ZAM
one to match the appropriate semantics (old one avoided the
introduction of an unconditional branch operation, which seemed
appropriate for the 31-bit integers' code). As a memory, I leave
the former version in this comment.
let make_branch cont =
match cont with
| (Kreturn _ as return) :: cont' -> return, cont'
| Klabel lbl as b :: _ -> b, cont
| _ -> let b = Klabel(Label.create()) in b,b::cont
*)
let rec make_branch_2 lbl n cont =
function
Kreturn m :: _ -> (Kreturn (n + m), cont)
| Klabel _ :: c -> make_branch_2 lbl n cont c
| Kpop m :: c -> make_branch_2 lbl (n + m) cont c
| _ ->
match lbl with
Some lbl -> (Kbranch lbl, cont)
| None -> let lbl = Label.create() in (Kbranch lbl, Klabel lbl :: cont)
let make_branch cont =
match cont with
(Kbranch _ as branch) :: _ -> (branch, cont)
| (Kreturn _ as return) :: _ -> (return, cont)
| Klabel lbl :: _ -> make_branch_2 (Some lbl) 0 cont cont
| _ -> make_branch_2 (None) 0 cont cont
(* Check if we're in tailcall position *)
let rec is_tailcall = function
| Kreturn k :: _ -> Some k
| Klabel _ :: c -> is_tailcall c
| _ -> None
(* Extention of the continuation *)
(* Add a Kpop n instruction in front of a continuation *)
let rec add_pop n = function
| Kpop m :: cont -> add_pop (n+m) cont
| Kreturn m:: cont -> Kreturn (n+m) ::cont
| cont -> if n = 0 then cont else Kpop n :: cont
let add_grab arity lbl cont =
if arity = 1 then Klabel lbl :: cont
else Krestart :: Klabel lbl :: Kgrab (arity - 1) :: cont
let add_grabrec rec_arg arity lbl cont =
if arity = 1 then
Klabel lbl :: Kgrabrec 0 :: Krestart :: cont
else
Krestart :: Klabel lbl :: Kgrabrec rec_arg ::
Krestart :: Kgrab (arity - 1) :: cont
(* continuation of a cofix *)
let cont_cofix arity =
(* accu = res *)
(* stk = ai::args::ra::... *)
(* ai = [At|accumulate|[Cfx_t|fcofix]|args] *)
[ Kpush;
Kpush; (* stk = res::res::ai::args::ra::... *)
Kacc 2;
Kfield 1;
Kfield 0;
Kmakeblock(2, cofix_evaluated_tag);
Kpush; (* stk = [Cfxe_t|fcofix|res]::res::ai::args::ra::...*)
Kacc 2;
Ksetfield 1; (* ai = [At|accumulate|[Cfxe_t|fcofix|res]|args] *)
(* stk = res::ai::args::ra::... *)
Kacc 0; (* accu = res *)
Kreturn (arity+2) ]
(*i Global environment *)
let global_env = ref empty_env
let set_global_env env = global_env := env
(* Code of closures *)
let fun_code = ref []
let init_fun_code () = fun_code := []
(* Compilation of constructors and inductive types *)
(* Inv : nparam + arity > 0 *)
let code_construct tag nparams arity cont =
let f_cont =
add_pop nparams
(if arity = 0 then
[Kconst (Const_b0 tag); Kreturn 0]
else [Kacc 0; Kpop 1; Kmakeblock(arity, tag); Kreturn 0])
in
let lbl = Label.create() in
fun_code := [Ksequence (add_grab (nparams+arity) lbl f_cont,!fun_code)];
Kclosure(lbl,0) :: cont
let get_strcst = function
| Bstrconst sc -> sc
| _ -> raise Not_found
let rec str_const c =
match kind_of_term c with
| Sort s -> Bstrconst (Const_sorts s)
| Cast(c,_,_) -> str_const c
| App(f,args) ->
begin
match kind_of_term f with
| Construct((kn,j),i) ->
begin
let oib = lookup_mind kn !global_env in
let oip = oib.mind_packets.(j) in
let num,arity = oip.mind_reloc_tbl.(i-1) in
let nparams = oib.mind_nparams in
if nparams + arity = Array.length args then
(* spiwack: *)
(* 1/ tries to compile the constructor in an optimal way,
it is supposed to work only if the arguments are
all fully constructed, fails with Cbytecodes.NotClosed.
