1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Names
open Univ
open Term
open Declarations
open Sign
open Environ
open Entries
open Reduction
open Inductive
open Type_errors
let conv_leq l2r = default_conv CUMUL ~l2r
let conv_leq_vecti env v1 v2 =
array_fold_left2_i
(fun i c t1 t2 ->
let c' =
try default_conv CUMUL env t1 t2
with NotConvertible -> raise (NotConvertibleVect i) in
union_constraints c c')
empty_constraint
v1
v2
(* This should be a type (a priori without intension to be an assumption) *)
let type_judgment env j =
match kind_of_term(whd_betadeltaiota env j.uj_type) with
| Sort s -> {utj_val = j.uj_val; utj_type = s }
| _ -> error_not_type env j
(* This should be a type intended to be assumed. The error message is *)
(* not as useful as for [type_judgment]. *)
let assumption_of_judgment env j =
try (type_judgment env j).utj_val
with TypeError _ ->
error_assumption env j
(************************************************)
(* Incremental typing rules: builds a typing judgement given the *)
(* judgements for the subterms. *)
(*s Type of sorts *)
(* Prop and Set *)
let judge_of_prop =
{ uj_val = mkProp;
uj_type = mkSort type1_sort }
let judge_of_set =
{ uj_val = mkSet;
uj_type = mkSort type1_sort }
let judge_of_prop_contents = function
| Null -> judge_of_prop
| Pos -> judge_of_set
(* Type of Type(i). *)
let judge_of_type u =
let uu = super u in
{ uj_val = mkType u;
uj_type = mkType uu }
(*s Type of a de Bruijn index. *)
let judge_of_relative env n =
try
let (_,_,typ) = lookup_rel n env in
{ uj_val = mkRel n;
uj_type = lift n typ }
with Not_found ->
error_unbound_rel env n
(* Type of variables *)
let judge_of_variable env id =
try
let ty = named_type id env in
make_judge (mkVar id) ty
with Not_found ->
error_unbound_var env id
(* Management of context of variables. *)
(* Checks if a context of variable can be instantiated by the
variables of the current env *)
(* TODO: check order? *)
let rec check_hyps_inclusion env sign =
Sign.fold_named_context
(fun (id,_,ty1) () ->
let ty2 = named_type id env in
if not (eq_constr ty2 ty1) then
error "types do not match")
sign
~init:()
let check_args env c hyps =
try check_hyps_inclusion env hyps
with UserError _ | Not_found ->
error_reference_variables env c
(* Checks if the given context of variables [hyps] is included in the
current context of [env]. *)
(*
let check_hyps id env hyps =
let hyps' = named_context env in
if not (hyps_inclusion env hyps hyps') then
error_reference_variables env id
*)
(* Instantiation of terms on real arguments. *)
(* Make a type polymorphic if an arity *)
let extract_level env p =
let _,c = dest_prod_assum env p in
match kind_of_term c with Sort (Type u) -> Some u | _ -> None
let extract_context_levels env =
List.fold_left
(fun l (_,b,p) -> if b=None then extract_level env p::l else l) []
let make_polymorphic_if_constant_for_ind env {uj_val = c; uj_type = t} =
let params, ccl = dest_prod_assum env t in
match kind_of_term ccl with
| Sort (Type u) when isInd (fst (decompose_app (whd_betadeltaiota env c))) ->
let param_ccls = extract_context_levels env params in
let s = { poly_param_levels = param_ccls; poly_level = u} in
PolymorphicArity (params,s)
| _ ->
NonPolymorphicType t
(* Type of constants *)
let type_of_constant_knowing_parameters env t paramtyps =
match t with
| NonPolymorphicType t -> t
| PolymorphicArity (sign,ar) ->
let ctx = List.rev sign in
let ctx,s = instantiate_universes env ctx ar paramtyps in
mkArity (List.rev ctx,s)
let type_of_constant_type env t =
type_of_constant_knowing_parameters env t [||]
let type_of_constant env cst =
type_of_constant_type env (constant_type env cst)
