1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Names
open Univ
open Term
open Sign
open Declarations
open Environ
open Reduction
open Type_errors
type mind_specif = mutual_inductive_body * one_inductive_body
(* raise Not_found if not an inductive type *)
let lookup_mind_specif env (kn,tyi) =
let mib = Environ.lookup_mind kn env in
if tyi >= Array.length mib.mind_packets then
error "Inductive.lookup_mind_specif: invalid inductive index";
(mib, mib.mind_packets.(tyi))
let find_rectype env c =
let (t, l) = decompose_app (whd_betadeltaiota env c) in
match kind_of_term t with
| Ind ind -> (ind, l)
| _ -> raise Not_found
let find_inductive env c =
let (t, l) = decompose_app (whd_betadeltaiota env c) in
match kind_of_term t with
| Ind ind
when (fst (lookup_mind_specif env ind)).mind_finite -> (ind, l)
| _ -> raise Not_found
let find_coinductive env c =
let (t, l) = decompose_app (whd_betadeltaiota env c) in
match kind_of_term t with
| Ind ind
when not (fst (lookup_mind_specif env ind)).mind_finite -> (ind, l)
| _ -> raise Not_found
let inductive_params (mib,_) = mib.mind_nparams
(************************************************************************)
(* Build the substitution that replaces Rels by the appropriate *)
(* inductives *)
let ind_subst mind mib =
let ntypes = mib.mind_ntypes in
let make_Ik k = mkInd (mind,ntypes-k-1) in
list_tabulate make_Ik ntypes
(* Instantiate inductives in constructor type *)
let constructor_instantiate mind mib c =
let s = ind_subst mind mib in
substl s c
let instantiate_params full t args sign =
let fail () =
anomaly "instantiate_params: type, ctxt and args mismatch" in
let (rem_args, subs, ty) =
Sign.fold_rel_context
(fun (_,copt,_) (largs,subs,ty) ->
match (copt, largs, kind_of_term ty) with
| (None, a::args, Prod(_,_,t)) -> (args, a::subs, t)
| (Some b,_,LetIn(_,_,_,t)) -> (largs, (substl subs b)::subs, t)
| (_,[],_) -> if full then fail() else ([], subs, ty)
| _ -> fail ())
sign
~init:(args,[],t)
in
if rem_args <> [] then fail();
substl subs ty
let full_inductive_instantiate mib params sign =
let dummy = prop_sort in
let t = mkArity (sign,dummy) in
fst (destArity (instantiate_params true t params mib.mind_params_ctxt))
let full_constructor_instantiate ((mind,_),(mib,_),params) =
let inst_ind = constructor_instantiate mind mib in
(fun t ->
instantiate_params true (inst_ind t) params mib.mind_params_ctxt)
(************************************************************************)
(************************************************************************)
(* Functions to build standard types related to inductive *)
(*
Computing the actual sort of an applied or partially applied inductive type:
I_i: forall uniformparams:utyps, forall otherparams:otyps, Type(a)
uniformargs : utyps
otherargs : otyps
I_1:forall ...,s_1;...I_n:forall ...,s_n |- sort(C_kj(uniformargs)) = s_kj
s'_k = max(..s_kj..)
merge(..s'_k..) = ..s''_k..