it can also raise Not_found when there is no special
treatment for this constructor
for instance: tries to to compile an integer of the
form I31 D1 D2 ... D31 to [D1D2...D31] as
a processor number (a caml number actually) *)
try
try
Bstrconst (Retroknowledge.get_vm_constant_static_info
(!global_env).retroknowledge
(kind_of_term f) args)
with NotClosed ->
(* 2/ if the arguments are not all closed (this is
expectingly (and it is currently the case) the only
reason why this exception is raised) tries to
give a clever, run-time behavior to the constructor.
Raises Not_found if there is no special treatment
for this integer.
this is done in a lazy fashion, using the constructor
Bspecial because it needs to know the continuation
and such, which can't be done at this time.
for instance, for int31: if one of the digit is
not closed, it's not impossible that the number
gets fully instanciated at run-time, thus to ensure
uniqueness of the representation in the vm
it is necessary to try and build a caml integer
during the execution *)
let rargs = Array.sub args nparams arity in
let b_args = Array.map str_const rargs in
Bspecial ((Retroknowledge.get_vm_constant_dynamic_info
(!global_env).retroknowledge
(kind_of_term f)),
b_args)
with Not_found ->
(* 3/ if no special behavior is available, then the compiler
falls back to the normal behavior *)
if arity = 0 then Bstrconst(Const_b0 num)
else
let rargs = Array.sub args nparams arity in
let b_args = Array.map str_const rargs in
try
let sc_args = Array.map get_strcst b_args in
Bstrconst(Const_bn(num, sc_args))
with Not_found ->
Bmakeblock(num,b_args)
else
let b_args = Array.map str_const args in
(* spiwack: tries first to apply the run-time compilation
behavior of the constructor, as in 2/ above *)
try
Bspecial ((Retroknowledge.get_vm_constant_dynamic_info
(!global_env).retroknowledge
(kind_of_term f)),
b_args)
with Not_found ->
Bconstruct_app(num, nparams, arity, b_args)
end
| _ -> Bconstr c
end
| Ind ind -> Bstrconst (Const_ind ind)
| Construct ((kn,j),i) ->
begin
(* spiwack: tries first to apply the run-time compilation
behavior of the constructor, as in 2/ above *)
try
Bspecial ((Retroknowledge.get_vm_constant_dynamic_info
(!global_env).retroknowledge
(kind_of_term c)),
[| |])
with Not_found ->
let oib = lookup_mind kn !global_env in
let oip = oib.mind_packets.(j) in
let num,arity = oip.mind_reloc_tbl.(i-1) in
let nparams = oib.mind_nparams in
if nparams + arity = 0 then Bstrconst(Const_b0 num)
else Bconstruct_app(num,nparams,arity,[||])
end
| _ -> Bconstr c
(* compiling application *)
let comp_args comp_expr reloc args sz cont =
let nargs_m_1 = Array.length args - 1 in
let c = ref (comp_expr reloc args.(0) (sz + nargs_m_1) cont) in
for i = 1 to nargs_m_1 do
c := comp_expr reloc args.(i) (sz + nargs_m_1 - i) (Kpush :: !c)
done;
!c
let comp_app comp_fun comp_arg reloc f args sz cont =
let nargs = Array.length args in
match is_tailcall cont with
| Some k ->
comp_args comp_arg reloc args sz
(Kpush ::
comp_fun reloc f (sz + nargs)
(Kappterm(nargs, k + nargs) :: (discard_dead_code cont)))
| None ->
if nargs < 4 then
comp_args comp_arg reloc args sz
(Kpush :: (comp_fun reloc f (sz+nargs) (Kapply nargs :: cont)))
else
let lbl,cont1 = label_code cont in
Kpush_retaddr lbl ::
(comp_args comp_arg reloc args (sz + 3)
