1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* The following definitions are used by the function
[assumptions] which gives as an output the set of all
axioms and sections variables on which a given term depends
in a context (expectingly the Global context) *)
(* Initial author: Arnaud Spiwack
Module-traversing code: Pierre Letouzey *)
open Util
open Names
open Sign
open Univ
open Term
open Declarations
open Mod_subst
let cst_ord k1 k2 = kn_ord (canonical_con k1) (canonical_con k2)
type context_object =
| Variable of identifier (* A section variable or a Let definition *)
| Axiom of constant (* An axiom or a constant. *)
| Opaque of constant (* An opaque constant. *)
(* Defines a set of [assumption] *)
module OrderedContextObject =
struct
type t = context_object
let compare x y =
match x , y with
| Variable i1 , Variable i2 -> id_ord i1 i2
| Axiom k1 , Axiom k2 -> cst_ord k1 k2
| Opaque k1 , Opaque k2 -> cst_ord k1 k2
| Variable _ , Axiom _ -> -1
| Axiom _ , Variable _ -> 1
| Opaque _ , _ -> -1
| _, Opaque _ -> 1
end
module ContextObjectSet = Set.Make (OrderedContextObject)
module ContextObjectMap = Map.Make (OrderedContextObject)
(** For a constant c in a module sealed by an interface (M:T and
not M<:T), [Global.lookup_constant] may return a [constant_body]
without body. We fix this by looking in the implementation
of the module *)
let modcache = ref (MPmap.empty : structure_body MPmap.t)
let rec search_mod_label lab = function
| [] -> raise Not_found
| (l,SFBmodule mb) :: _ when l = lab -> mb
| _ :: fields -> search_mod_label lab fields
let rec search_cst_label lab = function
| [] -> raise Not_found
| (l,SFBconst cb) :: _ when l = lab -> cb
| _ :: fields -> search_cst_label lab fields
let rec lookup_module_in_impl mp =
try Global.lookup_module mp
with Not_found ->
(* The module we search might not be exported by its englobing module(s).
We access the upper layer, and then do a manual search *)
match mp with
| MPfile _ | MPbound _ ->
raise Not_found (* should have been found by [lookup_module] *)
| MPdot (mp',lab') ->
let fields = memoize_fields_of_mp mp' in
search_mod_label lab' fields
and memoize_fields_of_mp mp =
try MPmap.find mp !modcache
with Not_found ->
let l = fields_of_mp mp in
modcache := MPmap.add mp l !modcache;
l
and fields_of_mp mp =
let mb = lookup_module_in_impl mp in
let fields,inner_mp,subs = fields_of_mb empty_subst mb [] in
let subs =
if inner_mp = mp then subs
else add_mp inner_mp mp mb.mod_delta subs
in
Modops.subst_signature subs fields
and fields_of_mb subs mb args =
let seb = match mb.mod_expr with
| None -> mb.mod_type (* cf. Declare Module *)
| Some seb -> seb
in
fields_of_seb subs mb.mod_mp seb args
(* TODO: using [empty_delta_resolver] below in [fields_of_seb]
is probably slightly incorrect. But:
a) I don't see currently what should be used instead
b) this shouldn't be critical for Print Assumption. At worse some
constants will have a canonical name which is non-canonical,
leading to failures in [Global.lookup_constant], but our own
[lookup_constant] should work.
*)
and fields_of_seb subs mp0 seb args = match seb with
| SEBstruct l ->
assert (args = []);
l, mp0, subs
| SEBident mp ->
let mb = lookup_module_in_impl (subst_mp subs mp) in
fields_of_mb subs mb args
| SEBapply (seb1,seb2,_) ->
(match seb2 with
| SEBident mp2 -> fields_of_seb subs mp0 seb1 (mp2::args)
| _ -> assert false) (* only legal application is to module names *)
| SEBfunctor (mbid,mtb,seb) ->
(match args with
| [] -> assert false (* we should only encounter applied functors *)
| mpa :: args ->
let subs = add_mbid mbid mpa empty_delta_resolver subs in
fields_of_seb subs mp0 seb args)
| SEBwith _ -> assert false (* should not appear in a mod_expr
or mod_type field *)
let lookup_constant_in_impl cst fallback =
try
let mp,dp,lab = repr_kn (canonical_con cst) in
let fields = memoize_fields_of_mp mp in
(* A module found this way is necessarily closed, in particular
our constant cannot be in an opened section : *)
search_cst_label lab fields
with Not_found ->
(* Either:
- The module part of the constant isn't registered yet :
we're still in it, so the [constant_body] found earlier
(if any) was a true axiom.
