1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
open Pp
open Compat
(* Errors *)
exception Anomaly of string * std_ppcmds (* System errors *)
let anomaly string = raise (Anomaly(string, str string))
let anomalylabstrm string pps = raise (Anomaly(string,pps))
exception UserError of string * std_ppcmds (* User errors *)
let error string = raise (UserError("_", str string))
let errorlabstrm l pps = raise (UserError(l,pps))
exception AlreadyDeclared of std_ppcmds (* for already declared Schemes *)
let alreadydeclared pps = raise (AlreadyDeclared(pps))
let todo s = prerr_string ("TODO: "^s^"\n")
exception Timeout
type loc = Loc.t
let dummy_loc = Loc.ghost
let join_loc = Loc.merge
let make_loc = make_loc
let unloc = unloc
(* raising located exceptions *)
type 'a located = loc * 'a
let anomaly_loc (loc,s,strm) = Loc.raise loc (Anomaly (s,strm))
let user_err_loc (loc,s,strm) = Loc.raise loc (UserError (s,strm))
let invalid_arg_loc (loc,s) = Loc.raise loc (Invalid_argument s)
let located_fold_left f x (_,a) = f x a
let located_iter2 f (_,a) (_,b) = f a b
let down_located f (_,a) = f a
(* Like Exc_located, but specifies the outermost file read, the filename
associated to the location of the error, and the error itself. *)
exception Error_in_file of string * (bool * string * loc) * exn
(* Mapping under pairs *)
let on_fst f (a,b) = (f a,b)
let on_snd f (a,b) = (a,f b)
let map_pair f (a,b) = (f a,f b)
(* Mapping under pairs *)
let on_pi1 f (a,b,c) = (f a,b,c)
let on_pi2 f (a,b,c) = (a,f b,c)
let on_pi3 f (a,b,c) = (a,b,f c)
(* Projections from triplets *)
let pi1 (a,_,_) = a
let pi2 (_,a,_) = a
let pi3 (_,_,a) = a
(* Projection operator *)
let down_fst f x = f (fst x)
let down_snd f x = f (snd x)
(* Characters *)
let is_letter c = (c >= 'a' && c <= 'z') or (c >= 'A' && c <= 'Z')
let is_digit c = (c >= '0' && c <= '9')
let is_ident_tail c =
is_letter c or is_digit c or c = '\'' or c = '_'
let is_blank = function
| ' ' | '\r' | '\t' | '\n' -> true
| _ -> false
(* Strings *)
let explode s =
let rec explode_rec n =
if n >= String.length s then
[]
else
String.make 1 (String.get s n) :: explode_rec (succ n)
in
explode_rec 0
let implode sl = String.concat "" sl
let strip s =
let n = String.length s in
let rec lstrip_rec i =
if i < n && is_blank s.[i] then
lstrip_rec (i+1)
else i
in
let rec rstrip_rec i =
if i >= 0 && is_blank s.[i] then
rstrip_rec (i-1)
else i
in
let a = lstrip_rec 0 and b = rstrip_rec (n-1) in
String.sub s a (b-a+1)
let drop_simple_quotes s =
let n = String.length s in
if n > 2 & s.[0] = '\'' & s.[n-1] = '\'' then String.sub s 1 (n-2) else s
(* substring searching... *)
(* gdzie = where, co = what *)
(* gdzie=gdzie(string) gl=gdzie(length) gi=gdzie(index) *)
let rec is_sub gdzie gl gi co cl ci =
(ci>=cl) ||
((String.unsafe_get gdzie gi = String.unsafe_get co ci) &&
(is_sub gdzie gl (gi+1) co cl (ci+1)))
let rec raw_str_index i gdzie l c co cl =
(* First adapt to ocaml 3.11 new semantics of index_from *)
if (i+cl > l) then raise Not_found;
(* Then proceed as in ocaml < 3.11 *)
let i' = String.index_from gdzie i c in
if (i'+cl <= l) && (is_sub gdzie l i' co cl 0) then i' else
raw_str_index (i'+1) gdzie l c co cl
let string_index_from gdzie i co =
if co="" then i else
raw_str_index i gdzie (String.length gdzie)
(String.unsafe_get co 0) co (String.length co)
let string_string_contains ~where ~what =
try
let _ = string_index_from where 0 what in true
with
Not_found -> false
let plural n s = if n<>1 then s^"s" else s
let ordinal n =
let s = match n mod 10 with 1 -> "st" | 2 -> "nd" | 3 -> "rd" | _ -> "th" in
string_of_int n ^ s
(* string parsing *)
let split_string_at c s =
let len = String.length s in
let rec split n =
try
let pos = String.index_from s n c in
let dir = String.sub s n (pos-n) in
dir :: split (succ pos)
with
| Not_found -> [String.sub s n (len-n)]
in
if len = 0 then [] else split 0
let parse_loadpath s =
let l = split_string_at '/' s in
if List.mem "" l then
invalid_arg "parse_loadpath: find an empty dir in loadpath";
l
module Stringset = Set.Make(struct type t = string let compare = compare end)
module Stringmap = Map.Make(struct type t = string let compare = compare end)
type utf8_status = UnicodeLetter | UnicodeIdentPart | UnicodeSymbol
exception UnsupportedUtf8
(* The following table stores classes of Unicode characters that
are used by the lexer. There are 3 different classes so 2 bits are
allocated for each character. We only use 16 bits over the 31 bits
to simplify the masking process. (This choice seems to be a good
trade-off between speed and space after some benchmarks.) *)
(* A 256ko table, initially filled with zeros. *)
let table = Array.create (1 lsl 17) 0
(* Associate a 2-bit pattern to each status at position [i].
Only the 3 lowest bits of [i] are taken into account to
define the position of the pattern in the word.