(Kpush :: (comp_fun reloc f (sz+3+nargs) (Kapply nargs :: cont1))))
(* Compiling free variables *)
let compile_fv_elem reloc fv sz cont =
match fv with
| FVrel i -> pos_rel i reloc sz :: cont
| FVnamed id -> pos_named id reloc :: cont
let rec compile_fv reloc l sz cont =
match l with
| [] -> cont
| [fvn] -> compile_fv_elem reloc fvn sz cont
| fvn :: tl ->
compile_fv_elem reloc fvn sz
(Kpush :: compile_fv reloc tl (sz + 1) cont)
(* Compiling constants *)
let rec get_allias env kn =
let tps = (lookup_constant kn env).const_body_code in
match Cemitcodes.force tps with
| BCallias kn' -> get_allias env kn'
| _ -> kn
(* Compiling expressions *)
let rec compile_constr reloc c sz cont =
match kind_of_term c with
| Meta _ -> raise (Invalid_argument "Cbytegen.compile_constr : Meta")
| Evar _ -> raise (Invalid_argument "Cbytegen.compile_constr : Evar")
| Cast(c,_,_) -> compile_constr reloc c sz cont
| Rel i -> pos_rel i reloc sz :: cont
| Var id -> pos_named id reloc :: cont
| Const kn -> compile_const reloc kn [||] sz cont
| Sort _ | Ind _ | Construct _ ->
compile_str_cst reloc (str_const c) sz cont
| LetIn(_,xb,_,body) ->
compile_constr reloc xb sz
(Kpush ::
(compile_constr (push_local sz reloc) body (sz+1) (add_pop 1 cont)))
| Prod(id,dom,codom) ->
let cont1 =
Kpush :: compile_constr reloc dom (sz+1) (Kmakeprod :: cont) in
compile_constr reloc (mkLambda(id,dom,codom)) sz cont1
| Lambda _ ->
let params, body = decompose_lam c in
let arity = List.length params in
let r_fun = comp_env_fun arity in
let lbl_fun = Label.create() in
let cont_fun =
compile_constr r_fun body arity [Kreturn arity] in
fun_code := [Ksequence(add_grab arity lbl_fun cont_fun,!fun_code)];
let fv = fv r_fun in
compile_fv reloc fv.fv_rev sz (Kclosure(lbl_fun,fv.size) :: cont)
| App(f,args) ->
begin
match kind_of_term f with
| Construct _ -> compile_str_cst reloc (str_const c) sz cont
| Const kn -> compile_const reloc kn args sz cont
| _ -> comp_app compile_constr compile_constr reloc f args sz cont
end
| Fix ((rec_args,init),(_,type_bodies,rec_bodies)) ->
let ndef = Array.length type_bodies in
let rfv = ref empty_fv in
let lbl_types = Array.create ndef Label.no in
let lbl_bodies = Array.create ndef Label.no in
(* Compilation des types *)
let env_type = comp_env_fix_type rfv in
for i = 0 to ndef - 1 do
let lbl,fcode =
label_code
(compile_constr env_type type_bodies.(i) 0 [Kstop]) in
lbl_types.(i) <- lbl;
fun_code := [Ksequence(fcode,!fun_code)]
done;
(* Compiling bodies *)
for i = 0 to ndef - 1 do
let params,body = decompose_lam rec_bodies.(i) in
let arity = List.length params in
let env_body = comp_env_fix ndef i arity rfv in
let cont1 =
compile_constr env_body body arity [Kreturn arity] in
let lbl = Label.create () in
lbl_bodies.(i) <- lbl;
let fcode = add_grabrec rec_args.(i) arity lbl cont1 in
fun_code := [Ksequence(fcode,!fun_code)]
done;
let fv = !rfv in
compile_fv reloc fv.fv_rev sz
(Kclosurerec(fv.size,init,lbl_types,lbl_bodies) :: cont)
| CoFix(init,(_,type_bodies,rec_bodies)) ->
let ndef = Array.length type_bodies in
let lbl_types = Array.create ndef Label.no in
let lbl_bodies = Array.create ndef Label.no in
(* Compiling types *)
let rfv = ref empty_fv in
let env_type = comp_env_cofix_type ndef rfv in
for i = 0 to ndef - 1 do
let lbl,fcode =
label_code
