1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Names
open Univ
open Term
open Cemitcodes
open Sign
open Mod_subst
(** This module defines the internal representation of global
declarations. This includes global constants/axioms, mutual
inductive definitions, modules and module types *)
type engagement = ImpredicativeSet
(** {6 Representation of constants (Definition/Axiom) } *)
type polymorphic_arity = {
poly_param_levels : universe option list;
poly_level : universe;
}
type constant_type =
| NonPolymorphicType of types
| PolymorphicArity of rel_context * polymorphic_arity
type constr_substituted
val from_val : constr -> constr_substituted
val force : constr_substituted -> constr
(** Opaque proof terms are not loaded immediately, but are there
in a lazy form. Forcing this lazy may trigger some unmarshal of
the necessary structure. *)
type lazy_constr
val subst_lazy_constr : substitution -> lazy_constr -> lazy_constr
val force_lazy_constr : lazy_constr -> constr_substituted
val make_lazy_constr : constr_substituted Lazy.t -> lazy_constr
val lazy_constr_is_val : lazy_constr -> bool
val force_opaque : lazy_constr -> constr
val opaque_from_val : constr -> lazy_constr
(** Inlining level of parameters at functor applications.
None means no inlining *)
type inline = int option
(** A constant can have no body (axiom/parameter), or a
transparent body, or an opaque one *)
type constant_def =
| Undef of inline
| Def of constr_substituted
| OpaqueDef of lazy_constr
type constant_body = {
const_hyps : section_context; (** New: younger hyp at top *)
const_body : constant_def;
const_type : constant_type;
const_body_code : to_patch_substituted;
const_constraints : constraints }
val subst_const_def : substitution -> constant_def -> constant_def
val subst_const_body : substitution -> constant_body -> constant_body
(** Is there a actual body in const_body or const_body_opaque ? *)
val constant_has_body : constant_body -> bool
(** Accessing const_body_opaque or const_body *)
val body_of_constant : constant_body -> constr_substituted option
val is_opaque : constant_body -> bool
(** {6 Representation of mutual inductive types in the kernel } *)
type recarg =
| Norec
| Mrec of inductive
| Imbr of inductive
val subst_recarg : substitution -> recarg -> recarg
type wf_paths = recarg Rtree.t
val mk_norec : wf_paths
val mk_paths : recarg -> wf_paths list array -> wf_paths
val dest_recarg : wf_paths -> recarg
val dest_subterms : wf_paths -> wf_paths list array
val recarg_length : wf_paths -> int -> int
val subst_wf_paths : substitution -> wf_paths -> wf_paths
(**
{v
Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1
...
with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn
v}
*)
type monomorphic_inductive_arity = {
mind_user_arity : constr;
mind_sort : sorts;
}
type inductive_arity =
| Monomorphic of monomorphic_inductive_arity
| Polymorphic of polymorphic_arity
type one_inductive_body = {
(** {8 Primitive datas } *)
mind_typename : identifier; (** Name of the type: [Ii] *)
mind_arity_ctxt : rel_context; (** Arity context of [Ii] with parameters: [forall params, Ui] *)
mind_arity : inductive_arity; (** Arity sort and original user arity if monomorphic *)
mind_consnames : identifier array; (** Names of the constructors: [cij] *)
mind_user_lc : types array;
(** Types of the constructors with parameters: [forall params, Tij],
where the Ik are replaced by de Bruijn index in the
context I1:forall params, U1 .. In:forall params, Un *)
(** {8 Derived datas } *)
mind_nrealargs : int; (** Number of expected real arguments of the type (no let, no params) *)
mind_nrealargs_ctxt : int; (** Length of realargs context (with let, no params) *)
mind_kelim : sorts_family list; (** List of allowed elimination sorts *)
mind_nf_lc : types array; (** Head normalized constructor types so that their conclusion is atomic *)
mind_consnrealdecls : int array;
(** Length of the signature of the constructors (with let, w/o params)
(not used in the kernel) *)
mind_recargs : wf_paths; (** Signature of recursive arguments in the constructors *)
(** {8 Datas for bytecode compilation } *)
mind_nb_constant : int; (** number of constant constructor *)
mind_nb_args : int; (** number of no constant constructor *)
mind_reloc_tbl : Cbytecodes.reloc_table;
}
type mutual_inductive_body = {
mind_packets : one_inductive_body array; (** The component of the mutual inductive block *)
mind_record : bool; (** Whether the inductive type has been declared as a record *)
mind_finite : bool; (** Whether the type is inductive or coinductive *)
mind_ntypes : int; (** Number of types in the block *)
mind_hyps : section_context; (** Section hypotheses on which the block depends *)
mind_nparams : int; (** Number of expected parameters *)
mind_nparams_rec : int; (** Number of recursively uniform (i.e. ordinary) parameters *)
mind_params_ctxt : rel_context; (** The context of parameters (includes let-in declaration) *)
mind_constraints : constraints; (** Universes constraints enforced by the inductive declaration *)
}
val subst_mind : substitution -> mutual_inductive_body -> mutual_inductive_body
(** {6 Modules: signature component specifications, module types, and
module declarations } *)
type structure_field_body =
| SFBconst of constant_body
| SFBmind of mutual_inductive_body
| SFBmodule of module_body
| SFBmodtype of module_type_body
(** NB: we may encounter now (at most) twice the same label in
a [structure_body], once for a module ([SFBmodule] or [SFBmodtype])
and once for an object ([SFBconst] or [SFBmind]) *)
and structure_body = (label * structure_field_body) list
and struct_expr_body =
| SEBident of module_path
| SEBfunctor of mod_bound_id * module_type_body * struct_expr_body
| SEBapply of struct_expr_body * struct_expr_body * constraints
| SEBstruct of structure_body
| SEBwith of struct_expr_body * with_declaration_body
and with_declaration_body =
With_module_body of identifier list * module_path
| With_definition_body of identifier list * constant_body
and module_body =
{ (** absolute path of the module *)
mod_mp : module_path;
(** Implementation *)
mod_expr : struct_expr_body option;
(** Signature *)
mod_type : struct_expr_body;
(** algebraic structure expression is kept
if it's relevant for extraction *)
mod_type_alg : struct_expr_body option;
(** set of all constraint in the module *)
mod_constraints : constraints;
(** quotiented set of equivalent constant and inductive name *)
mod_delta : delta_resolver;
mod_retroknowledge : Retroknowledge.action list}
and module_type_body =
{
(** Path of the module type *)
typ_mp : module_path;
typ_expr : struct_expr_body;
(** algebraic structure expression is kept
if it's relevant for extraction *)
typ_expr_alg : struct_expr_body option ;
typ_constraints : constraints;
(** quotiented set of equivalent constant and inductive name *)
typ_delta :delta_resolver}
(** Hash-consing *)
(** Here, strictly speaking, we don't perform true hash-consing
of the structure, but simply hash-cons all inner constr
and other known elements *)
val hcons_const_body : constant_body -> constant_body
val hcons_mind : mutual_inductive_body -> mutual_inductive_body
|