Notice that pattern "00" means "undefined". *)
let mask i = function
| UnicodeLetter -> 1 lsl ((i land 7) lsl 1) (* 01 *)
| UnicodeIdentPart -> 2 lsl ((i land 7) lsl 1) (* 10 *)
| UnicodeSymbol -> 3 lsl ((i land 7) lsl 1) (* 11 *)
(* Helper to reset 2 bits in a word. *)
let reset_mask i =
lnot (3 lsl ((i land 7) lsl 1))
(* Initialize the lookup table from a list of segments, assigning
a status to every character of each segment. The order of these
assignments is relevant: it is possible to assign status [s] to
a segment [(c1, c2)] and later assign [s'] to [c] even if [c] is
between [c1] and [c2]. *)
let mk_lookup_table_from_unicode_tables_for status tables =
List.iter
(List.iter
(fun (c1, c2) ->
for i = c1 to c2 do
table.(i lsr 3) <-
(table.(i lsr 3) land (reset_mask i)) lor (mask i status)
done))
tables
(* Look up into the table and interpret the found pattern. *)
let lookup x =
let v = (table.(x lsr 3) lsr ((x land 7) lsl 1)) land 3 in
if v = 1 then UnicodeLetter
else if v = 2 then UnicodeIdentPart
else if v = 3 then UnicodeSymbol
else raise UnsupportedUtf8
(* [classify_unicode] discriminates between 3 different kinds of
symbols based on the standard unicode classification (extracted from
Camomile). *)
let classify_unicode =
let single c = [ (c, c) ] in
(* General tables. *)
mk_lookup_table_from_unicode_tables_for UnicodeSymbol
[
Unicodetable.sm; (* Symbol, maths. *)
Unicodetable.sc; (* Symbol, currency. *)
Unicodetable.so; (* Symbol, modifier. *)
Unicodetable.pd; (* Punctation, dash. *)
Unicodetable.pc; (* Punctation, connector. *)
Unicodetable.pe; (* Punctation, open. *)
Unicodetable.ps; (* Punctation, close. *)
Unicodetable.pi; (* Punctation, initial quote. *)
Unicodetable.pf; (* Punctation, final quote. *)
Unicodetable.po; (* Punctation, other. *)
];
mk_lookup_table_from_unicode_tables_for UnicodeLetter
[
Unicodetable.lu; (* Letter, uppercase. *)
Unicodetable.ll; (* Letter, lowercase. *)
Unicodetable.lt; (* Letter, titlecase. *)
Unicodetable.lo; (* Letter, others. *)
];
mk_lookup_table_from_unicode_tables_for UnicodeIdentPart
[
Unicodetable.nd; (* Number, decimal digits. *)
Unicodetable.nl; (* Number, letter. *)
Unicodetable.no; (* Number, other. *)
];
(* Exceptions (from a previous version of this function). *)
mk_lookup_table_from_unicode_tables_for UnicodeSymbol
[
single 0x000B2; (* Squared. *)
single 0x0002E; (* Dot. *)
];
mk_lookup_table_from_unicode_tables_for UnicodeLetter
[
single 0x005F; (* Underscore. *)
single 0x00A0; (* Non breaking space. *)
];
mk_lookup_table_from_unicode_tables_for UnicodeIdentPart
[
single 0x0027; (* Special space. *)
];
(* Lookup *)
lookup
exception End_of_input
let utf8_of_unicode n =
if n < 128 then
String.make 1 (Char.chr n)
else if n < 2048 then
let s = String.make 2 (Char.chr (128 + n mod 64)) in
begin
s.[0] <- Char.chr (192 + n / 64);
s
end
else if n < 65536 then
let s = String.make 3 (Char.chr (128 + n mod 64)) in
begin
s.[1] <- Char.chr (128 + (n / 64) mod 64);
s.[0] <- Char.chr (224 + n / 4096);
s
end
else
let s = String.make 4 (Char.chr (128 + n mod 64)) in
begin
s.[2] <- Char.chr (128 + (n / 64) mod 64);
s.[1] <- Char.chr (128 + (n / 4096) mod 64);
s.[0] <- Char.chr (240 + n / 262144);
s
end
let next_utf8 s i =
let err () = invalid_arg "utf8" in
let l = String.length s - i in
if l = 0 then raise End_of_input
else let a = Char.code s.[i] in if a <= 0x7F then
1, a
else if a land 0x40 = 0 or l = 1 then err ()
else let b = Char.code s.[i+1] in if b land 0xC0 <> 0x80 then err ()
else if a land 0x20 = 0 then
2, (a land 0x1F) lsl 6 + (b land 0x3F)
else if l = 2 then err ()
else let c = Char.code s.[i+2] in if c land 0xC0 <> 0x80 then err ()
else if a land 0x10 = 0 then
3, (a land 0x0F) lsl 12 + (b land 0x3F) lsl 6 + (c land 0x3F)
else if l = 3 then err ()
else let d = Char.code s.[i+3] in if d land 0xC0 <> 0x80 then err ()
else if a land 0x08 = 0 then
4, (a land 0x07) lsl 18 + (b land 0x3F) lsl 12 +
(c land 0x3F) lsl 6 + (d land 0x3F)
else err ()
(* Check the well-formedness of an identifier *)
let check_initial handle j n s =
match classify_unicode n with
| UnicodeLetter -> ()
| _ ->
let c = String.sub s 0 j in
handle ("Invalid character '"^c^"' at beginning of identifier \""^s^"\".")
let check_trailing handle i j n s =
match classify_unicode n with
| UnicodeLetter | UnicodeIdentPart -> ()
| _ ->
let c = String.sub s i j in
handle ("Invalid character '"^c^"' in identifier \""^s^"\".")
let check_ident_gen handle s =
let i = ref 0 in
if s <> ".." then try
let j, n = next_utf8 s 0 in
check_initial handle j n s;
i := !i + j;
try
while true do
let j, n = next_utf8 s !i in
check_trailing handle !i j n s;
i := !i + j
done
with End_of_input -> ()
with
| End_of_input -> error "The empty string is not an identifier."