(compile_constr env_type type_bodies.(i) 0 [Kstop]) in
lbl_types.(i) <- lbl;
fun_code := [Ksequence(fcode,!fun_code)]
done;
(* Compiling bodies *)
for i = 0 to ndef - 1 do
let params,body = decompose_lam rec_bodies.(i) in
let arity = List.length params in
let env_body = comp_env_cofix ndef arity rfv in
let lbl = Label.create () in
let cont1 =
compile_constr env_body body (arity+1) (cont_cofix arity) in
let cont2 =
add_grab (arity+1) lbl cont1 in
lbl_bodies.(i) <- lbl;
fun_code := [Ksequence(cont2,!fun_code)];
done;
let fv = !rfv in
compile_fv reloc fv.fv_rev sz
(Kclosurecofix(fv.size, init, lbl_types, lbl_bodies) :: cont)
| Case(ci,t,a,branchs) ->
let ind = ci.ci_ind in
let mib = lookup_mind (fst ind) !global_env in
let oib = mib.mind_packets.(snd ind) in
let tbl = oib.mind_reloc_tbl in
let lbl_consts = Array.create oib.mind_nb_constant Label.no in
let lbl_blocks = Array.create (oib.mind_nb_args+1) Label.no in
let branch1,cont = make_branch cont in
(* Compiling return type *)
let lbl_typ,fcode =
label_code (compile_constr reloc t sz [Kpop sz; Kstop])
in fun_code := [Ksequence(fcode,!fun_code)];
(* Compiling branches *)
let lbl_sw = Label.create () in
let sz_b,branch,is_tailcall =
match branch1 with
| Kreturn k -> assert (k = sz); sz, branch1, true
| _ -> sz+3, Kjump, false
in
let annot = {ci = ci; rtbl = tbl; tailcall = is_tailcall} in
(* Compiling branch for accumulators *)
let lbl_accu, code_accu =
label_code(Kmakeswitchblock(lbl_typ,lbl_sw,annot,sz) :: branch::cont)
in
lbl_blocks.(0) <- lbl_accu;
let c = ref code_accu in
(* Compiling regular constructor branches *)
for i = 0 to Array.length tbl - 1 do
let tag, arity = tbl.(i) in
if arity = 0 then
let lbl_b,code_b =
label_code(compile_constr reloc branchs.(i) sz_b (branch :: !c)) in
lbl_consts.(tag) <- lbl_b;
c := code_b
else
let args, body = decompose_lam branchs.(i) in
let nargs = List.length args in
let lbl_b,code_b =
label_code(
if nargs = arity then
Kpushfields arity ::
compile_constr (push_param arity sz_b reloc)
body (sz_b+arity) (add_pop arity (branch :: !c))
else
let sz_appterm = if is_tailcall then sz_b + arity else arity in
Kpushfields arity ::
compile_constr reloc branchs.(i) (sz_b+arity)
(Kappterm(arity,sz_appterm) :: !c))
in
lbl_blocks.(tag) <- lbl_b;
c := code_b
done;
c := Klabel lbl_sw :: Kswitch(lbl_consts,lbl_blocks) :: !c;
let code_sw =
match branch1 with
(* spiwack : branch1 can't be a lbl anymore it's a Branch instead
| Klabel lbl -> Kpush_retaddr lbl :: !c *)
| Kbranch lbl -> Kpush_retaddr lbl :: !c
| _ -> !c
in
compile_constr reloc a sz
(try
let entry = Term.Ind ind in
Retroknowledge.get_vm_before_match_info (!global_env).retroknowledge
entry code_sw
with Not_found ->
code_sw)
and compile_str_cst reloc sc sz cont =
match sc with
| Bconstr c -> compile_constr reloc c sz cont
| Bstrconst sc -> Kconst sc :: cont
| Bmakeblock(tag,args) ->
let nargs = Array.length args in
comp_args compile_str_cst reloc args sz (Kmakeblock(nargs,tag) :: cont)
| Bconstruct_app(tag,nparams,arity,args) ->
if Array.length args = 0 then code_construct tag nparams arity cont
else
comp_app
(fun _ _ _ cont -> code_construct tag nparams arity cont)
compile_str_cst reloc () args sz cont
| Bspecial (comp_fx, args) -> comp_fx reloc args sz cont
(* spiwack : compilation of constants with their arguments.
