1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created by Jean-Christophe Filliâtre as part of the rebuilding of
Coq around a purely functional abstract type-checker, Dec 1999 *)
(* This file provides the entry points to the kernel type-checker. It
defines the abstract type of well-formed environments and
implements the rules that build well-formed environments.
An environment is made of constants and inductive types (E), of
section declarations (Delta), of local bound-by-index declarations
(Gamma) and of universe constraints (C). Below E[Delta,Gamma] |-_C
means that the tuple E, Delta, Gamma, C is a well-formed
environment. Main rules are:
empty_environment:
------
[,] |-
push_named_assum(a,T):
E[Delta,Gamma] |-_G
------------------------
E[Delta,Gamma,a:T] |-_G'
push_named_def(a,t,T):
E[Delta,Gamma] |-_G
---------------------------
E[Delta,Gamma,a:=t:T] |-_G'
add_constant(ConstantEntry(DefinitionEntry(c,t,T))):
E[Delta,Gamma] |-_G
---------------------------
E,c:=t:T[Delta,Gamma] |-_G'
add_constant(ConstantEntry(ParameterEntry(c,T))):
E[Delta,Gamma] |-_G
------------------------
E,c:T[Delta,Gamma] |-_G'
add_mind(Ind(Ind[Gamma_p](Gamma_I:=Gamma_C))):
E[Delta,Gamma] |-_G
------------------------
E,Ind[Gamma_p](Gamma_I:=Gamma_C)[Delta,Gamma] |-_G'
etc.
*)
open Util
open Names
open Univ
open Term
open Reduction
open Sign
open Declarations
open Inductive
open Environ
open Entries
open Typeops
open Type_errors
open Indtypes
open Term_typing
open Modops
open Subtyping
open Mod_typing
open Mod_subst
type modvariant =
| NONE
| SIG of (* funsig params *) (mod_bound_id * module_type_body) list
| STRUCT of (* functor params *) (mod_bound_id * module_type_body) list
| LIBRARY of dir_path
type module_info =
{modpath : module_path;
label : label;
variant : modvariant;
resolver : delta_resolver;
resolver_of_param : delta_resolver;}
let set_engagement_opt oeng env =
match oeng with
Some eng -> set_engagement eng env
| _ -> env
type library_info = dir_path * Digest.t
type safe_environment =
{ old : safe_environment;
env : env;
modinfo : module_info;
modlabels : Labset.t;
objlabels : Labset.t;
revstruct : structure_body;
univ : Univ.constraints;
engagement : engagement option;
imports : library_info list;
loads : (module_path * module_body) list;
local_retroknowledge : Retroknowledge.action list}
let exists_modlabel l senv = Labset.mem l senv.modlabels
let exists_objlabel l senv = Labset.mem l senv.objlabels
let check_modlabel l senv =
if exists_modlabel l senv then error_existing_label l
let check_objlabel l senv =
if exists_objlabel l senv then error_existing_label l
let check_objlabels ls senv =
Labset.iter (fun l -> check_objlabel l senv) ls
let labels_of_mib mib =
let add,get =
let labels = ref Labset.empty in
(fun id -> labels := Labset.add (label_of_id id) !labels),
(fun () -> !labels)
in
let visit_mip mip =
add mip.mind_typename;
Array.iter add mip.mind_consnames
in
Array.iter visit_mip mib.mind_packets;
get ()
(* a small hack to avoid variants and an unused case in all functions *)
let rec empty_environment =
{ old = empty_environment;
env = empty_env;
modinfo = {
modpath = initial_path;
label = mk_label "_";
variant = NONE;
resolver = empty_delta_resolver;
resolver_of_param = empty_delta_resolver};
modlabels = Labset.empty;
objlabels = Labset.empty;
revstruct = [];
univ = Univ.empty_constraint;
engagement = None;
imports = [];
loads = [];
local_retroknowledge = [] }
let env_of_safe_env senv = senv.env
let env_of_senv = env_of_safe_env
let add_constraints cst senv =
{ senv with
env = Environ.add_constraints cst senv.env;
univ = Univ.union_constraints cst senv.univ }
let constraints_of_sfb = function
| SFBconst cb -> cb.const_constraints
| SFBmind mib -> mib.mind_constraints
| SFBmodtype mtb -> mtb.typ_constraints
| SFBmodule mb -> mb.mod_constraints
(* A generic function for adding a new field in a same environment.
