1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created under Benjamin Werner account by Bruno Barras to implement
a call-by-value conversion algorithm and a lazy reduction machine
with sharing, Nov 1996 *)
(* Addition of zeta-reduction (let-in contraction) by Hugo Herbelin, Oct 2000 *)
(* Irreversibility of opacity by Bruno Barras *)
(* Cleaning and lightening of the kernel by Bruno Barras, Nov 2001 *)
(* Equal inductive types by Jacek Chrzaszcz as part of the module
system, Aug 2002 *)
open Util
open Names
open Term
open Univ
open Declarations
open Environ
open Closure
open Esubst
let unfold_reference ((ids, csts), infos) k =
match k with
| VarKey id when not (Idpred.mem id ids) -> None
| ConstKey cst when not (Cpred.mem cst csts) -> None
| _ -> unfold_reference infos k
let rec is_empty_stack = function
[] -> true
| Zupdate _::s -> is_empty_stack s
| Zshift _::s -> is_empty_stack s
| _ -> false
(* Compute the lift to be performed on a term placed in a given stack *)
let el_stack el stk =
let n =
List.fold_left
(fun i z ->
match z with
Zshift n -> i+n
| _ -> i)
0
stk in
el_shft n el
let compare_stack_shape stk1 stk2 =
let rec compare_rec bal stk1 stk2 =
match (stk1,stk2) with
([],[]) -> bal=0
| ((Zupdate _|Zshift _)::s1, _) -> compare_rec bal s1 stk2
| (_, (Zupdate _|Zshift _)::s2) -> compare_rec bal stk1 s2
| (Zapp l1::s1, _) -> compare_rec (bal+Array.length l1) s1 stk2
| (_, Zapp l2::s2) -> compare_rec (bal-Array.length l2) stk1 s2
| (Zcase(c1,_,_)::s1, Zcase(c2,_,_)::s2) ->
bal=0 (* && c1.ci_ind = c2.ci_ind *) && compare_rec 0 s1 s2
| (Zfix(_,a1)::s1, Zfix(_,a2)::s2) ->
bal=0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2
| (_,_) -> false in
compare_rec 0 stk1 stk2
type lft_constr_stack_elt =
Zlapp of (lift * fconstr) array
| Zlfix of (lift * fconstr) * lft_constr_stack
| Zlcase of case_info * lift * fconstr * fconstr array
and lft_constr_stack = lft_constr_stack_elt list
let rec zlapp v = function
Zlapp v2 :: s -> zlapp (Array.append v v2) s
| s -> Zlapp v :: s
let pure_stack lfts stk =
let rec pure_rec lfts stk =
match stk with
[] -> (lfts,[])
| zi::s ->
(match (zi,pure_rec lfts s) with
(Zupdate _,lpstk) -> lpstk
| (Zshift n,(l,pstk)) -> (el_shft n l, pstk)
| (Zapp a, (l,pstk)) ->
(l,zlapp (Array.map (fun t -> (l,t)) a) pstk)
| (Zfix(fx,a),(l,pstk)) ->
let (lfx,pa) = pure_rec l a in
(l, Zlfix((lfx,fx),pa)::pstk)
| (Zcase(ci,p,br),(l,pstk)) ->
(l,Zlcase(ci,l,p,br)::pstk)) in
snd (pure_rec lfts stk)
(****************************************************************************)
(* Reduction Functions *)
(****************************************************************************)
let whd_betaiota t =
whd_val (create_clos_infos betaiota empty_env) (inject t)
let nf_betaiota t =
norm_val (create_clos_infos betaiota empty_env) (inject t)
let whd_betaiotazeta x =
match kind_of_term x with
| (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _|
Prod _|Lambda _|Fix _|CoFix _) -> x
| _ -> whd_val (create_clos_infos betaiotazeta empty_env) (inject x)
let whd_betadeltaiota env t =
match kind_of_term t with
| (Sort _|Meta _|Evar _|Ind _|Construct _|
Prod _|Lambda _|Fix _|CoFix _) -> t
| _ -> whd_val (create_clos_infos betadeltaiota env) (inject t)
let whd_betadeltaiota_nolet env t =
match kind_of_term t with
| (Sort _|Meta _|Evar _|Ind _|Construct _|
Prod _|Lambda _|Fix _|CoFix _|LetIn _) -> t
| _ -> whd_val (create_clos_infos betadeltaiotanolet env) (inject t)
(* Beta *)
let beta_appvect c v =
