1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* This file is a late renaming in May 2000 of constant.ml which
itself was made for V7.0 in Aug 1999 out of a dispatch by
Jean-Christophe Filliâtre of Chet Murthy's constants.ml in V5.10.5
into cooking.ml, declare.ml and constant.ml, ...; renaming done
because the new contents exceeded in extent what the name
suggested *)
(* Cleaning and lightening of the kernel by Bruno Barras, Nov 2001 *)
(* Declarations for the module systems added by Jacek Chrzaszcz, Aug 2002 *)
(* Miscellaneous extensions, cleaning or restructurations by Bruno
Barras, Hugo Herbelin, Jean-Christophe Filliâtre, Pierre Letouzey *)
(* This module defines the types of global declarations. This includes
global constants/axioms, mutual inductive definitions and the
module system *)
open Util
open Names
open Univ
open Term
open Sign
open Mod_subst
type engagement = ImpredicativeSet
(*s Constants (internal representation) (Definition/Axiom) *)
type polymorphic_arity = {
poly_param_levels : universe option list;
poly_level : universe;
}
type constant_type =
| NonPolymorphicType of types
| PolymorphicArity of rel_context * polymorphic_arity
type constr_substituted = constr substituted
let from_val = from_val
let force = force subst_mps
let subst_constr_subst = subst_substituted
(** Opaque proof terms are not loaded immediately, but are there
in a lazy form. Forcing this lazy may trigger some unmarshal of
the necessary structure. The ['a substituted] type isn't really great
here, so we store "manually" a substitution list, the younger one at top.
*)
type lazy_constr = constr_substituted Lazy.t * substitution list
let force_lazy_constr (c,l) =
List.fold_right subst_constr_subst l (Lazy.force c)
let lazy_constr_is_val (c,_) = Lazy.lazy_is_val c
let make_lazy_constr c = (c, [])
let force_opaque lc = force (force_lazy_constr lc)
let opaque_from_val c = (Lazy.lazy_from_val (from_val c), [])
let subst_lazy_constr sub (c,l) = (c,sub::l)
(** Inlining level of parameters at functor applications.
None means no inlining *)
type inline = int option
(** A constant can have no body (axiom/parameter), or a
transparent body, or an opaque one *)
type constant_def =
| Undef of inline
| Def of constr_substituted
| OpaqueDef of lazy_constr
type constant_body = {
const_hyps : section_context; (* New: younger hyp at top *)
const_body : constant_def;
const_type : constant_type;
const_body_code : Cemitcodes.to_patch_substituted;
const_constraints : constraints }
let body_of_constant cb = match cb.const_body with
| Undef _ -> None
| Def c -> Some c
| OpaqueDef lc -> Some (force_lazy_constr lc)
let constant_has_body cb = match cb.const_body with
| Undef _ -> false
| Def _ | OpaqueDef _ -> true
let is_opaque cb = match cb.const_body with
| OpaqueDef _ -> true
| Undef _ | Def _ -> false
(* Substitutions of [constant_body] *)
let subst_rel_declaration sub (id,copt,t as x) =
let copt' = Option.smartmap (subst_mps sub) copt in
let t' = subst_mps sub t in
if copt == copt' & t == t' then x else (id,copt',t')
let subst_rel_context sub = list_smartmap (subst_rel_declaration sub)
(* TODO: these substitution functions could avoid duplicating things
when the substitution have preserved all the fields *)
let subst_const_type sub arity =
if is_empty_subst sub then arity
else match arity with
| NonPolymorphicType s -> NonPolymorphicType (subst_mps sub s)
| PolymorphicArity (ctx,s) -> PolymorphicArity (subst_rel_context sub ctx,s)
let subst_const_def sub = function
| Undef inl -> Undef inl
| Def c -> Def (subst_constr_subst sub c)
| OpaqueDef lc -> OpaqueDef (subst_lazy_constr sub lc)
let subst_const_body sub cb = {
const_hyps = (assert (cb.const_hyps=[]); []);
const_body = subst_const_def sub cb.const_body;
const_type = subst_const_type sub cb.const_type;
const_body_code = Cemitcodes.subst_to_patch_subst sub cb.const_body_code;
const_constraints = cb.const_constraints}
(* Hash-consing of [constant_body] *)