It also performs the corresponding [add_constraints]. *)
type generic_name =
| C of constant
| I of mutual_inductive
| MT of module_path
| M
let add_field ((l,sfb) as field) gn senv =
let mlabs,olabs = match sfb with
| SFBmind mib ->
let l = labels_of_mib mib in
check_objlabels l senv; (Labset.empty,l)
| SFBconst _ ->
check_objlabel l senv; (Labset.empty, Labset.singleton l)
| SFBmodule _ | SFBmodtype _ ->
check_modlabel l senv; (Labset.singleton l, Labset.empty)
in
let senv = add_constraints (constraints_of_sfb sfb) senv in
let env' = match sfb, gn with
| SFBconst cb, C con -> Environ.add_constant con cb senv.env
| SFBmind mib, I mind -> Environ.add_mind mind mib senv.env
| SFBmodtype mtb, MT mp -> Environ.add_modtype mp mtb senv.env
| SFBmodule mb, M -> Modops.add_module mb senv.env
| _ -> assert false
in
{ senv with
env = env';
modlabels = Labset.union mlabs senv.modlabels;
objlabels = Labset.union olabs senv.objlabels;
revstruct = field :: senv.revstruct }
(* Applying a certain function to the resolver of a safe environment *)
let update_resolver f senv =
let mi = senv.modinfo in
{ senv with modinfo = { mi with resolver = f mi.resolver }}
(* universal lifting, used for the "get" operations mostly *)
let retroknowledge f senv =
Environ.retroknowledge f (env_of_senv senv)
let register senv field value by_clause =
(* todo : value closed, by_clause safe, by_clause of the proper type*)
(* spiwack : updates the safe_env with the information that the register
action has to be performed (again) when the environement is imported *)
{senv with
env = Environ.register senv.env field value;
local_retroknowledge =
Retroknowledge.RKRegister (field,value)::senv.local_retroknowledge
}
(* spiwack : currently unused *)
let unregister senv field =
(*spiwack: todo: do things properly or delete *)
{senv with env = Environ.unregister senv.env field}
(* /spiwack *)
(* Insertion of section variables. They are now typed before being
added to the environment. *)
(* Same as push_named, but check that the variable is not already
there. Should *not* be done in Environ because tactics add temporary
hypothesis many many times, and the check performed here would
cost too much. *)
let safe_push_named (id,_,_ as d) env =
let _ =
try
let _ = lookup_named id env in
error ("Identifier "^string_of_id id^" already defined.")
with Not_found -> () in
Environ.push_named d env
let push_named_def (id,b,topt) senv =
let (c,typ,cst) = translate_local_def senv.env (b,topt) in
let senv' = add_constraints cst senv in
let env'' = safe_push_named (id,Some c,typ) senv'.env in
(cst, {senv' with env=env''})
let push_named_assum (id,t) senv =
let (t,cst) = translate_local_assum senv.env t in
let senv' = add_constraints cst senv in
let env'' = safe_push_named (id,None,t) senv'.env in
(cst, {senv' with env=env''})
(* Insertion of constants and parameters in environment. *)
type global_declaration =
| ConstantEntry of constant_entry
| GlobalRecipe of Cooking.recipe
let add_constant dir l decl senv =
let kn = make_con senv.modinfo.modpath dir l in
let cb = match decl with
| ConstantEntry ce -> translate_constant senv.env kn ce
| GlobalRecipe r ->
let cb = translate_recipe senv.env kn r in
if dir = empty_dirpath then hcons_const_body cb else cb
in
let senv' = add_field (l,SFBconst cb) (C kn) senv in