- The label has not been found in the structure. This is an error *)
match fallback with
| Some cb -> cb
| None -> anomaly ("Print Assumption: unknown constant "^string_of_con cst)
let lookup_constant cst =
try
let cb = Global.lookup_constant cst in
if constant_has_body cb then cb
else lookup_constant_in_impl cst (Some cb)
with Not_found -> lookup_constant_in_impl cst None
let assumptions ?(add_opaque=false) st (* t *) =
modcache := MPmap.empty;
let (idts,knst) = st in
(* Infix definition for chaining function that accumulate
on a and a ContextObjectSet, ContextObjectMap. *)
let ( ** ) f1 f2 s m = let (s',m') = f1 s m in f2 s' m' in
(* This function eases memoization, by checking if an object is already
stored before trying and applying a function.
If the object is there, the function is not fired (we are in a
particular case where memoized object don't need a treatment at all).
If the object isn't there, it is stored and the function is fired*)
let try_and_go o f s m =
if ContextObjectSet.mem o s then
(s,m)
else
f (ContextObjectSet.add o s) m
in
let identity2 s m = (s,m)
in
(* Goes recursively into the term to see if it depends on assumptions.
The 3 important cases are :
- Const _ where we need to first unfold the constant and return
the needed assumptions of its body in the environment,
- Rel _ which means the term is a variable which has been bound
earlier by a Lambda or a Prod (returns [] ),
- Var _ which means that the term refers to a section variable or
a "Let" definition, in the former it is an assumption of [t],
in the latter is must be unfolded like a Const.
The other cases are straightforward recursion.
Calls to the environment are memoized, thus avoiding to explore
the DAG of the environment as if it was a tree (can cause
exponential behavior and prevent the algorithm from terminating
in reasonable time). [s] is a set of [context_object], representing
the object already visited.*)
let rec do_constr t s acc =
let rec iter t =
match kind_of_term t with
| Var id -> do_memoize_id id
| Meta _ | Evar _ -> assert false
| Cast (e1,_,e2) | Prod (_,e1,e2) | Lambda (_,e1,e2) ->
(iter e1)**(iter e2)
| LetIn (_,e1,e2,e3) -> (iter e1)**(iter e2)**(iter e3)
| App (e1, e_array) -> (iter e1)**(iter_array e_array)
| Case (_,e1,e2,e_array) -> (iter e1)**(iter e2)**(iter_array e_array)
| Fix (_,(_, e1_array, e2_array)) | CoFix (_,(_,e1_array, e2_array)) ->
(iter_array e1_array) ** (iter_array e2_array)
| Const kn -> do_memoize_kn kn
| _ -> identity2 (* closed atomic types + rel *)
and iter_array a = Array.fold_right (fun e f -> (iter e)**f) a identity2
in iter t s acc
and add_id id s acc =
(* a Var can be either a variable, or a "Let" definition.*)
match Global.lookup_named id with
| (_,None,t) ->
(s,ContextObjectMap.add (Variable id) t acc)
| (_,Some bdy,_) -> do_constr bdy s acc
and do_memoize_id id =
try_and_go (Variable id) (add_id id)
and add_kn kn s acc =
let cb = lookup_constant kn in
let do_type cst =
let ctype =
match cb.Declarations.const_type with
| PolymorphicArity (ctx,a) -> mkArity (ctx, Type a.poly_level)
| NonPolymorphicType t -> t
in
(s,ContextObjectMap.add cst ctype acc)
in
let (s,acc) =
if add_opaque && Declarations.constant_has_body cb
&& (Declarations.is_opaque cb || not (Cpred.mem kn knst))
then
do_type (Opaque kn)
else (s,acc)
in
match Declarations.body_of_constant cb with
| None -> do_type (Axiom kn)
| Some body -> do_constr (Declarations.force body) s acc
and do_memoize_kn kn =
try_and_go (Axiom kn) (add_kn kn)
in
fun t ->
snd (do_constr t
(ContextObjectSet.empty)
(ContextObjectMap.empty))
|