--------------------------------------------------------------------
Gamma |- I_i uniformargs otherargs : phi(s''_i)
where
- if p=0, phi() = Prop
- if p=1, phi(s) = s
- if p<>1, phi(s) = sup(Set,s)
Remark: Set (predicative) is encoded as Type(0)
*)
let sort_as_univ = function
| Type u -> u
| Prop Null -> type0m_univ
| Prop Pos -> type0_univ
let cons_subst u su subst =
try (u, sup su (List.assoc u subst)) :: List.remove_assoc u subst
with Not_found -> (u, su) :: subst
let actualize_decl_level env lev t =
let sign,s = dest_arity env t in
mkArity (sign,lev)
let polymorphism_on_non_applied_parameters = false
(* Bind expected levels of parameters to actual levels *)
(* Propagate the new levels in the signature *)
let rec make_subst env = function
| (_,Some _,_ as t)::sign, exp, args ->
let ctx,subst = make_subst env (sign, exp, args) in
t::ctx, subst
| d::sign, None::exp, args ->
let args = match args with _::args -> args | [] -> [] in
let ctx,subst = make_subst env (sign, exp, args) in
d::ctx, subst
| d::sign, Some u::exp, a::args ->
(* We recover the level of the argument, but we don't change the *)
(* level in the corresponding type in the arity; this level in the *)
(* arity is a global level which, at typing time, will be enforce *)
(* to be greater than the level of the argument; this is probably *)
(* a useless extra constraint *)
let s = sort_as_univ (snd (dest_arity env a)) in
let ctx,subst = make_subst env (sign, exp, args) in
d::ctx, cons_subst u s subst
| (na,None,t as d)::sign, Some u::exp, [] ->
(* No more argument here: we instantiate the type with a fresh level *)
(* which is first propagated to the corresponding premise in the arity *)
(* (actualize_decl_level), then to the conclusion of the arity (via *)
(* the substitution) *)
let ctx,subst = make_subst env (sign, exp, []) in
if polymorphism_on_non_applied_parameters then
let s = fresh_local_univ () in
let t = actualize_decl_level env (Type s) t in
(na,None,t)::ctx, cons_subst u s subst
else
d::ctx, subst
| sign, [], _ ->
(* Uniform parameters are exhausted *)
sign,[]
| [], _, _ ->
assert false
let instantiate_universes env ctx ar argsorts =
let args = Array.to_list argsorts in
let ctx,subst = make_subst env (ctx,ar.poly_param_levels,args) in
let level = subst_large_constraints subst ar.poly_level in
ctx,
(* Singleton type not containing types are interpretable in Prop *)
if is_type0m_univ level then prop_sort
(* Non singleton type not containing types are interpretable in Set *)
else if is_type0_univ level then set_sort
(* This is a Type with constraints *)
else Type level
exception SingletonInductiveBecomesProp of identifier
let type_of_inductive_knowing_parameters ?(polyprop=true) env mip paramtyps =
match mip.mind_arity with
| Monomorphic s ->
s.mind_user_arity
| Polymorphic ar ->
let ctx = List.rev mip.mind_arity_ctxt in
let ctx,s = instantiate_universes env ctx ar paramtyps in
(* The Ocaml extraction cannot handle (yet?) "Prop-polymorphism", i.e.
the situation where a non-Prop singleton inductive becomes Prop
when applied to Prop params *)
if not polyprop && not (is_type0m_univ ar.poly_level) && s = prop_sort
then raise (SingletonInductiveBecomesProp mip.mind_typename);
mkArity (List.rev ctx,s)
(* Type of a (non applied) inductive type *)
let type_of_inductive env (_,mip) =
type_of_inductive_knowing_parameters env mip [||]
(* The max of an array of universes *)
let cumulate_constructor_univ u = function
| Prop Null -> u
| Prop Pos -> sup type0_univ u
| Type u' -> sup u u'
let max_inductive_sort =
Array.fold_left cumulate_constructor_univ type0m_univ
(************************************************************************)
(* Type of a constructor *)
let type_of_constructor cstr (mib,mip) =
let ind = inductive_of_constructor cstr in
let specif = mip.mind_user_lc in
let i = index_of_constructor cstr in
let nconstr = Array.length mip.mind_consnames in
if i > nconstr then error "Not enough constructors in the type.";
constructor_instantiate (fst ind) mib specif.(i-1)
let arities_of_specif kn (mib,mip) =
let specif = mip.mind_nf_lc in
Array.map (constructor_instantiate kn mib) specif
let arities_of_constructors ind specif =
arities_of_specif (fst ind) specif
let type_of_constructors ind (mib,mip) =
let specif = mip.mind_user_lc in
Array.map (constructor_instantiate (fst ind) mib) specif
(************************************************************************)
(* Type of case predicates *)
let local_rels ctxt =
let (rels,_) =
Sign.fold_rel_context_reverse
(fun (rels,n) (_,copt,_) ->
match copt with
None -> (mkRel n :: rels, n+1)
| Some _ -> (rels, n+1))
~init:([],1)
ctxt
in
rels
(* Get type of inductive, with parameters instantiated *)
let inductive_sort_family mip =
match mip.mind_arity with
| Monomorphic s -> family_of_sort s.mind_sort
| Polymorphic _ -> InType
let mind_arity mip =
mip.mind_arity_ctxt, inductive_sort_family mip