let senv'' = match cb.const_body with
| Undef (Some lev) ->
update_resolver (add_inline_delta_resolver (user_con kn) (lev,None)) senv'
| _ -> senv'
in
kn, senv''
(* Insertion of inductive types. *)
let add_mind dir l mie senv =
if mie.mind_entry_inds = [] then
anomaly "empty inductive types declaration";
(* this test is repeated by translate_mind *)
let id = (List.nth mie.mind_entry_inds 0).mind_entry_typename in
if l <> label_of_id id then
anomaly ("the label of inductive packet and its first inductive"^
" type do not match");
let kn = make_mind senv.modinfo.modpath dir l in
let mib = translate_mind senv.env kn mie in
let mib = if mib.mind_hyps <> [] then mib else hcons_mind mib in
let senv' = add_field (l,SFBmind mib) (I kn) senv in
kn, senv'
(* Insertion of module types *)
let add_modtype l mte inl senv =
let mp = MPdot(senv.modinfo.modpath, l) in
let mtb = translate_module_type senv.env mp inl mte in
let senv' = add_field (l,SFBmodtype mtb) (MT mp) senv in
mp, senv'
(* full_add_module adds module with universes and constraints *)
let full_add_module mb senv =
let senv = add_constraints mb.mod_constraints senv in
{ senv with env = Modops.add_module mb senv.env }
(* Insertion of modules *)
let add_module l me inl senv =
let mp = MPdot(senv.modinfo.modpath, l) in
let mb = translate_module senv.env mp inl me in
let senv' = add_field (l,SFBmodule mb) M senv in
let senv'' = match mb.mod_type with
| SEBstruct _ -> update_resolver (add_delta_resolver mb.mod_delta) senv'
| _ -> senv'
in
mp,mb.mod_delta,senv''
(* Interactive modules *)
let start_module l senv =
check_modlabel l senv;
let mp = MPdot(senv.modinfo.modpath, l) in
let modinfo = { modpath = mp;
label = l;
variant = STRUCT [];
resolver = empty_delta_resolver;
resolver_of_param = empty_delta_resolver}
in
mp, { old = senv;
env = senv.env;
modinfo = modinfo;
modlabels = Labset.empty;
objlabels = Labset.empty;
revstruct = [];
univ = Univ.empty_constraint;
engagement = None;
imports = senv.imports;
loads = [];
(* spiwack : not sure, but I hope it's correct *)
local_retroknowledge = [] }
let end_module l restype senv =
let oldsenv = senv.old in
let modinfo = senv.modinfo in
let mp = senv.modinfo.modpath in
let restype =
Option.map
(fun (res,inl) -> translate_module_type senv.env mp inl res) restype in
let params,is_functor =
match modinfo.variant with
| NONE | LIBRARY _ | SIG _ -> error_no_module_to_end ()
| STRUCT params -> params, (List.length params > 0)
in
if l <> modinfo.label then error_incompatible_labels l modinfo.label;
if not (empty_context senv.env) then error_non_empty_local_context None;
let functorize_struct tb =
List.fold_left
(fun mtb (arg_id,arg_b) ->
SEBfunctor(arg_id,arg_b,mtb))
tb
params
in
let auto_tb =
SEBstruct (List.rev senv.revstruct)
in
let mexpr,mod_typ,mod_typ_alg,resolver,cst =
match restype with
| None -> let mexpr = functorize_struct auto_tb in
mexpr,mexpr,None,modinfo.resolver,empty_constraint
| Some mtb ->
let auto_mtb = {
typ_mp = senv.modinfo.modpath;
typ_expr = auto_tb;
typ_expr_alg = None;
typ_constraints = empty_constraint;
typ_delta = empty_delta_resolver} in
let cst = check_subtypes senv.env auto_mtb
mtb in
let mod_typ = functorize_struct mtb.typ_expr in
let mexpr = functorize_struct auto_tb in
let typ_alg =
Option.map functorize_struct mtb.typ_expr_alg in