| UnsupportedUtf8 -> error (s^": unsupported character in utf8 sequence.")
| Invalid_argument _ -> error (s^": invalid utf8 sequence.")
let check_ident_soft = check_ident_gen warning
let check_ident = check_ident_gen error
let lowercase_unicode =
let tree = Segmenttree.make Unicodetable.to_lower in
fun unicode ->
try
match Segmenttree.lookup unicode tree with
| `Abs c -> c
| `Delta d -> unicode + d
with Not_found -> unicode
let lowercase_first_char_utf8 s =
assert (s <> "");
let j, n = next_utf8 s 0 in
utf8_of_unicode (lowercase_unicode n)
(** For extraction, we need to encode unicode character into ascii ones *)
let ascii_of_ident s =
let check_ascii s =
let ok = ref true in
String.iter (fun c -> if Char.code c >= 128 then ok := false) s;
!ok
in
if check_ascii s then s else
let i = ref 0 and out = ref "" in
begin try while true do
let j, n = next_utf8 s !i in
out :=
if n >= 128
then Printf.sprintf "%s__U%04x_" !out n
else Printf.sprintf "%s%c" !out s.[!i];
i := !i + j
done with End_of_input -> () end;
!out
(* Lists *)
let rec list_compare cmp l1 l2 =
match l1,l2 with
[], [] -> 0
| _::_, [] -> 1
| [], _::_ -> -1
| x1::l1, x2::l2 ->
(match cmp x1 x2 with
| 0 -> list_compare cmp l1 l2
| c -> c)
let rec list_equal cmp l1 l2 =
match l1, l2 with
| [], [] -> true
| x1 :: l1, x2 :: l2 ->
cmp x1 x2 && list_equal cmp l1 l2
| _ -> false
let list_intersect l1 l2 =
List.filter (fun x -> List.mem x l2) l1
let list_union l1 l2 =
let rec urec = function
| [] -> l2
| a::l -> if List.mem a l2 then urec l else a::urec l
in
urec l1
let list_unionq l1 l2 =
let rec urec = function
| [] -> l2
| a::l -> if List.memq a l2 then urec l else a::urec l
in
urec l1
let list_subtract l1 l2 =
if l2 = [] then l1 else List.filter (fun x -> not (List.mem x l2)) l1
let list_subtractq l1 l2 =
if l2 = [] then l1 else List.filter (fun x -> not (List.memq x l2)) l1
let list_tabulate f len =
let rec tabrec n =
if n = len then [] else (f n)::(tabrec (n+1))
in
tabrec 0
let list_addn n v =
let rec aux n l =
if n = 0 then l
else aux (pred n) (v::l)
in
if n < 0 then invalid_arg "list_addn"
else aux n
let list_make n v = list_addn n v []
let list_assign l n e =
let rec assrec stk = function
| ((h::t), 0) -> List.rev_append stk (e::t)
| ((h::t), n) -> assrec (h::stk) (t, n-1)
| ([], _) -> failwith "list_assign"
in
assrec [] (l,n)
let rec list_smartmap f l = match l with
[] -> l
| h::tl ->
let h' = f h and tl' = list_smartmap f tl in
if h'==h && tl'==tl then l
else h'::tl'
let list_map_left f = (* ensures the order in case of side-effects *)
let rec map_rec = function
| [] -> []
| x::l -> let v = f x in v :: map_rec l
in
map_rec
let list_map_i f =
let rec map_i_rec i = function
| [] -> []
| x::l -> let v = f i x in v :: map_i_rec (i+1) l
in
map_i_rec
let list_map2_i f i l1 l2 =
let rec map_i i = function
| ([], []) -> []
| ((h1::t1), (h2::t2)) -> let v = f i h1 h2 in v :: map_i (succ i) (t1,t2)
| (_, _) -> invalid_arg "map2_i"
in
map_i i (l1,l2)
let list_map3 f l1 l2 l3 =
let rec map = function
| ([], [], []) -> []
| ((h1::t1), (h2::t2), (h3::t3)) -> let v = f h1 h2 h3 in v::map (t1,t2,t3)
| (_, _, _) -> invalid_arg "map3"
in
map (l1,l2,l3)
let list_map4 f l1 l2 l3 l4 =
let rec map = function
| ([], [], [], []) -> []
| ((h1::t1), (h2::t2), (h3::t3), (h4::t4)) -> let v = f h1 h2 h3 h4 in v::map (t1,t2,t3,t4)
| (_, _, _, _) -> invalid_arg "map4"
in
map (l1,l2,l3,l4)
let list_map_to_array f l =
Array.of_list (List.map f l)
let rec list_smartfilter f l = match l with
[] -> l
| h::tl ->
let tl' = list_smartfilter f tl in
if f h then
if tl' == tl then l
else h :: tl'
else tl'
let list_index_f f x =
let rec index_x n = function
| y::l -> if f x y then n else index_x (succ n) l
| [] -> raise Not_found
in
index_x 1
let list_index0_f f x l = list_index_f f x l - 1
let list_index x =
let rec index_x n = function
| y::l -> if x = y then n else index_x (succ n) l
| [] -> raise Not_found
in
index_x 1
let list_index0 x l = list_index x l - 1
let list_unique_index x =
let rec index_x n = function
| y::l ->
if x = y then
if List.mem x l then raise Not_found
else n
else index_x (succ n) l
| [] -> raise Not_found
in index_x 1
let list_fold_right_i f i l =
let rec it_list_f i l a = match l with
| [] -> a
| b::l -> f (i-1) b (it_list_f (i-1) l a)
in
it_list_f (List.length l + i) l
let list_fold_left_i f =
let rec it_list_f i a = function
| [] -> a
| b::l -> it_list_f (i+1) (f i a b) l
in
it_list_f
let rec list_fold_left3 f accu l1 l2 l3 =
match (l1, l2, l3) with
([], [], []) -> accu
| (a1::l1, a2::l2, a3::l3) -> list_fold_left3 f (f accu a1 a2 a3) l1 l2 l3
| (_, _, _) -> invalid_arg "list_fold_left3"
(* [list_fold_right_and_left f [a1;...;an] hd =
f (f (... (f (f hd
an
[an-1;...;a1])
an-1
[an-2;...;a1])
...)