let rec stacklam env t stack =
match kind_of_term t, stack with
Lambda(_,_,c), arg::stacktl -> stacklam (arg::env) c stacktl
| _ -> applist (substl env t, stack) in
stacklam [] c (Array.to_list v)
let betazeta_appvect n c v =
let rec stacklam n env t stack =
if n = 0 then applist (substl env t, stack) else
match kind_of_term t, stack with
Lambda(_,_,c), arg::stacktl -> stacklam (n-1) (arg::env) c stacktl
| LetIn(_,b,_,c), _ -> stacklam (n-1) (b::env) c stack
| _ -> anomaly "Not enough lambda/let's" in
stacklam n [] c (Array.to_list v)
(********************************************************************)
(* Conversion *)
(********************************************************************)
(* Conversion utility functions *)
type 'a conversion_function = env -> 'a -> 'a -> Univ.constraints
type 'a trans_conversion_function = transparent_state -> env -> 'a -> 'a -> Univ.constraints
exception NotConvertible
exception NotConvertibleVect of int
let compare_stacks f fmind lft1 stk1 lft2 stk2 cuniv =
let rec cmp_rec pstk1 pstk2 cuniv =
match (pstk1,pstk2) with
| (z1::s1, z2::s2) ->
let cu1 = cmp_rec s1 s2 cuniv in
(match (z1,z2) with
| (Zlapp a1,Zlapp a2) -> array_fold_right2 f a1 a2 cu1
| (Zlfix(fx1,a1),Zlfix(fx2,a2)) ->
let cu2 = f fx1 fx2 cu1 in
cmp_rec a1 a2 cu2
| (Zlcase(ci1,l1,p1,br1),Zlcase(ci2,l2,p2,br2)) ->
if not (fmind ci1.ci_ind ci2.ci_ind) then
raise NotConvertible;
let cu2 = f (l1,p1) (l2,p2) cu1 in
array_fold_right2 (fun c1 c2 -> f (l1,c1) (l2,c2)) br1 br2 cu2
| _ -> assert false)
| _ -> cuniv in
if compare_stack_shape stk1 stk2 then
cmp_rec (pure_stack lft1 stk1) (pure_stack lft2 stk2) cuniv
else raise NotConvertible
(* Convertibility of sorts *)
(* The sort cumulativity is
Prop <= Set <= Type 1 <= ... <= Type i <= ...
and this holds whatever Set is predicative or impredicative
*)
type conv_pb =
| CONV
| CUMUL
let sort_cmp pb s0 s1 cuniv =
match (s0,s1) with
| (Prop c1, Prop c2) when pb = CUMUL ->
if c1 = Null or c2 = Pos then cuniv (* Prop <= Set *)
else raise NotConvertible
| (Prop c1, Prop c2) ->
if c1 = c2 then cuniv else raise NotConvertible
| (Prop c1, Type u) when pb = CUMUL -> assert (is_univ_variable u); cuniv
| (Type u1, Type u2) ->
assert (is_univ_variable u2);
(match pb with
| CONV -> enforce_eq u1 u2 cuniv
| CUMUL -> enforce_geq u2 u1 cuniv)
| (_, _) -> raise NotConvertible
let conv_sort env s0 s1 = sort_cmp CONV s0 s1 empty_constraint
let conv_sort_leq env s0 s1 = sort_cmp CUMUL s0 s1 empty_constraint
let rec no_arg_available = function
| [] -> true
| Zupdate _ :: stk -> no_arg_available stk
| Zshift _ :: stk -> no_arg_available stk
| Zapp v :: stk -> Array.length v = 0 && no_arg_available stk
| Zcase _ :: _ -> true
| Zfix _ :: _ -> true
let rec no_nth_arg_available n = function
| [] -> true
| Zupdate _ :: stk -> no_nth_arg_available n stk
| Zshift _ :: stk -> no_nth_arg_available n stk
| Zapp v :: stk ->
let k = Array.length v in
if n >= k then no_nth_arg_available (n-k) stk
else false
| Zcase _ :: _ -> true
| Zfix _ :: _ -> true
let rec no_case_available = function
| [] -> true
| Zupdate _ :: stk -> no_case_available stk
| Zshift _ :: stk -> no_case_available stk
| Zapp _ :: stk -> no_case_available stk
| Zcase _ :: _ -> false
| Zfix _ :: _ -> true
let in_whnf (t,stk) =
match fterm_of t with
| (FLetIn _ | FCases _ | FApp _ | FCLOS _ | FLIFT _ | FCast _) -> false
| FLambda _ -> no_arg_available stk
| FConstruct _ -> no_case_available stk
| FCoFix _ -> no_case_available stk