let judge_of_constant_knowing_parameters env cst jl =
let c = mkConst cst in
let cb = lookup_constant cst env in
let _ = check_args env c cb.const_hyps in
let paramstyp = Array.map (fun j -> j.uj_type) jl in
let t = type_of_constant_knowing_parameters env cb.const_type paramstyp in
make_judge c t
let judge_of_constant env cst =
judge_of_constant_knowing_parameters env cst [||]
(* Type of a lambda-abstraction. *)
(* [judge_of_abstraction env name var j] implements the rule
env, name:typ |- j.uj_val:j.uj_type env, |- (name:typ)j.uj_type : s
-----------------------------------------------------------------------
env |- [name:typ]j.uj_val : (name:typ)j.uj_type
Since all products are defined in the Calculus of Inductive Constructions
and no upper constraint exists on the sort $s$, we don't need to compute $s$
*)
let judge_of_abstraction env name var j =
{ uj_val = mkLambda (name, var.utj_val, j.uj_val);
uj_type = mkProd (name, var.utj_val, j.uj_type) }
(* Type of let-in. *)
let judge_of_letin env name defj typj j =
{ uj_val = mkLetIn (name, defj.uj_val, typj.utj_val, j.uj_val) ;
uj_type = subst1 defj.uj_val j.uj_type }
(* Type of an application. *)
let judge_of_apply env funj argjv =
let rec apply_rec n typ cst = function
| [] ->
{ uj_val = mkApp (j_val funj, Array.map j_val argjv);
uj_type = typ },
cst
| hj::restjl ->
(match kind_of_term (whd_betadeltaiota env typ) with
| Prod (_,c1,c2) ->
(try
let c = conv_leq false env hj.uj_type c1 in
let cst' = union_constraints cst c in
apply_rec (n+1) (subst1 hj.uj_val c2) cst' restjl
with NotConvertible ->
error_cant_apply_bad_type env
(n,c1, hj.uj_type)
funj argjv)
| _ ->
error_cant_apply_not_functional env funj argjv)
in
apply_rec 1
funj.uj_type
empty_constraint
(Array.to_list argjv)
(* Type of product *)
let sort_of_product env domsort rangsort =
match (domsort, rangsort) with
(* Product rule (s,Prop,Prop) *)
| (_, Prop Null) -> rangsort
(* Product rule (Prop/Set,Set,Set) *)
| (Prop _, Prop Pos) -> rangsort
(* Product rule (Type,Set,?) *)
| (Type u1, Prop Pos) ->
if engagement env = Some ImpredicativeSet then
(* Rule is (Type,Set,Set) in the Set-impredicative calculus *)
rangsort
else
(* Rule is (Type_i,Set,Type_i) in the Set-predicative calculus *)
Type (sup u1 type0_univ)
(* Product rule (Prop,Type_i,Type_i) *)
| (Prop Pos, Type u2) -> Type (sup type0_univ u2)
(* Product rule (Prop,Type_i,Type_i) *)
| (Prop Null, Type _) -> rangsort
(* Product rule (Type_i,Type_i,Type_i) *)
| (Type u1, Type u2) -> Type (sup u1 u2)
(* [judge_of_product env name (typ1,s1) (typ2,s2)] implements the rule
env |- typ1:s1 env, name:typ1 |- typ2 : s2
-------------------------------------------------------------------------
s' >= (s1,s2), env |- (name:typ)j.uj_val : s'
where j.uj_type is convertible to a sort s2
*)
let judge_of_product env name t1 t2 =
let s = sort_of_product env t1.utj_type t2.utj_type in
{ uj_val = mkProd (name, t1.utj_val, t2.utj_val);
uj_type = mkSort s }
(* Type of a type cast *)
(* [judge_of_cast env (c,typ1) (typ2,s)] implements the rule
env |- c:typ1 env |- typ2:s env |- typ1 <= typ2
---------------------------------------------------------------------
env |- c:typ2
*)
let judge_of_cast env cj k tj =
let expected_type = tj.utj_val in
try
let c, cst =
match k with
| VMcast ->
mkCast (cj.uj_val, k, expected_type),
vm_conv CUMUL env cj.uj_type expected_type
| DEFAULTcast ->
mkCast (cj.uj_val, k, expected_type),
conv_leq false env cj.uj_type expected_type
| REVERTcast ->
cj.uj_val,
conv_leq true env cj.uj_type expected_type in
{ uj_val = c;
uj_type = expected_type },
cst
with NotConvertible ->