a2
[a1])
a1
[]] *)
let rec list_fold_right_and_left f l hd =
let rec aux tl = function
| [] -> hd
| a::l -> let hd = aux (a::tl) l in f hd a tl
in aux [] l
let list_iter3 f l1 l2 l3 =
let rec iter = function
| ([], [], []) -> ()
| ((h1::t1), (h2::t2), (h3::t3)) -> f h1 h2 h3; iter (t1,t2,t3)
| (_, _, _) -> invalid_arg "map3"
in
iter (l1,l2,l3)
let list_iter_i f l = list_fold_left_i (fun i _ x -> f i x) 0 () l
let list_for_all_i p =
let rec for_all_p i = function
| [] -> true
| a::l -> p i a && for_all_p (i+1) l
in
for_all_p
let list_except x l = List.filter (fun y -> not (x = y)) l
let list_remove = list_except (* Alias *)
let rec list_remove_first a = function
| b::l when a = b -> l
| b::l -> b::list_remove_first a l
| [] -> raise Not_found
let rec list_remove_assoc_in_triple x = function
| [] -> []
| (y,_,_ as z)::l -> if x = y then l else z::list_remove_assoc_in_triple x l
let rec list_assoc_snd_in_triple x = function
[] -> raise Not_found
| (a,b,_)::l -> if compare a x = 0 then b else list_assoc_snd_in_triple x l
let list_add_set x l = if List.mem x l then l else x::l
let list_eq_set l1 l2 =
let rec aux l1 = function
| [] -> l1 = []
| a::l2 -> aux (list_remove_first a l1) l2 in
try aux l1 l2 with Not_found -> false
let list_for_all2eq f l1 l2 =
try List.for_all2 f l1 l2 with Invalid_argument _ -> false
let list_filter_i p =
let rec filter_i_rec i = function
| [] -> []
| x::l -> let l' = filter_i_rec (succ i) l in if p i x then x::l' else l'
in
filter_i_rec 0
let rec list_sep_last = function
| [] -> failwith "sep_last"
| hd::[] -> (hd,[])
| hd::tl -> let (l,tl) = list_sep_last tl in (l,hd::tl)
let list_try_find_i f =
let rec try_find_f n = function
| [] -> failwith "try_find_i"
| h::t -> try f n h with Failure _ -> try_find_f (n+1) t
in
try_find_f
let list_try_find f =
let rec try_find_f = function
| [] -> failwith "try_find"
| h::t -> try f h with Failure _ -> try_find_f t
in
try_find_f
let list_uniquize l =
let visited = Hashtbl.create 23 in
let rec aux acc = function
| h::t -> if Hashtbl.mem visited h then aux acc t else
begin
Hashtbl.add visited h h;
aux (h::acc) t
end
| [] -> List.rev acc
in aux [] l
let rec list_distinct l =
let visited = Hashtbl.create 23 in
let rec loop = function
| h::t ->
if Hashtbl.mem visited h then false
else
begin
Hashtbl.add visited h h;
loop t
end
| [] -> true
in loop l
let rec list_merge_uniq cmp l1 l2 =
match l1, l2 with
| [], l2 -> l2
| l1, [] -> l1
| h1 :: t1, h2 :: t2 ->
let c = cmp h1 h2 in
if c = 0
then h1 :: list_merge_uniq cmp t1 t2
else if c <= 0
then h1 :: list_merge_uniq cmp t1 l2
else h2 :: list_merge_uniq cmp l1 t2
let rec list_duplicates = function
| [] -> []
| x::l ->
let l' = list_duplicates l in
if List.mem x l then list_add_set x l' else l'
let rec list_filter2 f = function
| [], [] as p -> p
| d::dp, l::lp ->
let (dp',lp' as p) = list_filter2 f (dp,lp) in
if f d l then d::dp', l::lp' else p
| _ -> invalid_arg "list_filter2"
let rec list_map_filter f = function
| [] -> []
| x::l ->
let l' = list_map_filter f l in
match f x with None -> l' | Some y -> y::l'
let list_map_filter_i f =
let rec aux i = function
| [] -> []
| x::l ->
let l' = aux (succ i) l in
match f i x with None -> l' | Some y -> y::l'
in aux 0
let list_filter_along f filter l =
snd (list_filter2 (fun b c -> f b) (filter,l))
let list_filter_with filter l =
list_filter_along (fun x -> x) filter l
let list_subset l1 l2 =
let t2 = Hashtbl.create 151 in
List.iter (fun x -> Hashtbl.add t2 x ()) l2;
let rec look = function
| [] -> true
| x::ll -> try Hashtbl.find t2 x; look ll with Not_found -> false
in
look l1
(* [list_chop i l] splits [l] into two lists [(l1,l2)] such that
[l1++l2=l] and [l1] has length [i].
It raises [Failure] when [i] is negative or greater than the length of [l] *)
let list_chop n l =
let rec chop_aux i acc = function
| tl when i=0 -> (List.rev acc, tl)
| h::t -> chop_aux (pred i) (h::acc) t
| [] -> failwith "list_chop"
in
chop_aux n [] l
(* [list_split_when p l] splits [l] into two lists [(l1,a::l2)] such that
[l1++(a::l2)=l], [p a=true] and [p b = false] for every element [b] of [l1].