| FFix(((ri,n),(_,_,_)),_) -> no_nth_arg_available ri.(n) stk
| (FFlex _ | FProd _ | FEvar _ | FInd _ | FAtom _ | FRel _) -> true
| FLOCKED -> assert false
(* Conversion between [lft1]term1 and [lft2]term2 *)
let rec ccnv cv_pb l2r infos lft1 lft2 term1 term2 cuniv =
eqappr cv_pb l2r infos (lft1, (term1,[])) (lft2, (term2,[])) cuniv
(* Conversion between [lft1](hd1 v1) and [lft2](hd2 v2) *)
and eqappr cv_pb l2r infos (lft1,st1) (lft2,st2) cuniv =
Util.check_for_interrupt ();
(* First head reduce both terms *)
let rec whd_both (t1,stk1) (t2,stk2) =
let st1' = whd_stack (snd infos) t1 stk1 in
let st2' = whd_stack (snd infos) t2 stk2 in
(* Now, whd_stack on term2 might have modified st1 (due to sharing),
and st1 might not be in whnf anymore. If so, we iterate ccnv. *)
if in_whnf st1' then (st1',st2') else whd_both st1' st2' in
let ((hd1,v1),(hd2,v2)) = whd_both st1 st2 in
let appr1 = (lft1,(hd1,v1)) and appr2 = (lft2,(hd2,v2)) in
(* compute the lifts that apply to the head of the term (hd1 and hd2) *)
let el1 = el_stack lft1 v1 in
let el2 = el_stack lft2 v2 in
match (fterm_of hd1, fterm_of hd2) with
(* case of leaves *)
| (FAtom a1, FAtom a2) ->
(match kind_of_term a1, kind_of_term a2 with
| (Sort s1, Sort s2) ->
if not (is_empty_stack v1 && is_empty_stack v2) then
anomaly "conversion was given ill-typed terms (Sort)";
sort_cmp cv_pb s1 s2 cuniv
| (Meta n, Meta m) ->
if n=m
then convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
else raise NotConvertible
| _ -> raise NotConvertible)
| (FEvar ((ev1,args1),env1), FEvar ((ev2,args2),env2)) ->
if ev1=ev2 then
let u1 = convert_stacks l2r infos lft1 lft2 v1 v2 cuniv in
convert_vect l2r infos el1 el2
(Array.map (mk_clos env1) args1)
(Array.map (mk_clos env2) args2) u1
else raise NotConvertible
(* 2 index known to be bound to no constant *)
| (FRel n, FRel m) ->
if reloc_rel n el1 = reloc_rel m el2
then convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
else raise NotConvertible
(* 2 constants, 2 local defined vars or 2 defined rels *)
| (FFlex fl1, FFlex fl2) ->
(try (* try first intensional equality *)
if eq_table_key fl1 fl2
then convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
else raise NotConvertible
with NotConvertible ->
(* else the oracle tells which constant is to be expanded *)
let (app1,app2) =
if Conv_oracle.oracle_order l2r fl1 fl2 then
match unfold_reference infos fl1 with
| Some def1 -> ((lft1, whd_stack (snd infos) def1 v1), appr2)
| None ->
(match unfold_reference infos fl2 with
| Some def2 -> (appr1, (lft2, whd_stack (snd infos) def2 v2))
| None -> raise NotConvertible)
else
match unfold_reference infos fl2 with
| Some def2 -> (appr1, (lft2, whd_stack (snd infos) def2 v2))
| None ->
(match unfold_reference infos fl1 with
| Some def1 -> ((lft1, whd_stack (snd infos) def1 v1), appr2)
| None -> raise NotConvertible) in
eqappr cv_pb l2r infos app1 app2 cuniv)
(* other constructors *)
| (FLambda _, FLambda _) ->
(* Inconsistency: we tolerate that v1, v2 contain shift and update but
we throw them away *)
if not (is_empty_stack v1 && is_empty_stack v2) then
anomaly "conversion was given ill-typed terms (FLambda)";
let (_,ty1,bd1) = destFLambda mk_clos hd1 in
let (_,ty2,bd2) = destFLambda mk_clos hd2 in
let u1 = ccnv CONV l2r infos el1 el2 ty1 ty2 cuniv in
ccnv CONV l2r infos (el_lift el1) (el_lift el2) bd1 bd2 u1
| (FProd (_,c1,c2), FProd (_,c'1,c'2)) ->
if not (is_empty_stack v1 && is_empty_stack v2) then