let get_instantiated_arity (mib,mip) params =
let sign, s = mind_arity mip in
full_inductive_instantiate mib params sign, s
let elim_sorts (_,mip) = mip.mind_kelim
let extended_rel_list n hyps =
let rec reln l p = function
| (_,None,_) :: hyps -> reln (mkRel (n+p) :: l) (p+1) hyps
| (_,Some _,_) :: hyps -> reln l (p+1) hyps
| [] -> l
in
reln [] 1 hyps
let build_dependent_inductive ind (_,mip) params =
let realargs,_ = list_chop mip.mind_nrealargs_ctxt mip.mind_arity_ctxt in
applist
(mkInd ind,
List.map (lift mip.mind_nrealargs_ctxt) params
@ extended_rel_list 0 realargs)
(* This exception is local *)
exception LocalArity of (sorts_family * sorts_family * arity_error) option
let check_allowed_sort ksort specif =
if not (List.exists ((=) ksort) (elim_sorts specif)) then
let s = inductive_sort_family (snd specif) in
raise (LocalArity (Some(ksort,s,error_elim_explain ksort s)))
let is_correct_arity env c pj ind specif params =
let arsign,_ = get_instantiated_arity specif params in
let rec srec env pt ar u =
let pt' = whd_betadeltaiota env pt in
match kind_of_term pt', ar with
| Prod (na1,a1,t), (_,None,a1')::ar' ->
let univ =
try conv env a1 a1'
with NotConvertible -> raise (LocalArity None) in
srec (push_rel (na1,None,a1) env) t ar' (union_constraints u univ)
(* The last Prod domain is the type of the scrutinee *)
| Prod (na1,a1,a2), [] -> (* whnf of t was not needed here! *)
let env' = push_rel (na1,None,a1) env in
let ksort = match kind_of_term (whd_betadeltaiota env' a2) with
| Sort s -> family_of_sort s
| _ -> raise (LocalArity None) in
let dep_ind = build_dependent_inductive ind specif params in
let univ =
try conv env a1 dep_ind
with NotConvertible -> raise (LocalArity None) in
check_allowed_sort ksort specif;
union_constraints u univ
| _, (_,Some _,_ as d)::ar' ->
srec (push_rel d env) (lift 1 pt') ar' u
| _ ->
raise (LocalArity None)
in
try srec env pj.uj_type (List.rev arsign) empty_constraint
with LocalArity kinds ->
error_elim_arity env ind (elim_sorts specif) c pj kinds
(************************************************************************)
(* Type of case branches *)
(* [p] is the predicate, [i] is the constructor number (starting from 0),
and [cty] is the type of the constructor (params not instantiated) *)
let build_branches_type ind (_,mip as specif) params p =
let build_one_branch i cty =
let typi = full_constructor_instantiate (ind,specif,params) cty in
let (args,ccl) = decompose_prod_assum typi in
let nargs = rel_context_length args in
let (_,allargs) = decompose_app ccl in
let (lparams,vargs) = list_chop (inductive_params specif) allargs in
let cargs =
let cstr = ith_constructor_of_inductive ind (i+1) in
let dep_cstr = applist (mkConstruct cstr,lparams@(local_rels args)) in
vargs @ [dep_cstr] in
let base = beta_appvect (lift nargs p) (Array.of_list cargs) in
it_mkProd_or_LetIn base args in
Array.mapi build_one_branch mip.mind_nf_lc
(* [p] is the predicate, [c] is the match object, [realargs] is the
list of real args of the inductive type *)
let build_case_type n p c realargs =
whd_betaiota (betazeta_appvect (n+1) p (Array.of_list (realargs@[c])))
let type_case_branches env (ind,largs) pj c =
let specif = lookup_mind_specif env ind in
let nparams = inductive_params specif in
let (params,realargs) = list_chop nparams largs in
let p = pj.uj_val in
let univ = is_correct_arity env c pj ind specif params in
let lc = build_branches_type ind specif params p in
let ty = build_case_type (snd specif).mind_nrealargs_ctxt p c realargs in
(lc, ty, univ)
(************************************************************************)
(* Checking the case annotation is relevent *)
let check_case_info env indsp ci =
let (mib,mip) = lookup_mind_specif env indsp in
if
not (eq_ind indsp ci.ci_ind) or
(mib.mind_nparams <> ci.ci_npar) or
(mip.mind_consnrealdecls <> ci.ci_cstr_ndecls)
then raise (TypeError(env,WrongCaseInfo(indsp,ci)))
(************************************************************************)
(************************************************************************)
(* Guard conditions for fix and cofix-points *)
(* Check if t is a subterm of Rel n, and gives its specification,
assuming lst already gives index of
subterms with corresponding specifications of recursive arguments *)
(* A powerful notion of subterm *)
(* To each inductive definition corresponds an array describing the
structure of recursive arguments for each constructor, we call it
the recursive spec of the type (it has type recargs vect). For
checking the guard, we start from the decreasing argument (Rel n)
with its recursive spec. During checking the guardness condition,
we collect patterns variables corresponding to subterms of n, each
of them with its recursive spec. They are organised in a list lst
of type (int * recargs) list which is sorted with respect to the
first argument.