If there is no such [a], then it returns [(l,[])] instead *)
let list_split_when p =
let rec split_when_loop x y =
match y with
| [] -> (List.rev x,[])
| (a::l) -> if (p a) then (List.rev x,y) else split_when_loop (a::x) l
in
split_when_loop []
(* [list_split_by p l] splits [l] into two lists [(l1,l2)] such that elements of
[l1] satisfy [p] and elements of [l2] do not; order is preserved *)
let list_split_by p =
let rec split_by_loop = function
| [] -> ([],[])
| a::l ->
let (l1,l2) = split_by_loop l in if p a then (a::l1,l2) else (l1,a::l2)
in
split_by_loop
let rec list_split3 = function
| [] -> ([], [], [])
| (x,y,z)::l ->
let (rx, ry, rz) = list_split3 l in (x::rx, y::ry, z::rz)
let rec list_insert_in_class f a = function
| [] -> [[a]]
| (b::_ as l)::classes when f a b -> (a::l)::classes
| l::classes -> l :: list_insert_in_class f a classes
let list_partition_by f l =
List.fold_right (list_insert_in_class f) l []
let list_firstn n l =
let rec aux acc = function
| (0, l) -> List.rev acc
| (n, (h::t)) -> aux (h::acc) (pred n, t)
| _ -> failwith "firstn"
in
aux [] (n,l)
let rec list_last = function
| [] -> failwith "list_last"
| [x] -> x
| _ :: l -> list_last l
let list_lastn n l =
let len = List.length l in
let rec aux m l =
if m = n then l else aux (m - 1) (List.tl l)
in
if len < n then failwith "lastn" else aux len l
let rec list_skipn n l = match n,l with
| 0, _ -> l
| _, [] -> failwith "list_skipn"
| n, _::l -> list_skipn (pred n) l
let rec list_skipn_at_least n l =
try list_skipn n l with Failure _ -> []
let list_prefix_of prefl l =
let rec prefrec = function
| (h1::t1, h2::t2) -> h1 = h2 && prefrec (t1,t2)
| ([], _) -> true
| (_, _) -> false
in
prefrec (prefl,l)
let list_drop_prefix p l =
(* if l=p++t then return t else l *)
let rec list_drop_prefix_rec = function
| ([], tl) -> Some tl
| (_, []) -> None
| (h1::tp, h2::tl) ->
if h1 = h2 then list_drop_prefix_rec (tp,tl) else None
in
match list_drop_prefix_rec (p,l) with
| Some r -> r
| None -> l
let list_map_append f l = List.flatten (List.map f l)
let list_join_map = list_map_append (* Alias *)
let list_map_append2 f l1 l2 = List.flatten (List.map2 f l1 l2)
let list_share_tails l1 l2 =
let rec shr_rev acc = function
| ((x1::l1), (x2::l2)) when x1 == x2 -> shr_rev (x1::acc) (l1,l2)
| (l1,l2) -> (List.rev l1, List.rev l2, acc)
in
shr_rev [] (List.rev l1, List.rev l2)
let rec list_fold_map f e = function
| [] -> (e,[])
| h::t ->
let e',h' = f e h in
let e'',t' = list_fold_map f e' t in
e'',h'::t'
(* (* tail-recursive version of the above function *)
let list_fold_map f e l =
let g (e,b') h =
let (e',h') = f e h in
(e',h'::b')
in
let (e',lrev) = List.fold_left g (e,[]) l in
(e',List.rev lrev)
*)
(* The same, based on fold_right, with the effect accumulated on the right *)
let list_fold_map' f l e =
List.fold_right (fun x (l,e) -> let (y,e) = f x e in (y::l,e)) l ([],e)
let list_map_assoc f = List.map (fun (x,a) -> (x,f a))
let rec list_assoc_f f a = function
| (x, e) :: xs -> if f a x then e else list_assoc_f f a xs
| [] -> raise Not_found
(* Specification:
- =p= is set equality (double inclusion)
- f such that \forall l acc, (f l acc) =p= append (f l []) acc
- let g = fun x -> f x [] in
- union_map f l acc =p= append (flatten (map g l)) acc
*)
let list_union_map f l acc =
List.fold_left
(fun x y -> f y x)
acc
l
(* A generic cartesian product: for any operator (**),
[list_cartesian (**) [x1;x2] [y1;y2] = [x1**y1; x1**y2; x2**y1; x2**y1]],
and so on if there are more elements in the lists. *)
let rec list_cartesian op l1 l2 =
list_map_append (fun x -> List.map (op x) l2) l1
(* [list_cartesians] is an n-ary cartesian product: it iterates
[list_cartesian] over a list of lists. *)
let list_cartesians op init ll =
List.fold_right (list_cartesian op) ll [init]
(* list_combinations [[a;b];[c;d]] gives [[a;c];[a;d];[b;c];[b;d]] *)
let list_combinations l = list_cartesians (fun x l -> x::l) [] l
let rec list_combine3 x y z =
match x, y, z with
| [], [], [] -> []
| (x :: xs), (y :: ys), (z :: zs) ->
(x, y, z) :: list_combine3 xs ys zs
| _, _, _ -> raise (Invalid_argument "list_combine3")
(* Keep only those products that do not return None *)
let rec list_cartesian_filter op l1 l2 =
list_map_append (fun x -> list_map_filter (op x) l2) l1
(* Keep only those products that do not return None *)
let rec list_cartesians_filter op init ll =
List.fold_right (list_cartesian_filter op) ll [init]
(* Drop the last element of a list *)