mexpr,mod_typ,typ_alg,mtb.typ_delta,cst
in
let cst = union_constraints cst senv.univ in
let mb =
{ mod_mp = mp;
mod_expr = Some mexpr;
mod_type = mod_typ;
mod_type_alg = mod_typ_alg;
mod_constraints = cst;
mod_delta = resolver;
mod_retroknowledge = senv.local_retroknowledge }
in
let newenv = oldsenv.env in
let newenv = set_engagement_opt senv.engagement newenv in
let senv'= {senv with env = newenv; univ = cst} in
let senv' =
List.fold_left
(fun env (_,mb) -> full_add_module mb env)
senv'
(List.rev senv'.loads)
in
let newenv = Environ.add_constraints cst senv'.env in
let newenv =
Modops.add_module mb newenv in
let modinfo = match mb.mod_type with
SEBstruct _ ->
{ oldsenv.modinfo with
resolver =
add_delta_resolver resolver oldsenv.modinfo.resolver}
| _ -> oldsenv.modinfo
in
mp,resolver,{ old = oldsenv.old;
env = newenv;
modinfo = modinfo;
modlabels = Labset.add l oldsenv.modlabels;
objlabels = oldsenv.objlabels;
revstruct = (l,SFBmodule mb)::oldsenv.revstruct;
univ = Univ.union_constraints senv'.univ oldsenv.univ;
(* engagement is propagated to the upper level *)
engagement = senv'.engagement;
imports = senv'.imports;
loads = senv'.loads@oldsenv.loads;
local_retroknowledge =
senv'.local_retroknowledge@oldsenv.local_retroknowledge }
(* Include for module and module type*)
let add_include me is_module inl senv =
let sign,cst,resolver =
if is_module then
let sign,_,resolver,cst =
translate_struct_include_module_entry senv.env
senv.modinfo.modpath inl me in
sign,cst,resolver
else
let mtb =
translate_module_type senv.env
senv.modinfo.modpath inl me in
mtb.typ_expr,mtb.typ_constraints,mtb.typ_delta
in
let senv = add_constraints cst senv in
let mp_sup = senv.modinfo.modpath in
(* Include Self support *)
let rec compute_sign sign mb resolver senv =
match sign with
| SEBfunctor(mbid,mtb,str) ->
let cst_sub = check_subtypes senv.env mb mtb in
let senv = add_constraints cst_sub senv in
let mpsup_delta =
inline_delta_resolver senv.env inl mp_sup mbid mtb mb.typ_delta
in
let subst = map_mbid mbid mp_sup mpsup_delta in
let resolver = subst_codom_delta_resolver subst resolver in
(compute_sign
(subst_struct_expr subst str) mb resolver senv)
| str -> resolver,str,senv
in
let resolver,sign,senv = compute_sign sign {typ_mp = mp_sup;
typ_expr = SEBstruct (List.rev senv.revstruct);
typ_expr_alg = None;
typ_constraints = empty_constraint;
typ_delta = senv.modinfo.resolver} resolver senv
in
let str = match sign with
| SEBstruct(str_l) -> str_l
| _ -> error ("You cannot Include a higher-order structure.")
in
let senv = update_resolver (add_delta_resolver resolver) senv
in
let add senv ((l,elem) as field) =
let new_name = match elem with
| SFBconst _ ->
let kn = make_kn mp_sup empty_dirpath l in
C (constant_of_delta_kn resolver kn)
| SFBmind _ ->
let kn = make_kn mp_sup empty_dirpath l in
I (mind_of_delta_kn resolver kn)
| SFBmodule _ -> M
| SFBmodtype _ -> MT (MPdot(senv.modinfo.modpath, l))
in
add_field field new_name senv
in
resolver,(List.fold_left add senv str)
(* Adding parameters to modules or module types *)
let add_module_parameter mbid mte inl senv =
if senv.revstruct <> [] or senv.loads <> [] then
anomaly "Cannot add a module parameter to a non empty module";
let mtb = translate_module_type senv.env (MPbound mbid) inl mte in
let senv =