*)
(*************************************************************)
(* Environment annotated with marks on recursive arguments *)
(* tells whether it is a strict or loose subterm *)
type size = Large | Strict
(* merging information *)
let size_glb s1 s2 =
match s1,s2 with
Strict, Strict -> Strict
| _ -> Large
(* possible specifications for a term:
- Not_subterm: when the size of a term is not related to the
recursive argument of the fixpoint
- Subterm: when the term is a subterm of the recursive argument
the wf_paths argument specifies which subterms are recursive
- Dead_code: when the term has been built by elimination over an
empty type
*)
type subterm_spec =
Subterm of (size * wf_paths)
| Dead_code
| Not_subterm
let spec_of_tree t = lazy
(if Rtree.eq_rtree (=) (Lazy.force t) mk_norec
then Not_subterm
else Subterm(Strict,Lazy.force t))
let subterm_spec_glb =
let glb2 s1 s2 =
match s1, s2 with
s1, Dead_code -> s1
| Dead_code, s2 -> s2
| Not_subterm, _ -> Not_subterm
| _, Not_subterm -> Not_subterm
| Subterm (a1,t1), Subterm (a2,t2) ->
if Rtree.eq_rtree (=) t1 t2 then Subterm (size_glb a1 a2, t1)
(* branches do not return objects with same spec *)
else Not_subterm in
Array.fold_left glb2 Dead_code
type guard_env =
{ env : env;
(* dB of last fixpoint *)
rel_min : int;
(* dB of variables denoting subterms *)
genv : subterm_spec Lazy.t list;
}
let make_renv env recarg (kn,tyi) =
let mib = Environ.lookup_mind kn env in
let mind_recvec =
Array.map (fun mip -> mip.mind_recargs) mib.mind_packets in
{ env = env;
rel_min = recarg+2;
genv = [Lazy.lazy_from_val(Subterm(Large,mind_recvec.(tyi)))] }
let push_var renv (x,ty,spec) =
{ env = push_rel (x,None,ty) renv.env;
rel_min = renv.rel_min+1;
genv = spec:: renv.genv }
let assign_var_spec renv (i,spec) =
{ renv with genv = list_assign renv.genv (i-1) spec }
let push_var_renv renv (x,ty) =
push_var renv (x,ty,lazy Not_subterm)
(* Fetch recursive information about a variable p *)
let subterm_var p renv =
try Lazy.force (List.nth renv.genv (p-1))
with Failure _ | Invalid_argument _ -> Not_subterm
let push_ctxt_renv renv ctxt =
let n = rel_context_length ctxt in
{ env = push_rel_context ctxt renv.env;
rel_min = renv.rel_min+n;
genv = iterate (fun ge -> lazy Not_subterm::ge) n renv.genv }
let push_fix_renv renv (_,v,_ as recdef) =
let n = Array.length v in
{ env = push_rec_types recdef renv.env;
rel_min = renv.rel_min+n;
genv = iterate (fun ge -> lazy Not_subterm::ge) n renv.genv }
(* Definition and manipulation of the stack *)
type stack_element = |SClosure of guard_env*constr |SArg of subterm_spec Lazy.t
let push_stack_closures renv l stack =
List.fold_right (fun h b -> (SClosure (renv,h))::b) l stack
let push_stack_args l stack =
List.fold_right (fun h b -> (SArg h)::b) l stack
(******************************)
(* {6 Computing the recursive subterms of a term (propagation of size
information through Cases).} *)
let lookup_subterms env ind =
let (_,mip) = lookup_mind_specif env ind in
mip.mind_recargs
let match_inductive ind ra =
match ra with
| (Mrec i | Imbr i) -> eq_ind ind i
| Norec -> false
(* In {match c as z in ci y_s return P with |C_i x_s => t end}
[branches_specif renv c_spec ci] returns an array of x_s specs knowing
c_spec. *)
let branches_specif renv c_spec ci =
let car =
(* We fetch the regular tree associated to the inductive of the match.