let hcons_rel_decl ((n,oc,t) as d) =
let n' = hcons_name n
and oc' = Option.smartmap hcons_constr oc
and t' = hcons_types t
in if n' == n && oc' == oc && t' == t then d else (n',oc',t')
let hcons_rel_context l = list_smartmap hcons_rel_decl l
let hcons_polyarity ar =
{ poly_param_levels =
list_smartmap (Option.smartmap hcons_univ) ar.poly_param_levels;
poly_level = hcons_univ ar.poly_level }
let hcons_const_type = function
| NonPolymorphicType t ->
NonPolymorphicType (hcons_constr t)
| PolymorphicArity (ctx,s) ->
PolymorphicArity (hcons_rel_context ctx, hcons_polyarity s)
let hcons_const_def = function
| Undef inl -> Undef inl
| Def l_constr ->
let constr = force l_constr in
Def (from_val (hcons_constr constr))
| OpaqueDef lc ->
if lazy_constr_is_val lc then
let constr = force_opaque lc in
OpaqueDef (opaque_from_val (hcons_constr constr))
else OpaqueDef lc
let hcons_const_body cb =
{ cb with
const_body = hcons_const_def cb.const_body;
const_type = hcons_const_type cb.const_type;
const_constraints = hcons_constraints cb.const_constraints }
(*s Inductive types (internal representation with redundant
information). *)
type recarg =
| Norec
| Mrec of inductive
| Imbr of inductive
let subst_recarg sub r = match r with
| Norec -> r
| Mrec (kn,i) -> let kn' = subst_ind sub kn in
if kn==kn' then r else Mrec (kn',i)
| Imbr (kn,i) -> let kn' = subst_ind sub kn in
if kn==kn' then r else Imbr (kn',i)
type wf_paths = recarg Rtree.t
let mk_norec = Rtree.mk_node Norec [||]
let mk_paths r recargs =
Rtree.mk_node r
(Array.map (fun l -> Rtree.mk_node Norec (Array.of_list l)) recargs)
let dest_recarg p = fst (Rtree.dest_node p)
(* dest_subterms returns the sizes of each argument of each constructor of
an inductive object of size [p]. This should never be done for Norec,
because the number of sons does not correspond to the number of
constructors.
*)
let dest_subterms p =
let (ra,cstrs) = Rtree.dest_node p in
assert (ra<>Norec);
Array.map (fun t -> Array.to_list (snd (Rtree.dest_node t))) cstrs
let recarg_length p j =
let (_,cstrs) = Rtree.dest_node p in
Array.length (snd (Rtree.dest_node cstrs.(j-1)))
let subst_wf_paths sub p = Rtree.smartmap (subst_recarg sub) p
(**********************************************************************)
(* Representation of mutual inductive types in the kernel *)
(*
Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1
...
with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn
*)
type monomorphic_inductive_arity = {
mind_user_arity : constr;
mind_sort : sorts;
}
type inductive_arity =
| Monomorphic of monomorphic_inductive_arity
| Polymorphic of polymorphic_arity
type one_inductive_body = {
(* Primitive datas *)
(* Name of the type: [Ii] *)
mind_typename : identifier;
(* Arity context of [Ii] with parameters: [forall params, Ui] *)
mind_arity_ctxt : rel_context;
(* Arity sort, original user arity, and allowed elim sorts, if monomorphic *)
mind_arity : inductive_arity;
(* Names of the constructors: [cij] *)
mind_consnames : identifier array;
(* Types of the constructors with parameters: [forall params, Tij],
where the Ik are replaced by de Bruijn index in the context
I1:forall params, U1 .. In:forall params, Un *)
mind_user_lc : types array;
(* Derived datas *)
(* Number of expected real arguments of the type (no let, no params) *)
mind_nrealargs : int;
(* Length of realargs context (with let, no params) *)
mind_nrealargs_ctxt : int;
(* List of allowed elimination sorts *)
mind_kelim : sorts_family list;
(* Head normalized constructor types so that their conclusion is atomic *)
mind_nf_lc : types array;
(* Length of the signature of the constructors (with let, w/o params) *)
mind_consnrealdecls : int array;
(* Signature of recursive arguments in the constructors *)
mind_recargs : wf_paths;
(* Datas for bytecode compilation *)
(* number of constant constructor *)
mind_nb_constant : int;
(* number of no constant constructor *)
mind_nb_args : int;
mind_reloc_tbl : Cbytecodes.reloc_table;