anomaly "conversion was given ill-typed terms (FProd)";
(* Luo's system *)
let u1 = ccnv CONV l2r infos el1 el2 c1 c'1 cuniv in
ccnv cv_pb l2r infos (el_lift el1) (el_lift el2) c2 c'2 u1
(* Eta-expansion on the fly *)
| (FLambda _, _) ->
if v1 <> [] then
anomaly "conversion was given unreduced term (FLambda)";
let (_,_ty1,bd1) = destFLambda mk_clos hd1 in
eqappr CONV l2r infos
(el_lift lft1, (bd1, [])) (el_lift lft2, (hd2, eta_expand_stack v2)) cuniv
| (_, FLambda _) ->
if v2 <> [] then
anomaly "conversion was given unreduced term (FLambda)";
let (_,_ty2,bd2) = destFLambda mk_clos hd2 in
eqappr CONV l2r infos
(el_lift lft1, (hd1, eta_expand_stack v1)) (el_lift lft2, (bd2, [])) cuniv
(* only one constant, defined var or defined rel *)
| (FFlex fl1, _) ->
(match unfold_reference infos fl1 with
| Some def1 ->
eqappr cv_pb l2r infos (lft1, whd_stack (snd infos) def1 v1) appr2 cuniv
| None -> raise NotConvertible)
| (_, FFlex fl2) ->
(match unfold_reference infos fl2 with
| Some def2 ->
eqappr cv_pb l2r infos appr1 (lft2, whd_stack (snd infos) def2 v2) cuniv
| None -> raise NotConvertible)
(* Inductive types: MutInd MutConstruct Fix Cofix *)
| (FInd ind1, FInd ind2) ->
if eq_ind ind1 ind2
then
convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
else raise NotConvertible
| (FConstruct (ind1,j1), FConstruct (ind2,j2)) ->
if j1 = j2 && eq_ind ind1 ind2
then
convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
else raise NotConvertible
| (FFix ((op1,(_,tys1,cl1)),e1), FFix((op2,(_,tys2,cl2)),e2)) ->
if op1 = op2
then
let n = Array.length cl1 in
let fty1 = Array.map (mk_clos e1) tys1 in
let fty2 = Array.map (mk_clos e2) tys2 in
let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in
let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in
let u1 = convert_vect l2r infos el1 el2 fty1 fty2 cuniv in
let u2 =
convert_vect l2r infos
(el_liftn n el1) (el_liftn n el2) fcl1 fcl2 u1 in
convert_stacks l2r infos lft1 lft2 v1 v2 u2
else raise NotConvertible
| (FCoFix ((op1,(_,tys1,cl1)),e1), FCoFix((op2,(_,tys2,cl2)),e2)) ->
if op1 = op2
then
let n = Array.length cl1 in
let fty1 = Array.map (mk_clos e1) tys1 in
let fty2 = Array.map (mk_clos e2) tys2 in
let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in
let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in
let u1 = convert_vect l2r infos el1 el2 fty1 fty2 cuniv in
let u2 =
convert_vect l2r infos
(el_liftn n el1) (el_liftn n el2) fcl1 fcl2 u1 in
convert_stacks l2r infos lft1 lft2 v1 v2 u2
else raise NotConvertible
(* Should not happen because both (hd1,v1) and (hd2,v2) are in whnf *)
| ( (FLetIn _, _) | (FCases _,_) | (FApp _,_) | (FCLOS _,_) | (FLIFT _,_)
| (_, FLetIn _) | (_,FCases _) | (_,FApp _) | (_,FCLOS _) | (_,FLIFT _)
| (FLOCKED,_) | (_,FLOCKED) ) -> assert false
(* In all other cases, terms are not convertible *)
| _ -> raise NotConvertible
and convert_stacks l2r infos lft1 lft2 stk1 stk2 cuniv =
compare_stacks
(fun (l1,t1) (l2,t2) c -> ccnv CONV l2r infos l1 l2 t1 t2 c)
(eq_ind)
lft1 stk1 lft2 stk2 cuniv
and convert_vect l2r infos lft1 lft2 v1 v2 cuniv =
let lv1 = Array.length v1 in
let lv2 = Array.length v2 in
if lv1 = lv2
then
let rec fold n univ =
if n >= lv1 then univ
else
let u1 = ccnv CONV l2r infos lft1 lft2 v1.(n) v2.(n) univ in
fold (n+1) u1 in
fold 0 cuniv
else raise NotConvertible
let clos_fconv trans cv_pb l2r evars env t1 t2 =
let infos = trans, create_clos_infos ~evars betaiotazeta env in
ccnv cv_pb l2r infos el_id el_id (inject t1) (inject t2) empty_constraint