This is just to get the number of constructors (and constructor
arities) that fit the match branches without forcing c_spec.
Note that c_spec might be more precise than [v] below, because of
nested inductive types. *)
let (_,mip) = lookup_mind_specif renv.env ci.ci_ind in
let v = dest_subterms mip.mind_recargs in
Array.map List.length v in
Array.mapi
(fun i nca -> (* i+1-th cstructor has arity nca *)
let lvra = lazy
(match Lazy.force c_spec with
Subterm (_,t) when match_inductive ci.ci_ind (dest_recarg t) ->
let vra = Array.of_list (dest_subterms t).(i) in
assert (nca = Array.length vra);
Array.map
(fun t -> Lazy.force (spec_of_tree (lazy t)))
vra
| Dead_code -> Array.create nca Dead_code
| _ -> Array.create nca Not_subterm) in
list_tabulate (fun j -> lazy (Lazy.force lvra).(j)) nca)
car
(* [subterm_specif renv t] computes the recursive structure of [t] and
compare its size with the size of the initial recursive argument of
the fixpoint we are checking. [renv] collects such information
about variables.
*)
let rec subterm_specif renv stack t =
(* maybe reduction is not always necessary! *)
let f,l = decompose_app (whd_betadeltaiota renv.env t) in
match kind_of_term f with
| Rel k -> subterm_var k renv
| Case (ci,_,c,lbr) ->
let stack' = push_stack_closures renv l stack in
let cases_spec = branches_specif renv
(lazy_subterm_specif renv [] c) ci in
let stl =
Array.mapi (fun i br' ->
let stack_br = push_stack_args (cases_spec.(i)) stack' in
subterm_specif renv stack_br br')
lbr in
subterm_spec_glb stl
| Fix ((recindxs,i),(_,typarray,bodies as recdef)) ->
(* when proving that the fixpoint f(x)=e is less than n, it is enough
to prove that e is less than n assuming f is less than n
furthermore when f is applied to a term which is strictly less than
n, one may assume that x itself is strictly less than n
*)
let (ctxt,clfix) = dest_prod renv.env typarray.(i) in
let oind =
let env' = push_rel_context ctxt renv.env in
try Some(fst(find_inductive env' clfix))
with Not_found -> None in
(match oind with
None -> Not_subterm (* happens if fix is polymorphic *)
| Some ind ->
let nbfix = Array.length typarray in
let recargs = lookup_subterms renv.env ind in
(* pushing the fixpoints *)
let renv' = push_fix_renv renv recdef in
let renv' =
(* Why Strict here ? To be general, it could also be
Large... *)
assign_var_spec renv'
(nbfix-i, lazy (Subterm(Strict,recargs))) in
let decrArg = recindxs.(i) in
let theBody = bodies.(i) in
let nbOfAbst = decrArg+1 in
let sign,strippedBody = decompose_lam_n_assum nbOfAbst theBody in
(* pushing the fix parameters *)
let stack' = push_stack_closures renv l stack in
let renv'' = push_ctxt_renv renv' sign in
let renv'' =
if List.length stack' < nbOfAbst then renv''
else
let decrArg = List.nth stack' decrArg in
let arg_spec = stack_element_specif decrArg in
assign_var_spec renv'' (1, arg_spec) in
subterm_specif renv'' [] strippedBody)
| Lambda (x,a,b) ->
assert (l=[]);
let spec,stack' = extract_stack renv a stack in
subterm_specif (push_var renv (x,a,spec)) stack' b
(* Metas and evars are considered OK *)
| (Meta _|Evar _) -> Dead_code
(* Other terms are not subterms *)
| _ -> Not_subterm
and lazy_subterm_specif renv stack t =
lazy (subterm_specif renv stack t)
and stack_element_specif = function
|SClosure (h_renv,h) -> lazy_subterm_specif h_renv [] h
|SArg x -> x
and extract_stack renv a = function
| [] -> Lazy.lazy_from_val Not_subterm , []
| h::t -> stack_element_specif h, t
(* Check term c can be applied to one of the mutual fixpoints. *)
let check_is_subterm x =
match Lazy.force x with
Subterm (Strict,_) | Dead_code -> true
| _ -> false
(************************************************************************)
exception FixGuardError of env * guard_error
let error_illegal_rec_call renv fx (arg_renv,arg) =
let (_,le_vars,lt_vars) =
List.fold_left
(fun (i,le,lt) sbt ->
match Lazy.force sbt with
(Subterm(Strict,_) | Dead_code) -> (i+1, le, i::lt)
| (Subterm(Large,_)) -> (i+1, i::le, lt)
| _ -> (i+1, le ,lt))
(1,[],[]) renv.genv in
raise (FixGuardError (renv.env,
RecursionOnIllegalTerm(fx,(arg_renv.env, arg),
le_vars,lt_vars)))
let error_partial_apply renv fx =
raise (FixGuardError (renv.env,NotEnoughArgumentsForFixCall fx))
(* Check if [def] is a guarded fixpoint body with decreasing arg.