error_actual_type env cj expected_type
(* Inductive types. *)
(* The type is parametric over the uniform parameters whose conclusion
is in Type; to enforce the internal constraints between the
parameters and the instances of Type occurring in the type of the
constructors, we use the level variables _statically_ assigned to
the conclusions of the parameters as mediators: e.g. if a parameter
has conclusion Type(alpha), static constraints of the form alpha<=v
exist between alpha and the Type's occurring in the constructor
types; when the parameters is finally instantiated by a term of
conclusion Type(u), then the constraints u<=alpha is computed in
the App case of execute; from this constraints, the expected
dynamic constraints of the form u<=v are enforced *)
let judge_of_inductive_knowing_parameters env ind jl =
let c = mkInd ind in
let (mib,mip) = lookup_mind_specif env ind in
check_args env c mib.mind_hyps;
let paramstyp = Array.map (fun j -> j.uj_type) jl in
let t = Inductive.type_of_inductive_knowing_parameters env mip paramstyp in
make_judge c t
let judge_of_inductive env ind =
judge_of_inductive_knowing_parameters env ind [||]
(* Constructors. *)
let judge_of_constructor env c =
let constr = mkConstruct c in
let _ =
let ((kn,_),_) = c in
let mib = lookup_mind kn env in
check_args env constr mib.mind_hyps in
let specif = lookup_mind_specif env (inductive_of_constructor c) in
make_judge constr (type_of_constructor c specif)
(* Case. *)
let check_branch_types env ind cj (lfj,explft) =
try conv_leq_vecti env (Array.map j_type lfj) explft
with
NotConvertibleVect i ->
error_ill_formed_branch env cj.uj_val (ind,i+1) lfj.(i).uj_type explft.(i)
| Invalid_argument _ ->
error_number_branches env cj (Array.length explft)
let judge_of_case env ci pj cj lfj =
let indspec =
try find_rectype env cj.uj_type
with Not_found -> error_case_not_inductive env cj in
let _ = check_case_info env (fst indspec) ci in
let (bty,rslty,univ) =
type_case_branches env indspec pj cj.uj_val in
let univ' = check_branch_types env (fst indspec) cj (lfj,bty) in
({ uj_val = mkCase (ci, (*nf_betaiota*) pj.uj_val, cj.uj_val,
Array.map j_val lfj);
uj_type = rslty },
union_constraints univ univ')
(* Fixpoints. *)
(* Checks the type of a general (co)fixpoint, i.e. without checking *)
(* the specific guard condition. *)
let type_fixpoint env lna lar vdefj =
let lt = Array.length vdefj in
assert (Array.length lar = lt);
try
conv_leq_vecti env (Array.map j_type vdefj) (Array.map (fun ty -> lift lt ty) lar)
with NotConvertibleVect i ->
error_ill_typed_rec_body env i lna vdefj lar
(************************************************************************)
(************************************************************************)
(* This combinator adds the universe constraints both in the local
graph and in the universes of the environment. This is to ensure
that the infered local graph is satisfiable. *)
let univ_combinator (cst,univ) (j,c') =
(j,(union_constraints cst c', merge_constraints c' univ))
(* The typing machine. *)
(* ATTENTION : faudra faire le typage du contexte des Const,
Ind et Constructsi un jour cela devient des constructions
arbitraires et non plus des variables *)
let rec execute env cstr cu =
match kind_of_term cstr with
(* Atomic terms *)
| Sort (Prop c) ->
(judge_of_prop_contents c, cu)
| Sort (Type u) ->
(judge_of_type u, cu)
| Rel n ->
(judge_of_relative env n, cu)
| Var id ->
(judge_of_variable env id, cu)
| Const c ->
(judge_of_constant env c, cu)
(* Lambda calculus operators *)
| App (f,args) ->
let (jl,cu1) = execute_array env args cu in
let (j,cu2) =
match kind_of_term f with
| Ind ind ->