Makes a special treatment with 31-bit integer addition *)
and compile_const =
fun reloc-> fun kn -> fun args -> fun sz -> fun cont ->
let nargs = Array.length args in
(* spiwack: checks if there is a specific way to compile the constant
if there is not, Not_found is raised, and the function
falls back on its normal behavior *)
try
Retroknowledge.get_vm_compiling_info (!global_env).retroknowledge
(kind_of_term (mkConst kn)) reloc args sz cont
with Not_found ->
if nargs = 0 then
Kgetglobal (get_allias !global_env kn) :: cont
else
comp_app (fun _ _ _ cont ->
Kgetglobal (get_allias !global_env kn) :: cont)
compile_constr reloc () args sz cont
let compile env c =
set_global_env env;
init_fun_code ();
Label.reset_label_counter ();
let reloc = empty_comp_env () in
let init_code = compile_constr reloc c 0 [Kstop] in
let fv = List.rev (!(reloc.in_env).fv_rev) in
(* draw_instr init_code;
draw_instr !fun_code;
Format.print_string "fv = ";
List.iter (fun v ->
match v with
| FVnamed id -> Format.print_string ((string_of_id id)^"; ")
| FVrel i -> Format.print_string ((string_of_int i)^"; ")) fv; Format
.print_string "\n";
Format.print_flush(); *)
init_code,!fun_code, Array.of_list fv
let compile_constant_body env = function
| Undef _ | OpaqueDef _ -> BCconstant
| Def sb ->
let body = Declarations.force sb in
match kind_of_term body with
| Const kn' ->
(* we use the canonical name of the constant*)
let con= constant_of_kn (canonical_con kn') in
BCallias (get_allias env con)
| _ ->
let res = compile env body in
let to_patch = to_memory res in
BCdefined to_patch
(* Shortcut of the previous function used during module strengthening *)
let compile_alias kn = BCallias (constant_of_kn (canonical_con kn))
(* spiwack: additional function which allow different part of compilation of the
31-bit integers *)
let make_areconst n else_lbl cont =
if n <=0 then
cont
else
Kareconst (n, else_lbl)::cont
(* try to compile int31 as a const_b0. Succeed if all the arguments are closed
fails otherwise by raising NotClosed*)
let compile_structured_int31 fc args =
if not fc then raise Not_found else
Const_b0
(Array.fold_left
(fun temp_i -> fun t -> match kind_of_term t with
| Construct (_,d) -> 2*temp_i+d-1
| _ -> raise NotClosed)
0 args
)
(* this function is used for the compilation of the constructor of
the int31, it is used when it appears not fully applied, or
applied to at least one non-closed digit *)
let dynamic_int31_compilation fc reloc args sz cont =
if not fc then raise Not_found else
let nargs = Array.length args in
if nargs = 31 then
let (escape,labeled_cont) = make_branch cont in
let else_lbl = Label.create() in
comp_args compile_str_cst reloc args sz
( Kisconst else_lbl::Kareconst(30,else_lbl)::Kcompint31::escape::Klabel else_lbl::Kmakeblock(31, 1)::labeled_cont)
else
let code_construct cont = (* spiwack: variant of the global code_construct
which handles dynamic compilation of
integers *)
let f_cont =
let else_lbl = Label.create () in
[Kacc 0; Kpop 1; Kisconst else_lbl; Kareconst(30,else_lbl);
Kcompint31; Kreturn 0; Klabel else_lbl; Kmakeblock(31, 1); Kreturn 0]
in
let lbl = Label.create() in