given [recpos], the decreasing arguments of each mutually defined
fixpoint. *)
let check_one_fix renv recpos def =
let nfi = Array.length recpos in
(* Checks if [t] only make valid recursive calls
[stack] is the list of constructor's argument specification and
arguments than will be applied after reduction.
example u in t where we have (match .. with |.. => t end) u *)
let rec check_rec_call renv stack t =
(* if [t] does not make recursive calls, it is guarded: *)
if noccur_with_meta renv.rel_min nfi t then ()
else
let (f,l) = decompose_app (whd_betaiotazeta t) in
match kind_of_term f with
| Rel p ->
(* Test if [p] is a fixpoint (recursive call) *)
if renv.rel_min <= p & p < renv.rel_min+nfi then
begin
List.iter (check_rec_call renv []) l;
(* the position of the invoked fixpoint: *)
let glob = renv.rel_min+nfi-1-p in
(* the decreasing arg of the rec call: *)
let np = recpos.(glob) in
let stack' = push_stack_closures renv l stack in
if List.length stack' <= np then error_partial_apply renv glob
else
(* Check the decreasing arg is smaller *)
let z = List.nth stack' np in
if not (check_is_subterm (stack_element_specif z)) then
begin match z with
|SClosure (z,z') -> error_illegal_rec_call renv glob (z,z')
|SArg _ -> error_partial_apply renv glob
end
end
else
begin
match pi2 (lookup_rel p renv.env) with
| None ->
List.iter (check_rec_call renv []) l
| Some c ->
try List.iter (check_rec_call renv []) l
with FixGuardError _ ->
check_rec_call renv stack (applist(lift p c,l))
end
| Case (ci,p,c_0,lrest) ->
List.iter (check_rec_call renv []) (c_0::p::l);
(* compute the recarg information for the arguments of
each branch *)
let case_spec = branches_specif renv
(lazy_subterm_specif renv [] c_0) ci in
let stack' = push_stack_closures renv l stack in
Array.iteri (fun k br' ->
let stack_br = push_stack_args case_spec.(k) stack' in
check_rec_call renv stack_br br') lrest
(* Enables to traverse Fixpoint definitions in a more intelligent
way, ie, the rule :
if - g = fix g (y1:T1)...(yp:Tp) {struct yp} := e &
- f is guarded with respect to the set of pattern variables S
in a1 ... am &
- f is guarded with respect to the set of pattern variables S
in T1 ... Tp &
- ap is a sub-term of the formal argument of f &
- f is guarded with respect to the set of pattern variables
S+{yp} in e
then f is guarded with respect to S in (g a1 ... am).