let rec list_drop_last = function [] -> assert false | hd :: [] -> [] | hd :: tl -> hd :: list_drop_last tl
(* Factorize lists of pairs according to the left argument *)
let rec list_factorize_left = function
| (a,b)::l ->
let al,l' = list_split_by (fun (a',b) -> a=a') l in
(a,(b::List.map snd al)) :: list_factorize_left l'
| [] ->
[]
(* Arrays *)
let array_compare item_cmp v1 v2 =
let c = compare (Array.length v1) (Array.length v2) in
if c<>0 then c else
let rec cmp = function
-1 -> 0
| i ->
let c' = item_cmp v1.(i) v2.(i) in
if c'<>0 then c'
else cmp (i-1) in
cmp (Array.length v1 - 1)
let array_equal cmp t1 t2 =
Array.length t1 = Array.length t2 &&
let rec aux i =
(i = Array.length t1) || (cmp t1.(i) t2.(i) && aux (i + 1))
in aux 0
let array_exists f v =
let rec exrec = function
| -1 -> false
| n -> (f v.(n)) || (exrec (n-1))
in
exrec ((Array.length v)-1)
let array_for_all f v =
let rec allrec = function
| -1 -> true
| n -> (f v.(n)) && (allrec (n-1))
in
allrec ((Array.length v)-1)
let array_for_all2 f v1 v2 =
let rec allrec = function
| -1 -> true
| n -> (f v1.(n) v2.(n)) && (allrec (n-1))
in
let lv1 = Array.length v1 in
lv1 = Array.length v2 && allrec (pred lv1)
let array_for_all3 f v1 v2 v3 =
let rec allrec = function
| -1 -> true
| n -> (f v1.(n) v2.(n) v3.(n)) && (allrec (n-1))
in
let lv1 = Array.length v1 in
lv1 = Array.length v2 && lv1 = Array.length v3 && allrec (pred lv1)
let array_for_all4 f v1 v2 v3 v4 =
let rec allrec = function
| -1 -> true
| n -> (f v1.(n) v2.(n) v3.(n) v4.(n)) && (allrec (n-1))
in
let lv1 = Array.length v1 in
lv1 = Array.length v2 &&
lv1 = Array.length v3 &&
lv1 = Array.length v4 &&
allrec (pred lv1)
let array_for_all_i f i v =
let rec allrec i n = n = Array.length v || f i v.(n) && allrec (i+1) (n+1) in
allrec i 0
exception Found of int
let array_find_i (pred: int -> 'a -> bool) (arr: 'a array) : int option =
try
for i=0 to Array.length arr - 1 do if pred i (arr.(i)) then raise (Found i) done;
None
with Found i -> Some i
let array_hd v =
match Array.length v with
| 0 -> failwith "array_hd"
| _ -> v.(0)
let array_tl v =
match Array.length v with
| 0 -> failwith "array_tl"
| n -> Array.sub v 1 (pred n)
let array_last v =
match Array.length v with
| 0 -> failwith "array_last"
| n -> v.(pred n)
let array_cons e v = Array.append [|e|] v
let array_rev t =
let n=Array.length t in
if n <=0 then ()
else
let tmp=ref t.(0) in
for i=0 to pred (n/2) do
tmp:=t.((pred n)-i);
t.((pred n)-i)<- t.(i);
t.(i)<- !tmp
done
let array_fold_right_i f v a =
let rec fold a n =
if n=0 then a
else
let k = n-1 in
fold (f k v.(k) a) k in
fold a (Array.length v)
let array_fold_left_i f v a =
let n = Array.length a in
let rec fold i v = if i = n then v else fold (succ i) (f i v a.(i)) in
fold 0 v
let array_fold_right2 f v1 v2 a =
let lv1 = Array.length v1 in
let rec fold a n =
if n=0 then a
else
let k = n-1 in
fold (f v1.(k) v2.(k) a) k in
if Array.length v2 <> lv1 then invalid_arg "array_fold_right2";
fold a lv1
let array_fold_left2 f a v1 v2 =
let lv1 = Array.length v1 in
let rec fold a n =
if n >= lv1 then a else fold (f a v1.(n) v2.(n)) (succ n)
in
if Array.length v2 <> lv1 then invalid_arg "array_fold_left2";
fold a 0
let array_fold_left2_i f a v1 v2 =
let lv1 = Array.length v1 in
let rec fold a n =
if n >= lv1 then a else fold (f n a v1.(n) v2.(n)) (succ n)
in
if Array.length v2 <> lv1 then invalid_arg "array_fold_left2";
fold a 0
let array_fold_left3 f a v1 v2 v3 =
let lv1 = Array.length v1 in
let rec fold a n =
if n >= lv1 then a else fold (f a v1.(n) v2.(n) v3.(n)) (succ n)
in
if Array.length v2 <> lv1 || Array.length v3 <> lv1 then
invalid_arg "array_fold_left2";
fold a 0
let array_fold_left_from n f a v =
let rec fold a n =
if n >= Array.length v then a else fold (f a v.(n)) (succ n)
in
fold a n
let array_fold_right_from n f v a =
let rec fold n =
if n >= Array.length v then a else f v.(n) (fold (succ n))
in
fold n
let array_app_tl v l =
if Array.length v = 0 then invalid_arg "array_app_tl";
array_fold_right_from 1 (fun e l -> e::l) v l
let array_list_of_tl v =
if Array.length v = 0 then invalid_arg "array_list_of_tl";
array_fold_right_from 1 (fun e l -> e::l) v []
let array_map_to_list f v =
List.map f (Array.to_list v)
let array_chop n v =
let vlen = Array.length v in
if n > vlen then failwith "array_chop";
(Array.sub v 0 n, Array.sub v n (vlen-n))
exception Local of int
(* If none of the elements is changed by f we return ar itself.
The for loop looks for the first such an element.