full_add_module (module_body_of_type (MPbound mbid) mtb) senv
in
let new_variant = match senv.modinfo.variant with
| STRUCT params -> STRUCT ((mbid,mtb) :: params)
| SIG params -> SIG ((mbid,mtb) :: params)
| _ ->
anomaly "Module parameters can only be added to modules or signatures"
in
let resolver_of_param = match mtb.typ_expr with
SEBstruct _ -> mtb.typ_delta
| _ -> empty_delta_resolver
in
mtb.typ_delta, { old = senv.old;
env = senv.env;
modinfo = { senv.modinfo with
variant = new_variant;
resolver_of_param = add_delta_resolver
resolver_of_param senv.modinfo.resolver_of_param};
modlabels = senv.modlabels;
objlabels = senv.objlabels;
revstruct = [];
univ = senv.univ;
engagement = senv.engagement;
imports = senv.imports;
loads = [];
local_retroknowledge = senv.local_retroknowledge }
(* Interactive module types *)
let start_modtype l senv =
check_modlabel l senv;
let mp = MPdot(senv.modinfo.modpath, l) in
let modinfo = { modpath = mp;
label = l;
variant = SIG [];
resolver = empty_delta_resolver;
resolver_of_param = empty_delta_resolver}
in
mp, { old = senv;
env = senv.env;
modinfo = modinfo;
modlabels = Labset.empty;
objlabels = Labset.empty;
revstruct = [];
univ = Univ.empty_constraint;
engagement = None;
imports = senv.imports;
loads = [] ;
(* spiwack: not 100% sure, but I think it should be like that *)
local_retroknowledge = []}
let end_modtype l senv =
let oldsenv = senv.old in
let modinfo = senv.modinfo in
let params =
match modinfo.variant with
| LIBRARY _ | NONE | STRUCT _ -> error_no_modtype_to_end ()
| SIG params -> params
in
if l <> modinfo.label then error_incompatible_labels l modinfo.label;
if not (empty_context senv.env) then error_non_empty_local_context None;
let auto_tb =
SEBstruct (List.rev senv.revstruct)
in
let mtb_expr =
List.fold_left
(fun mtb (arg_id,arg_b) ->
SEBfunctor(arg_id,arg_b,mtb))
auto_tb
params
in
let mp = MPdot (oldsenv.modinfo.modpath, l) in
let newenv = oldsenv.env in
let newenv = Environ.add_constraints senv.univ newenv in
let newenv = set_engagement_opt senv.engagement newenv in
let senv = {senv with env=newenv} in
let senv =
List.fold_left
(fun env (mp,mb) -> full_add_module mb env)
senv
(List.rev senv.loads)
in
let mtb = {typ_mp = mp;
typ_expr = mtb_expr;
typ_expr_alg = None;
typ_constraints = senv.univ;
typ_delta = senv.modinfo.resolver} in
let newenv =
Environ.add_modtype mp mtb senv.env
in
mp, { old = oldsenv.old;
env = newenv;
modinfo = oldsenv.modinfo;
modlabels = Labset.add l oldsenv.modlabels;
objlabels = oldsenv.objlabels;
revstruct = (l,SFBmodtype mtb)::oldsenv.revstruct;
univ = Univ.union_constraints senv.univ oldsenv.univ;
engagement = senv.engagement;
imports = senv.imports;
loads = senv.loads@oldsenv.loads;
(* spiwack : if there is a bug with retroknowledge in nested modules
it's likely to come from here *)
local_retroknowledge =
senv.local_retroknowledge@oldsenv.local_retroknowledge}
let current_modpath senv = senv.modinfo.modpath
let delta_of_senv senv = senv.modinfo.resolver,senv.modinfo.resolver_of_param
(* Check that the engagement expected by a library matches the initial one *)
let check_engagement env c =
match Environ.engagement env, c with
| Some ImpredicativeSet, Some ImpredicativeSet -> ()
| _, None -> ()
| _, Some ImpredicativeSet ->
error "Needs option -impredicative-set."