Eduardo 7/9/98 *)
| Fix ((recindxs,i),(_,typarray,bodies as recdef)) ->
List.iter (check_rec_call renv []) l;
Array.iter (check_rec_call renv []) typarray;
let decrArg = recindxs.(i) in
let renv' = push_fix_renv renv recdef in
let stack' = push_stack_closures renv l stack in
Array.iteri
(fun j body ->
if i=j && (List.length stack' > decrArg) then
let recArg = List.nth stack' decrArg in
let arg_sp = stack_element_specif recArg in
check_nested_fix_body renv' (decrArg+1) arg_sp body
else check_rec_call renv' [] body)
bodies
| Const kn ->
if evaluable_constant kn renv.env then
try List.iter (check_rec_call renv []) l
with (FixGuardError _ ) ->
let value = (applist(constant_value renv.env kn, l)) in
check_rec_call renv stack value
else List.iter (check_rec_call renv []) l
| Lambda (x,a,b) ->
assert (l = []);
check_rec_call renv [] a ;
let spec, stack' = extract_stack renv a stack in
check_rec_call (push_var renv (x,a,spec)) stack' b
| Prod (x,a,b) ->
assert (l = [] && stack = []);
check_rec_call renv [] a;
check_rec_call (push_var_renv renv (x,a)) [] b
| CoFix (i,(_,typarray,bodies as recdef)) ->
List.iter (check_rec_call renv []) l;
Array.iter (check_rec_call renv []) typarray;
let renv' = push_fix_renv renv recdef in
Array.iter (check_rec_call renv' []) bodies
| (Ind _ | Construct _) ->
List.iter (check_rec_call renv []) l
| Var id ->
begin
match pi2 (lookup_named id renv.env) with
| None ->
List.iter (check_rec_call renv []) l
| Some c ->
try List.iter (check_rec_call renv []) l
with (FixGuardError _) ->
check_rec_call renv stack (applist(c,l))
end
| Sort _ -> assert (l = [])
(* l is not checked because it is considered as the meta's context *)
| (Evar _ | Meta _) -> ()
| (App _ | LetIn _ | Cast _) -> assert false (* beta zeta reduction *)
and check_nested_fix_body renv decr recArgsDecrArg body =
if decr = 0 then
check_rec_call (assign_var_spec renv (1,recArgsDecrArg)) [] body
else
match kind_of_term body with
| Lambda (x,a,b) ->
check_rec_call renv [] a;
let renv' = push_var_renv renv (x,a) in
check_nested_fix_body renv' (decr-1) recArgsDecrArg b
| _ -> anomaly "Not enough abstractions in fix body"
in
check_rec_call renv [] def
let judgment_of_fixpoint (_, types, bodies) =
array_map2 (fun typ body -> { uj_val = body ; uj_type = typ }) types bodies
let inductive_of_mutfix env ((nvect,bodynum),(names,types,bodies as recdef)) =
let nbfix = Array.length bodies in
if nbfix = 0
or Array.length nvect <> nbfix
or Array.length types <> nbfix
or Array.length names <> nbfix
or bodynum < 0
or bodynum >= nbfix
then anomaly "Ill-formed fix term";
let fixenv = push_rec_types recdef env in
let vdefj = judgment_of_fixpoint recdef in
let raise_err env i err =
error_ill_formed_rec_body env err names i fixenv vdefj in
(* Check the i-th definition with recarg k *)
let find_ind i k def =
(* check fi does not appear in the k+1 first abstractions,
gives the type of the k+1-eme abstraction (must be an inductive) *)
let rec check_occur env n def =
match kind_of_term (whd_betadeltaiota env def) with
| Lambda (x,a,b) ->
if noccur_with_meta n nbfix a then
let env' = push_rel (x, None, a) env in
if n = k+1 then
(* get the inductive type of the fixpoint *)
let (mind, _) =
try find_inductive env a
with Not_found ->
raise_err env i (RecursionNotOnInductiveType a) in
(mind, (env', b))
else check_occur env' (n+1) b
else anomaly "check_one_fix: Bad occurrence of recursive call"
| _ -> raise_err env i NotEnoughAbstractionInFixBody in
check_occur fixenv 1 def in
(* Do it on every fixpoint *)
let rv = array_map2_i find_ind nvect bodies in
(Array.map fst rv, Array.map snd rv)
let check_fix env ((nvect,_),(names,_,bodies as recdef) as fix) =
let (minds, rdef) = inductive_of_mutfix env fix in
for i = 0 to Array.length bodies - 1 do
let (fenv,body) = rdef.(i) in