If found it is temporarily stored in a ref and the new array is produced,
but f is not re-applied to elements that are already checked *)
let array_smartmap f ar =
let ar_size = Array.length ar in
let aux = ref None in
try
for i = 0 to ar_size-1 do
let a = ar.(i) in
let a' = f a in
if a != a' then (* pointer (in)equality *) begin
aux := Some a';
raise (Local i)
end
done;
ar
with
Local i ->
let copy j =
if j<i then ar.(j)
else if j=i then
match !aux with Some a' -> a' | None -> failwith "Error"
else f (ar.(j))
in
Array.init ar_size copy
let array_map2 f v1 v2 =
if Array.length v1 <> Array.length v2 then invalid_arg "array_map2";
if Array.length v1 == 0 then
[| |]
else begin
let res = Array.create (Array.length v1) (f v1.(0) v2.(0)) in
for i = 1 to pred (Array.length v1) do
res.(i) <- f v1.(i) v2.(i)
done;
res
end
let array_map2_i f v1 v2 =
if Array.length v1 <> Array.length v2 then invalid_arg "array_map2";
if Array.length v1 == 0 then
[| |]
else begin
let res = Array.create (Array.length v1) (f 0 v1.(0) v2.(0)) in
for i = 1 to pred (Array.length v1) do
res.(i) <- f i v1.(i) v2.(i)
done;
res
end
let array_map3 f v1 v2 v3 =
if Array.length v1 <> Array.length v2 ||
Array.length v1 <> Array.length v3 then invalid_arg "array_map3";
if Array.length v1 == 0 then
[| |]
else begin
let res = Array.create (Array.length v1) (f v1.(0) v2.(0) v3.(0)) in
for i = 1 to pred (Array.length v1) do
res.(i) <- f v1.(i) v2.(i) v3.(i)
done;
res
end
let array_map_left f a = (* Ocaml does not guarantee Array.map is LR *)
let l = Array.length a in (* (even if so), then we rewrite it *)
if l = 0 then [||] else begin
let r = Array.create l (f a.(0)) in
for i = 1 to l - 1 do
r.(i) <- f a.(i)
done;
r
end
let array_map_left_pair f a g b =
let l = Array.length a in
if l = 0 then [||],[||] else begin
let r = Array.create l (f a.(0)) in
let s = Array.create l (g b.(0)) in
for i = 1 to l - 1 do
r.(i) <- f a.(i);
s.(i) <- g b.(i)
done;
r, s
end
let array_iter2 f v1 v2 =
let n = Array.length v1 in
if Array.length v2 <> n then invalid_arg "array_iter2"
else for i = 0 to n - 1 do f v1.(i) v2.(i) done
let pure_functional = false
let array_fold_map' f v e =
if pure_functional then
let (l,e) =
Array.fold_right
(fun x (l,e) -> let (y,e) = f x e in (y::l,e))
v ([],e) in
(Array.of_list l,e)
else
let e' = ref e in
let v' = Array.map (fun x -> let (y,e) = f x !e' in e' := e; y) v in
(v',!e')
let array_fold_map f e v =
let e' = ref e in
let v' = Array.map (fun x -> let (e,y) = f !e' x in e' := e; y) v in
(!e',v')
let array_fold_map2' f v1 v2 e =
let e' = ref e in
let v' =
array_map2 (fun x1 x2 -> let (y,e) = f x1 x2 !e' in e' := e; y) v1 v2
in
(v',!e')
let array_distinct v =
let visited = Hashtbl.create 23 in
try
Array.iter
(fun x ->
if Hashtbl.mem visited x then raise Exit
else Hashtbl.add visited x x)
v;
true
with Exit -> false
let array_union_map f a acc =
Array.fold_left
(fun x y -> f y x)
acc
a
let array_rev_to_list a =
let rec tolist i res =
if i >= Array.length a then res else tolist (i+1) (a.(i) :: res) in
tolist 0 []
let array_filter_along f filter v =
Array.of_list (list_filter_along f filter (Array.to_list v))
let array_filter_with filter v =
Array.of_list (list_filter_with filter (Array.to_list v))
(* Stream *)
let stream_nth n st =
try List.nth (Stream.npeek (n+1) st) n
with Failure _ -> raise Stream.Failure
let stream_njunk n st =
for i = 1 to n do Stream.junk st done
(* Matrices *)
let matrix_transpose mat =
List.fold_right (List.map2 (fun p c -> p::c)) mat
(if mat = [] then [] else List.map (fun _ -> []) (List.hd mat))
(* Functions *)
let identity x = x
let compose f g x = f (g x)
let const x _ = x
let iterate f =
let rec iterate_f n x =
if n <= 0 then x else iterate_f (pred n) (f x)
in
iterate_f
let repeat n f x =
for i = 1 to n do f x done
let iterate_for a b f x =
let rec iterate i v = if i > b then v else iterate (succ i) (f i v) in
iterate a x
(* Delayed computations *)
type 'a delayed = unit -> 'a
let delayed_force f = f ()
(* Misc *)
type ('a,'b) union = Inl of 'a | Inr of 'b
module Intset = Set.Make(struct type t = int let compare = compare end)
module Intmap = Map.Make(struct type t = int let compare = compare end)
let intmap_in_dom x m =
try let _ = Intmap.find x m in true with Not_found -> false
let intmap_to_list m = Intmap.fold (fun n v l -> (n,v)::l) m []
let intmap_inv m b = Intmap.fold (fun n v l -> if v = b then n::l else l) m []
let interval n m =
let rec interval_n (l,m) =
if n > m then l else interval_n (m::l,pred m)
in
interval_n ([],m)
let map_succeed f =
let rec map_f = function
| [] -> []
| h::t -> try (let x = f h in x :: map_f t) with Failure _ -> map_f t
in
map_f
(* Pretty-printing *)
let pr_spc = spc
let pr_fnl = fnl
let pr_int = int
let pr_str = str
let pr_comma () = str "," ++ spc ()
let pr_semicolon () = str ";" ++ spc ()
let pr_bar () = str "|" ++ spc ()
let pr_arg pr x = spc () ++ pr x
let pr_opt pr = function None -> mt () | Some x -> pr_arg pr x
let pr_opt_no_spc pr = function None -> mt () | Some x -> pr x
let nth n = str (ordinal n)
(* [prlist pr [a ; ... ; c]] outputs [pr a ++ ... ++ pr c] *)
let rec prlist elem l = match l with
| [] -> mt ()
| h::t -> Stream.lapp (fun () -> elem h) (prlist elem t)
(* unlike all other functions below, [prlist] works lazily.
if a strict behavior is needed, use [prlist_strict] instead.