let set_engagement c senv =
{senv with
env = Environ.set_engagement c senv.env;
engagement = Some c }
(* Libraries = Compiled modules *)
type compiled_library =
dir_path * module_body * library_info list * engagement option
(* We check that only initial state Require's were performed before
[start_library] was called *)
let is_empty senv =
senv.revstruct = [] &&
senv.modinfo.modpath = initial_path &&
senv.modinfo.variant = NONE
let start_library dir senv =
if not (is_empty senv) then
anomaly "Safe_typing.start_library: environment should be empty";
let dir_path,l =
match (repr_dirpath dir) with
[] -> anomaly "Empty dirpath in Safe_typing.start_library"
| hd::tl ->
make_dirpath tl, label_of_id hd
in
let mp = MPfile dir in
let modinfo = {modpath = mp;
label = l;
variant = LIBRARY dir;
resolver = empty_delta_resolver;
resolver_of_param = empty_delta_resolver}
in
mp, { old = senv;
env = senv.env;
modinfo = modinfo;
modlabels = Labset.empty;
objlabels = Labset.empty;
revstruct = [];
univ = Univ.empty_constraint;
engagement = None;
imports = senv.imports;
loads = [];
local_retroknowledge = [] }
let pack_module senv =
{mod_mp=senv.modinfo.modpath;
mod_expr=None;
mod_type= SEBstruct (List.rev senv.revstruct);
mod_type_alg=None;
mod_constraints=empty_constraint;
mod_delta=senv.modinfo.resolver;
mod_retroknowledge=[];
}
let export senv dir =
let modinfo = senv.modinfo in
begin
match modinfo.variant with
| LIBRARY dp ->
if dir <> dp then
anomaly "We are not exporting the right library!"
| _ ->
anomaly "We are not exporting the library"
end;
(*if senv.modinfo.params <> [] || senv.modinfo.restype <> None then
(* error_export_simple *) (); *)
let str = SEBstruct (List.rev senv.revstruct) in
let mp = senv.modinfo.modpath in
let mb =
{ mod_mp = mp;
mod_expr = Some str;
mod_type = str;
mod_type_alg = None;
mod_constraints = senv.univ;
mod_delta = senv.modinfo.resolver;
mod_retroknowledge = senv.local_retroknowledge}
in
mp, (dir,mb,senv.imports,engagement senv.env)
let check_imports senv needed =
let imports = senv.imports in
let check (id,stamp) =
try
let actual_stamp = List.assoc id imports in
if stamp <> actual_stamp then
error
("Inconsistent assumptions over module "^(string_of_dirpath id)^".")
with Not_found ->
error ("Reference to unknown module "^(string_of_dirpath id)^".")
in
List.iter check needed
(* we have an inefficiency: Since loaded files are added to the
environment every time a module is closed, their components are
calculated many times. Thic could be avoided in several ways:
1 - for each file create a dummy environment containing only this
file's components, merge this environment with the global
environment, and store for the future (instead of just its type)
2 - create "persistent modules" environment table in Environ add put
loaded by side-effect once and for all (like it is done in OCaml).
Would this be correct with respect to undo's and stuff ?
*)
let import (dp,mb,depends,engmt) digest senv =
check_imports senv depends;
check_engagement senv.env engmt;
let mp = MPfile dp in
let env = senv.env in
let env = Environ.add_constraints mb.mod_constraints env in
let env = Modops.add_module mb env in
mp, { senv with
env = env;
modinfo =
{senv.modinfo with
resolver =
add_delta_resolver mb.mod_delta senv.modinfo.resolver};
imports = (dp,digest)::senv.imports;
loads = (mp,mb)::senv.loads }
(* Store the body of modules' opaque constants inside a table.
This module is used during the serialization and deserialization
of vo files.
By adding an indirection to the opaque constant definitions, we
gain the ability not to load them. As these constant definitions
are usually big terms, we save a deserialization time as well as
some memory space. *)
module LightenLibrary : sig
type table
type lightened_compiled_library
val save : compiled_library -> lightened_compiled_library * table
val load : load_proof:Flags.load_proofs -> table Lazy.t
-> lightened_compiled_library -> compiled_library
end = struct
(* The table is implemented as an array of [constr_substituted].
Keys are hence integers. To avoid changing the [compiled_library]
type, we brutally encode integers into [lazy_constr]. This isn't
pretty, but shouldn't be dangerous since the produced structure
[lightened_compiled_library] is abstract and only meant for writing
to .vo via Marshal (which doesn't care about types).