let renv = make_renv fenv nvect.(i) minds.(i) in
try check_one_fix renv nvect body
with FixGuardError (fixenv,err) ->
error_ill_formed_rec_body fixenv err names i
(push_rec_types recdef env) (judgment_of_fixpoint recdef)
done
(*
let cfkey = Profile.declare_profile "check_fix";;
let check_fix env fix = Profile.profile3 cfkey check_fix env fix;;
*)
(************************************************************************)
(* Co-fixpoints. *)
exception CoFixGuardError of env * guard_error
let anomaly_ill_typed () =
anomaly "check_one_cofix: too many arguments applied to constructor"
let rec codomain_is_coind env c =
let b = whd_betadeltaiota env c in
match kind_of_term b with
| Prod (x,a,b) ->
codomain_is_coind (push_rel (x, None, a) env) b
| _ ->
(try find_coinductive env b
with Not_found ->
raise (CoFixGuardError (env, CodomainNotInductiveType b)))
let check_one_cofix env nbfix def deftype =
let rec check_rec_call env alreadygrd n vlra t =
if not (noccur_with_meta n nbfix t) then
let c,args = decompose_app (whd_betadeltaiota env t) in
match kind_of_term c with
| Rel p when n <= p && p < n+nbfix ->
(* recursive call: must be guarded and no nested recursive
call allowed *)
if not alreadygrd then
raise (CoFixGuardError (env,UnguardedRecursiveCall t))
else if not(List.for_all (noccur_with_meta n nbfix) args) then
raise (CoFixGuardError (env,NestedRecursiveOccurrences))
| Construct (_,i as cstr_kn) ->
let lra = vlra.(i-1) in
let mI = inductive_of_constructor cstr_kn in
let (mib,mip) = lookup_mind_specif env mI in
let realargs = list_skipn mib.mind_nparams args in
let rec process_args_of_constr = function
| (t::lr), (rar::lrar) ->
if rar = mk_norec then
if noccur_with_meta n nbfix t
then process_args_of_constr (lr, lrar)
else raise (CoFixGuardError
(env,RecCallInNonRecArgOfConstructor t))
else
let spec = dest_subterms rar in
check_rec_call env true n spec t;
process_args_of_constr (lr, lrar)
| [],_ -> ()
| _ -> anomaly_ill_typed ()
in process_args_of_constr (realargs, lra)
| Lambda (x,a,b) ->
assert (args = []);
if noccur_with_meta n nbfix a then
let env' = push_rel (x, None, a) env in
check_rec_call env' alreadygrd (n+1) vlra b
else
raise (CoFixGuardError (env,RecCallInTypeOfAbstraction a))
| CoFix (j,(_,varit,vdefs as recdef)) ->
if List.for_all (noccur_with_meta n nbfix) args
then
if array_for_all (noccur_with_meta n nbfix) varit then
let nbfix = Array.length vdefs in
let env' = push_rec_types recdef env in
(Array.iter (check_rec_call env' alreadygrd (n+nbfix) vlra) vdefs;
List.iter (check_rec_call env alreadygrd n vlra) args)
else
raise (CoFixGuardError (env,RecCallInTypeOfDef c))
else
raise (CoFixGuardError (env,UnguardedRecursiveCall c))
| Case (_,p,tm,vrest) ->
if (noccur_with_meta n nbfix p) then
if (noccur_with_meta n nbfix tm) then
if (List.for_all (noccur_with_meta n nbfix) args) then
Array.iter (check_rec_call env alreadygrd n vlra) vrest
else
raise (CoFixGuardError (env,RecCallInCaseFun c))
else
raise (CoFixGuardError (env,RecCallInCaseArg c))
else
raise (CoFixGuardError (env,RecCallInCasePred c))
| Meta _ -> ()
| Evar _ ->
List.iter (check_rec_call env alreadygrd n vlra) args
| _ -> raise (CoFixGuardError (env,NotGuardedForm t)) in
let (mind, _) = codomain_is_coind env deftype in
let vlra = lookup_subterms env mind in
check_rec_call env false 1 (dest_subterms vlra) def
(* The function which checks that the whole block of definitions
satisfies the guarded condition *)
let check_cofix env (bodynum,(names,types,bodies as recdef)) =
let nbfix = Array.length bodies in
for i = 0 to nbfix-1 do
let fixenv = push_rec_types recdef env in
try check_one_cofix fixenv nbfix bodies.(i) types.(i)
with CoFixGuardError (errenv,err) ->
error_ill_formed_rec_body errenv err names i
fixenv (judgment_of_fixpoint recdef)
done
|