(* Sort-polymorphism of inductive types *)
judge_of_inductive_knowing_parameters env ind jl, cu1
| Const cst ->
(* Sort-polymorphism of constant *)
judge_of_constant_knowing_parameters env cst jl, cu1
| _ ->
(* No sort-polymorphism *)
execute env f cu1
in
univ_combinator cu2 (judge_of_apply env j jl)
| Lambda (name,c1,c2) ->
let (varj,cu1) = execute_type env c1 cu in
let env1 = push_rel (name,None,varj.utj_val) env in
let (j',cu2) = execute env1 c2 cu1 in
(judge_of_abstraction env name varj j', cu2)
| Prod (name,c1,c2) ->
let (varj,cu1) = execute_type env c1 cu in
let env1 = push_rel (name,None,varj.utj_val) env in
let (varj',cu2) = execute_type env1 c2 cu1 in
(judge_of_product env name varj varj', cu2)
| LetIn (name,c1,c2,c3) ->
let (j1,cu1) = execute env c1 cu in
let (j2,cu2) = execute_type env c2 cu1 in
let (_,cu3) =
univ_combinator cu2 (judge_of_cast env j1 DEFAULTcast j2) in
let env1 = push_rel (name,Some j1.uj_val,j2.utj_val) env in
let (j',cu4) = execute env1 c3 cu3 in
(judge_of_letin env name j1 j2 j', cu4)
| Cast (c,k, t) ->
let (cj,cu1) = execute env c cu in
let (tj,cu2) = execute_type env t cu1 in
univ_combinator cu2
(judge_of_cast env cj k tj)
(* Inductive types *)
| Ind ind ->
(judge_of_inductive env ind, cu)
| Construct c ->
(judge_of_constructor env c, cu)
| Case (ci,p,c,lf) ->
let (cj,cu1) = execute env c cu in
let (pj,cu2) = execute env p cu1 in
let (lfj,cu3) = execute_array env lf cu2 in
univ_combinator cu3
(judge_of_case env ci pj cj lfj)
| Fix ((vn,i as vni),recdef) ->
let ((fix_ty,recdef'),cu1) = execute_recdef env recdef i cu in
let fix = (vni,recdef') in
check_fix env fix;
(make_judge (mkFix fix) fix_ty, cu1)
| CoFix (i,recdef) ->
let ((fix_ty,recdef'),cu1) = execute_recdef env recdef i cu in
let cofix = (i,recdef') in
check_cofix env cofix;
(make_judge (mkCoFix cofix) fix_ty, cu1)
(* Partial proofs: unsupported by the kernel *)
| Meta _ ->
anomaly "the kernel does not support metavariables"
| Evar _ ->
anomaly "the kernel does not support existential variables"
and execute_type env constr cu =
let (j,cu1) = execute env constr cu in
(type_judgment env j, cu1)
and execute_recdef env (names,lar,vdef) i cu =
let (larj,cu1) = execute_array env lar cu in
let lara = Array.map (assumption_of_judgment env) larj in
let env1 = push_rec_types (names,lara,vdef) env in
let (vdefj,cu2) = execute_array env1 vdef cu1 in
let vdefv = Array.map j_val vdefj in
let cst = type_fixpoint env1 names lara vdefj in
univ_combinator cu2
((lara.(i),(names,lara,vdefv)),cst)
and execute_array env = array_fold_map' (execute env)
(* Derived functions *)
let infer env constr =
let (j,(cst,_)) =
execute env constr (empty_constraint, universes env) in
assert (eq_constr j.uj_val constr);
(j, cst)
let infer_type env constr =
let (j,(cst,_)) =
execute_type env constr (empty_constraint, universes env) in
(j, cst)
let infer_v env cv =
let (jv,(cst,_)) =
execute_array env cv (empty_constraint, universes env) in
(jv, cst)
(* Typing of several terms. *)
let infer_local_decl env id = function
| LocalDef c ->
let (j,cst) = infer env c in
(Name id, Some j.uj_val, j.uj_type), cst
| LocalAssum c ->
let (j,cst) = infer env c in
(Name id, None, assumption_of_judgment env j), cst
let infer_local_decls env decls =
let rec inferec env = function
| (id, d) :: l ->
let env, l, cst1 = inferec env l in
let d, cst2 = infer_local_decl env id d in
push_rel d env, add_rel_decl d l, union_constraints cst1 cst2
| [] -> env, empty_rel_context, empty_constraint in
inferec env decls
(* Exported typing functions *)
let typing env c =
let (j,cst) = infer env c in
let _ = add_constraints cst env in
j
|