*)
type table = constr_substituted array
let key_as_lazy_constr (i:int) = (Obj.magic i : lazy_constr)
let key_of_lazy_constr (c:lazy_constr) = (Obj.magic c : int)
(* To avoid any future misuse of the lightened library that could
interpret encoded keys as real [constr_substituted], we hide
these kind of values behind an abstract datatype. *)
type lightened_compiled_library = compiled_library
(* Map a [compiled_library] to another one by just updating
the opaque term [t] to [on_opaque_const_body t]. *)
let traverse_library on_opaque_const_body =
let rec traverse_module mb =
match mb.mod_expr with
None ->
{ mb with
mod_expr = None;
mod_type = traverse_modexpr mb.mod_type;
}
| Some impl when impl == mb.mod_type->
let mtb = traverse_modexpr mb.mod_type in
{ mb with
mod_expr = Some mtb;
mod_type = mtb;
}
| Some impl ->
{ mb with
mod_expr = Option.map traverse_modexpr mb.mod_expr;
mod_type = traverse_modexpr mb.mod_type;
}
and traverse_struct struc =
let traverse_body (l,body) = (l,match body with
| SFBconst cb when is_opaque cb ->
SFBconst {cb with const_body = on_opaque_const_body cb.const_body}
| (SFBconst _ | SFBmind _ ) as x ->
x
| SFBmodule m ->
SFBmodule (traverse_module m)
| SFBmodtype m ->
SFBmodtype ({m with typ_expr = traverse_modexpr m.typ_expr}))
in
List.map traverse_body struc
and traverse_modexpr = function
| SEBfunctor (mbid,mty,mexpr) ->
SEBfunctor (mbid,
({mty with
typ_expr = traverse_modexpr mty.typ_expr}),
traverse_modexpr mexpr)
| SEBident mp as x -> x
| SEBstruct (struc) ->
SEBstruct (traverse_struct struc)
| SEBapply (mexpr,marg,u) ->
SEBapply (traverse_modexpr mexpr,traverse_modexpr marg,u)
| SEBwith (seb,wdcl) ->
SEBwith (traverse_modexpr seb,wdcl)
in
fun (dp,mb,depends,s) -> (dp,traverse_module mb,depends,s)
(* To disburden a library from opaque definitions, we simply
traverse it and add an indirection between the module body
and its reference to a [const_body]. *)
let save library =
let ((insert : constant_def -> constant_def),
(get_table : unit -> table)) =
(* We use an integer as a key inside the table. *)
let counter = ref (-1) in
(* During the traversal, the table is implemented by a list
to get constant time insertion. *)
let opaque_definitions = ref [] in
((* Insert inside the table. *)
(fun def ->
let opaque_definition = match def with
| OpaqueDef lc -> force_lazy_constr lc
| _ -> assert false
in
incr counter;
opaque_definitions := opaque_definition :: !opaque_definitions;
OpaqueDef (key_as_lazy_constr !counter)),
(* Get the final table representation. *)
(fun () -> Array.of_list (List.rev !opaque_definitions)))
in
let lightened_library = traverse_library insert library in
(lightened_library, get_table ())
(* Loading is also a traversing that decodes the embedded keys that
are inside the [lightened_library]. If the [load_proof] flag is
set, we lookup inside the table to graft the
[constr_substituted]. Otherwise, we set the [const_body] field
to [None].
*)
let load ~load_proof (table : table Lazy.t) lightened_library =
let decode_key = function
| Undef _ | Def _ -> assert false
| OpaqueDef k ->
let k = key_of_lazy_constr k in
let access key =
try (Lazy.force table).(key)
with e when Errors.noncritical e ->
error "Error while retrieving an opaque body"
in
match load_proof with
| Flags.Force ->
let lc = Lazy.lazy_from_val (access k) in
OpaqueDef (make_lazy_constr lc)
| Flags.Lazy ->
let lc = lazy (access k) in
OpaqueDef (make_lazy_constr lc)
| Flags.Dont ->
Undef None
in
traverse_library decode_key lightened_library
end
type judgment = unsafe_judgment
let j_val j = j.uj_val
let j_type j = j.uj_type
let safe_infer senv = infer (env_of_senv senv)
let typing senv = Typeops.typing (env_of_senv senv)
|