evaluation is done from left to right. *)
let rec prlist_strict elem l = match l with
| [] -> mt ()
| h::t ->
let e = elem h in let r = prlist_strict elem t in e++r
(* [prlist_with_sep sep pr [a ; ... ; c]] outputs
[pr a ++ sep() ++ ... ++ sep() ++ pr c] *)
let rec prlist_with_sep sep elem l = match l with
| [] -> mt ()
| [h] -> elem h
| h::t ->
let e = elem h and s = sep() and r = prlist_with_sep sep elem t in
e ++ s ++ r
(* Print sequence of objects separated by space (unless an element is empty) *)
let rec pr_sequence elem = function
| [] -> mt ()
| [h] -> elem h
| h::t ->
let e = elem h and r = pr_sequence elem t in
if e = mt () then r else e ++ spc () ++ r
(* [pr_enum pr [a ; b ; ... ; c]] outputs
[pr a ++ str "," ++ pr b ++ str "," ++ ... ++ str "and" ++ pr c] *)
let pr_enum pr l =
let c,l' = list_sep_last l in
prlist_with_sep pr_comma pr l' ++
(if l'<>[] then str " and" ++ spc () else mt()) ++ pr c
let pr_vertical_list pr = function
| [] -> str "none" ++ fnl ()
| l -> fnl () ++ str " " ++ hov 0 (prlist_with_sep pr_fnl pr l) ++ fnl ()
(* [prvecti_with_sep sep pr [|a0 ; ... ; an|]] outputs
[pr 0 a0 ++ sep() ++ ... ++ sep() ++ pr n an] *)
let prvecti_with_sep sep elem v =
let rec pr i =
if i = 0 then
elem 0 v.(0)
else
let r = pr (i-1) and s = sep () and e = elem i v.(i) in
r ++ s ++ e
in
let n = Array.length v in
if n = 0 then mt () else pr (n - 1)
(* [prvecti pr [|a0 ; ... ; an|]] outputs [pr 0 a0 ++ ... ++ pr n an] *)
let prvecti elem v = prvecti_with_sep mt elem v
(* [prvect_with_sep sep pr [|a ; ... ; c|]] outputs
[pr a ++ sep() ++ ... ++ sep() ++ pr c] *)
let prvect_with_sep sep elem v = prvecti_with_sep sep (fun _ -> elem) v
(* [prvect pr [|a ; ... ; c|]] outputs [pr a ++ ... ++ pr c] *)
let prvect elem v = prvect_with_sep mt elem v
let pr_located pr (loc,x) =
if Flags.do_beautify() && loc<>dummy_loc then
let (b,e) = unloc loc in
comment b ++ pr x ++ comment e
else pr x
let surround p = hov 1 (str"(" ++ p ++ str")")
(*s Memoization *)
let memo1_eq eq f =
let m = ref None in
fun x ->
match !m with
Some(x',y') when eq x x' -> y'
| _ -> let y = f x in m := Some(x,y); y
let memo1_1 f = memo1_eq (==) f
let memo1_2 f =
let f' =
memo1_eq (fun (x,y) (x',y') -> x==x' && y==y') (fun (x,y) -> f x y) in
(fun x y -> f'(x,y))
(* Memorizes the last n distinct calls to f. Since there is no hash,
Efficient only for small n. *)
let memon_eq eq n f =
let cache = ref [] in (* the cache: a stack *)
let m = ref 0 in (* usage of the cache *)
let rec find x = function
| (x',y')::l when eq x x' -> y', l (* cell is moved to the top *)
| [] -> (* we assume n>0, so creating one memo cell is OK *)
incr m; (f x, [])
| [_] when !m>=n -> f x,[] (* cache is full: dispose of last cell *)
| p::l (* not(eq x (fst p)) *) -> let (y,l') = find x l in (y, p::l')
in
(fun x ->
let (y,l) = find x !cache in
cache := (x,y)::l;
y)
(*s Size of ocaml values. *)
module Size = struct
(*s Pointers already visited are stored in a hash-table, where
comparisons are done using physical equality. *)
module H = Hashtbl.Make(
struct
type t = Obj.t
let equal = (==)
let hash o = Hashtbl.hash (Obj.magic o : int)
end)
let node_table = (H.create 257 : unit H.t)
let in_table o = try H.find node_table o; true with Not_found -> false
let add_in_table o = H.add node_table o ()
let reset_table () = H.clear node_table
(*s Objects are traversed recursively, as soon as their tags are less than
[no_scan_tag]. [count] records the numbers of words already visited. *)
let size_of_double = Obj.size (Obj.repr 1.0)
let count = ref 0
let rec traverse t =
if not (in_table t) then begin
add_in_table t;
if Obj.is_block t then begin
let n = Obj.size t in
let tag = Obj.tag t in
if tag < Obj.no_scan_tag then begin
count := !count + 1 + n;
for i = 0 to n - 1 do
let f = Obj.field t i in
if Obj.is_block f then traverse f
done
end else if tag = Obj.string_tag then
count := !count + 1 + n
else if tag = Obj.double_tag then
count := !count + size_of_double
else if tag = Obj.double_array_tag then
count := !count + 1 + size_of_double * n
else
incr count
end
end
(*s Sizes of objects in words and in bytes. The size in bytes is computed
system-independently according to [Sys.word_size]. *)
let size_w o =
reset_table ();
count := 0;
traverse (Obj.repr o);
!count
let size_b o = (size_w o) * (Sys.word_size / 8)
let size_kb o = (size_w o) / (8192 / Sys.word_size)
end
let size_w = Size.size_w
let size_b = Size.size_b
let size_kb = Size.size_kb
(*s Total size of the allocated ocaml heap. *)
let heap_size () =
let stat = Gc.stat ()
and control = Gc.get () in
let max_words_total = stat.Gc.heap_words + control.Gc.minor_heap_size in
(max_words_total * (Sys.word_size / 8))
let heap_size_kb () = (heap_size () + 1023) / 1024
(*s interruption *)
let interrupt = ref false
let check_for_interrupt () =
if !interrupt then begin interrupt := false; raise Sys.Break end
|