}
type mutual_inductive_body = {
(* The component of the mutual inductive block *)
mind_packets : one_inductive_body array;
(* Whether the inductive type has been declared as a record *)
mind_record : bool;
(* Whether the type is inductive or coinductive *)
mind_finite : bool;
(* Number of types in the block *)
mind_ntypes : int;
(* Section hypotheses on which the block depends *)
mind_hyps : section_context;
(* Number of expected parameters *)
mind_nparams : int;
(* Number of recursively uniform (i.e. ordinary) parameters *)
mind_nparams_rec : int;
(* The context of parameters (includes let-in declaration) *)
mind_params_ctxt : rel_context;
(* Universes constraints enforced by the inductive declaration *)
mind_constraints : constraints;
}
let subst_indarity sub = function
| Monomorphic s ->
Monomorphic {
mind_user_arity = subst_mps sub s.mind_user_arity;
mind_sort = s.mind_sort;
}
| Polymorphic s as x -> x
let subst_mind_packet sub mbp =
{ mind_consnames = mbp.mind_consnames;
mind_consnrealdecls = mbp.mind_consnrealdecls;
mind_typename = mbp.mind_typename;
mind_nf_lc = array_smartmap (subst_mps sub) mbp.mind_nf_lc;
mind_arity_ctxt = subst_rel_context sub mbp.mind_arity_ctxt;
mind_arity = subst_indarity sub mbp.mind_arity;
mind_user_lc = array_smartmap (subst_mps sub) mbp.mind_user_lc;
mind_nrealargs = mbp.mind_nrealargs;
mind_nrealargs_ctxt = mbp.mind_nrealargs_ctxt;
mind_kelim = mbp.mind_kelim;
mind_recargs = subst_wf_paths sub mbp.mind_recargs (*wf_paths*);
mind_nb_constant = mbp.mind_nb_constant;
mind_nb_args = mbp.mind_nb_args;
mind_reloc_tbl = mbp.mind_reloc_tbl }
let subst_mind sub mib =
{ mind_record = mib.mind_record ;
mind_finite = mib.mind_finite ;
mind_ntypes = mib.mind_ntypes ;
mind_hyps = (assert (mib.mind_hyps=[]); []) ;
mind_nparams = mib.mind_nparams;
mind_nparams_rec = mib.mind_nparams_rec;
mind_params_ctxt =
map_rel_context (subst_mps sub) mib.mind_params_ctxt;
mind_packets = array_smartmap (subst_mind_packet sub) mib.mind_packets ;
mind_constraints = mib.mind_constraints }
let hcons_indarity = function
| Monomorphic a ->
Monomorphic { mind_user_arity = hcons_constr a.mind_user_arity;
mind_sort = hcons_sorts a.mind_sort }
| Polymorphic a -> Polymorphic (hcons_polyarity a)
let hcons_mind_packet oib =
{ oib with
mind_typename = hcons_ident oib.mind_typename;
mind_arity_ctxt = hcons_rel_context oib.mind_arity_ctxt;
mind_arity = hcons_indarity oib.mind_arity;
mind_consnames = array_smartmap hcons_ident oib.mind_consnames;
mind_user_lc = array_smartmap hcons_types oib.mind_user_lc;
mind_nf_lc = array_smartmap hcons_types oib.mind_nf_lc }
let hcons_mind mib =
{ mib with
mind_packets = array_smartmap hcons_mind_packet mib.mind_packets;
mind_params_ctxt = hcons_rel_context mib.mind_params_ctxt;
mind_constraints = hcons_constraints mib.mind_constraints }
(*s Modules: signature component specifications, module types, and
module declarations *)
type structure_field_body =
| SFBconst of constant_body
| SFBmind of mutual_inductive_body
| SFBmodule of module_body
| SFBmodtype of module_type_body
and structure_body = (label * structure_field_body) list
and struct_expr_body =
| SEBident of module_path
| SEBfunctor of mod_bound_id * module_type_body * struct_expr_body
| SEBapply of struct_expr_body * struct_expr_body * constraints
| SEBstruct of structure_body
| SEBwith of struct_expr_body * with_declaration_body
and with_declaration_body =
With_module_body of identifier list * module_path
| With_definition_body of identifier list * constant_body
and module_body =
{ mod_mp : module_path;
mod_expr : struct_expr_body option;
mod_type : struct_expr_body;
mod_type_alg : struct_expr_body option;
mod_constraints : constraints;
mod_delta : delta_resolver;
mod_retroknowledge : Retroknowledge.action list}
and module_type_body =
{ typ_mp : module_path;
typ_expr : struct_expr_body;
typ_expr_alg : struct_expr_body option ;
typ_constraints : constraints;
typ_delta :delta_resolver}
|