let trans_fconv reds cv_pb l2r evars env t1 t2 =
if eq_constr t1 t2 then empty_constraint
else clos_fconv reds cv_pb l2r evars env t1 t2
let trans_conv_cmp ?(l2r=false) conv reds = trans_fconv reds conv l2r (fun _->None)
let trans_conv ?(l2r=false) ?(evars=fun _->None) reds = trans_fconv reds CONV l2r evars
let trans_conv_leq ?(l2r=false) ?(evars=fun _->None) reds = trans_fconv reds CUMUL l2r evars
let fconv = trans_fconv (Idpred.full, Cpred.full)
let conv_cmp ?(l2r=false) cv_pb = fconv cv_pb l2r (fun _->None)
let conv ?(l2r=false) ?(evars=fun _->None) = fconv CONV l2r evars
let conv_leq ?(l2r=false) ?(evars=fun _->None) = fconv CUMUL l2r evars
let conv_leq_vecti ?(l2r=false) ?(evars=fun _->None) env v1 v2 =
array_fold_left2_i
(fun i c t1 t2 ->
let c' =
try conv_leq ~l2r ~evars env t1 t2
with NotConvertible -> raise (NotConvertibleVect i) in
union_constraints c c')
empty_constraint
v1
v2
(* option for conversion *)
let vm_conv = ref (fun cv_pb -> fconv cv_pb false (fun _->None))
let set_vm_conv f = vm_conv := f
let vm_conv cv_pb env t1 t2 =
try
!vm_conv cv_pb env t1 t2
with Not_found | Invalid_argument _ ->
(* If compilation fails, fall-back to closure conversion *)
fconv cv_pb false (fun _->None) env t1 t2
let default_conv = ref (fun cv_pb ?(l2r=false) -> fconv cv_pb l2r (fun _->None))
let set_default_conv f = default_conv := f
let default_conv cv_pb ?(l2r=false) env t1 t2 =
try
!default_conv ~l2r cv_pb env t1 t2
with Not_found | Invalid_argument _ ->
(* If compilation fails, fall-back to closure conversion *)
fconv cv_pb false (fun _->None) env t1 t2
let default_conv_leq = default_conv CUMUL
(*
let convleqkey = Profile.declare_profile "Kernel_reduction.conv_leq";;
let conv_leq env t1 t2 =
Profile.profile4 convleqkey conv_leq env t1 t2;;
let convkey = Profile.declare_profile "Kernel_reduction.conv";;
let conv env t1 t2 =
Profile.profile4 convleqkey conv env t1 t2;;
*)
(********************************************************************)
(* Special-Purpose Reduction *)
(********************************************************************)
(* pseudo-reduction rule:
* [hnf_prod_app env s (Prod(_,B)) N --> B[N]
* with an HNF on the first argument to produce a product.
* if this does not work, then we use the string S as part of our
* error message. *)
let hnf_prod_app env t n =
match kind_of_term (whd_betadeltaiota env t) with
| Prod (_,_,b) -> subst1 n b
| _ -> anomaly "hnf_prod_app: Need a product"
let hnf_prod_applist env t nl =
List.fold_left (hnf_prod_app env) t nl
(* Dealing with arities *)
let dest_prod env =
let rec decrec env m c =
let t = whd_betadeltaiota env c in
match kind_of_term t with
| Prod (n,a,c0) ->
let d = (n,None,a) in
decrec (push_rel d env) (add_rel_decl d m) c0
| _ -> m,t
in
decrec env empty_rel_context
(* The same but preserving lets *)
let dest_prod_assum env =
let rec prodec_rec env l ty =
let rty = whd_betadeltaiota_nolet env ty in
match kind_of_term rty with
| Prod (x,t,c) ->
let d = (x,None,t) in
prodec_rec (push_rel d env) (add_rel_decl d l) c
| LetIn (x,b,t,c) ->
let d = (x,Some b,t) in
prodec_rec (push_rel d env) (add_rel_decl d l) c
| Cast (c,_,_) -> prodec_rec env l c
| _ -> l,rty
in
prodec_rec env empty_rel_context
exception NotArity
let dest_arity env c =
let l, c = dest_prod_assum env c in
match kind_of_term c with
| Sort s -> l,s
| _ -> raise NotArity
let is_arity env c =
try
let _ = dest_arity env c in
true
with NotArity -> false
|