fun_code := [Ksequence (add_grab 31 lbl f_cont,!fun_code)];
Kclosure(lbl,0) :: cont
in
if nargs = 0 then
code_construct cont
else
comp_app (fun _ _ _ cont -> code_construct cont)
compile_str_cst reloc () args sz cont
(*(* template compilation for 2ary operation, it probably possible
to make a generic such function with arity abstracted *)
let op2_compilation op =
let code_construct normal cont = (*kn cont =*)
let f_cont =
let else_lbl = Label.create () in
Kareconst(2, else_lbl):: Kacc 0:: Kpop 1::
op:: Kreturn 0:: Klabel else_lbl::
(* works as comp_app with nargs = 2 and tailcall cont [Kreturn 0]*)
(*Kgetglobal (get_allias !global_env kn):: *)
normal::
Kappterm(2, 2):: [] (* = discard_dead_code [Kreturn 0] *)
in
let lbl = Label.create () in
fun_code := [Ksequence (add_grab 2 lbl f_cont, !fun_code)];
Kclosure(lbl, 0)::cont
in
fun normal fc _ reloc args sz cont ->
if not fc then raise Not_found else
let nargs = Array.length args in
if nargs=2 then (*if it is a fully applied addition*)
let (escape, labeled_cont) = make_branch cont in
let else_lbl = Label.create () in
comp_args compile_constr reloc args sz
(Kisconst else_lbl::(make_areconst 1 else_lbl
(*Kaddint31::escape::Klabel else_lbl::Kpush::*)
(op::escape::Klabel else_lbl::Kpush::
(* works as comp_app with nargs = 2 and non-tailcall cont*)
(*Kgetglobal (get_allias !global_env kn):: *)
normal::
Kapply 2::labeled_cont)))
else if nargs=0 then
code_construct normal cont
else
comp_app (fun _ _ _ cont -> code_construct normal cont)
compile_constr reloc () args sz cont *)
(*template for n-ary operation, invariant: n>=1,
the operations does the following :
1/ checks if all the arguments are constants (i.e. non-block values)
2/ if they are, uses the "op" instruction to execute
3/ if at least one is not, branches to the normal behavior:
Kgetglobal (get_allias !global_env kn) *)
let op_compilation n op =
let code_construct kn cont =
let f_cont =
let else_lbl = Label.create () in
Kareconst(n, else_lbl):: Kacc 0:: Kpop 1::
op:: Kreturn 0:: Klabel else_lbl::
(* works as comp_app with nargs = n and tailcall cont [Kreturn 0]*)
Kgetglobal (get_allias !global_env kn)::
Kappterm(n, n):: [] (* = discard_dead_code [Kreturn 0] *)
in
let lbl = Label.create () in
fun_code := [Ksequence (add_grab n lbl f_cont, !fun_code)];
Kclosure(lbl, 0)::cont
in
fun kn fc reloc args sz cont ->
if not fc then raise Not_found else
let nargs = Array.length args in
if nargs=n then (*if it is a fully applied addition*)
let (escape, labeled_cont) = make_branch cont in
let else_lbl = Label.create () in
comp_args compile_constr reloc args sz
(Kisconst else_lbl::(make_areconst (n-1) else_lbl
(*Kaddint31::escape::Klabel else_lbl::Kpush::*)
(op::escape::Klabel else_lbl::Kpush::
(* works as comp_app with nargs = n and non-tailcall cont*)
Kgetglobal (get_allias !global_env kn)::
Kapply n::labeled_cont)))
else if nargs=0 then
code_construct kn cont
else
comp_app (fun _ _ _ cont -> code_construct kn cont)
compile_constr reloc () args sz cont
let int31_escape_before_match fc cont =
if not fc then
raise Not_found
else
let escape_lbl, labeled_cont = label_code cont in
(Kisconst escape_lbl)::Kdecompint31::labeled_cont
|