1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** This module is about the low-level declaration of logical objects *)
open Pp
open Util
open Names
open Libnames
open Nameops
open Term
open Sign
open Declarations
open Entries
open Libobject
open Lib
open Impargs
open Safe_typing
open Cooking
open Decls
open Decl_kinds
(** flag for internal message display *)
type internal_flag =
| KernelVerbose (* kernel action, a message is displayed *)
| KernelSilent (* kernel action, no message is displayed *)
| UserVerbose (* user action, a message is displayed *)
(** XML output hooks *)
let xml_declare_variable = ref (fun (sp:object_name) -> ())
let xml_declare_constant = ref (fun (sp:internal_flag * constant)-> ())
let xml_declare_inductive = ref (fun (sp:internal_flag * object_name) -> ())
let if_xml f x = if !Flags.xml_export then f x else ()
let set_xml_declare_variable f = xml_declare_variable := if_xml f
let set_xml_declare_constant f = xml_declare_constant := if_xml f
let set_xml_declare_inductive f = xml_declare_inductive := if_xml f
let cache_hook = ref ignore
let add_cache_hook f = cache_hook := f
(** Declaration of section variables and local definitions *)
type section_variable_entry =
| SectionLocalDef of constr * types option * bool (* opacity *)
| SectionLocalAssum of types * bool (* Implicit status *)
type variable_declaration = dir_path * section_variable_entry * logical_kind
let cache_variable ((sp,_),o) =
match o with
| Inl cst -> Global.add_constraints cst
| Inr (id,(p,d,mk)) ->
(* Constr raisonne sur les noms courts *)
if variable_exists id then
alreadydeclared (pr_id id ++ str " already exists");
let impl,opaq,cst = match d with (* Fails if not well-typed *)
| SectionLocalAssum (ty, impl) ->
let cst = Global.push_named_assum (id,ty) in
let impl = if impl then Lib.Implicit else Lib.Explicit in
impl, true, cst
| SectionLocalDef (c,t,opaq) ->
let cst = Global.push_named_def (id,c,t) in
Lib.Explicit, opaq, cst in
Nametab.push (Nametab.Until 1) (restrict_path 0 sp) (VarRef id);
add_section_variable id impl;
Dischargedhypsmap.set_discharged_hyps sp [];
add_variable_data id (p,opaq,cst,mk)
let discharge_variable (_,o) = match o with
| Inr (id,_) -> Some (Inl (variable_constraints id))
| Inl _ -> Some o
type variable_obj =
(Univ.constraints, identifier * variable_declaration) union
let inVariable : variable_obj -> obj =
declare_object { (default_object "VARIABLE") with
cache_function = cache_variable;
discharge_function = discharge_variable;
classify_function = (fun _ -> Dispose) }
(* for initial declaration *)
let declare_variable id obj =
let oname = add_leaf id (inVariable (Inr (id,obj))) in
declare_var_implicits id;
Notation.declare_ref_arguments_scope (VarRef id);
Heads.declare_head (EvalVarRef id);
!xml_declare_variable oname;
oname
(** Declaration of constants and parameters *)
type constant_declaration = constant_entry * logical_kind
(* At load-time, the segment starting from the module name to the discharge *)
(* section (if Remark or Fact) is needed to access a construction *)
let load_constant i ((sp,kn),(_,_,kind)) =
if Nametab.exists_cci sp then
alreadydeclared (pr_id (basename sp) ++ str " already exists");
let con = Global.constant_of_delta_kn kn in
Nametab.push (Nametab.Until i) sp (ConstRef con);
add_constant_kind con kind
(* Opening means making the name without its module qualification available *)
let open_constant i ((sp,kn),_) =
let con = Global.constant_of_delta_kn kn in
Nametab.push (Nametab.Exactly i) sp (ConstRef con)
let exists_name id =
variable_exists id or Global.exists_objlabel (label_of_id id)
let check_exists sp =
let id = basename sp in
if exists_name id then alreadydeclared (pr_id id ++ str " already exists")
let cache_constant ((sp,kn),(cdt,dhyps,kind)) =
let id = basename sp in
let _,dir,_ = repr_kn kn in
check_exists sp;
let kn' = Global.add_constant dir id cdt in
assert (kn' = constant_of_kn kn);
Nametab.push (Nametab.Until 1) sp (ConstRef (constant_of_kn kn));
add_section_constant kn' (Global.lookup_constant kn').const_hyps;
Dischargedhypsmap.set_discharged_hyps sp dhyps;
add_constant_kind (constant_of_kn kn) kind;
!cache_hook sp
let discharged_hyps kn sechyps =
let (_,dir,_) = repr_kn kn in
let args = Array.to_list (instance_from_variable_context sechyps) in
List.rev (List.map (Libnames.make_path dir) args)
let discharge_constant ((sp,kn),(cdt,dhyps,kind)) =
let con = constant_of_kn kn in
let cb = Global.lookup_constant con in
let repl = replacement_context () in
let sechyps = section_segment_of_constant con in
let recipe = { d_from=cb; d_modlist=repl; d_abstract=named_of_variable_context sechyps } in
Some (GlobalRecipe recipe,(discharged_hyps kn sechyps)@dhyps,kind)
(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_constant_entry = ConstantEntry (ParameterEntry (None,mkProp,None))
let dummy_constant (ce,_,mk) = dummy_constant_entry,[],mk
let classify_constant cst = Substitute (dummy_constant cst)
type constant_obj =
global_declaration * Dischargedhypsmap.discharged_hyps * logical_kind
let inConstant : constant_obj -> obj =
declare_object { (default_object "CONSTANT") with
cache_function = cache_constant;
load_function = load_constant;
open_function = open_constant;
classify_function = classify_constant;
subst_function = ident_subst_function;
discharge_function = discharge_constant }
let declare_constant_common id dhyps (cd,kind) =
let (sp,kn) = add_leaf id (inConstant (cd,dhyps,kind)) in
let c = Global.constant_of_delta_kn kn in
declare_constant_implicits c;
Heads.declare_head (EvalConstRef c);
Notation.declare_ref_arguments_scope (ConstRef c);
c
let declare_constant ?(internal = UserVerbose) id (cd,kind) =
let kn = declare_constant_common id [] (ConstantEntry cd,kind) in
!xml_declare_constant (internal,kn);
kn
(** Declaration of inductive blocks *)
let declare_inductive_argument_scopes kn mie =
list_iter_i (fun i {mind_entry_consnames=lc} ->
Notation.declare_ref_arguments_scope (IndRef (kn,i));
for j=1 to List.length lc do
Notation.declare_ref_arguments_scope (ConstructRef ((kn,i),j));
done) mie.mind_entry_inds
let inductive_names sp kn mie =
let (dp,_) = repr_path sp in
let kn = Global.mind_of_delta_kn kn in
let names, _ =
List.fold_left
(fun (names, n) ind ->
let ind_p = (kn,n) in
let names, _ =
List.fold_left
(fun (names, p) l ->
let sp =
Libnames.make_path dp l
in
((sp, ConstructRef (ind_p,p)) :: names, p+1))
(names, 1) ind.mind_entry_consnames in
let sp = Libnames.make_path dp ind.mind_entry_typename
in
((sp, IndRef ind_p) :: names, n+1))
([], 0) mie.mind_entry_inds
in names
let load_inductive i ((sp,kn),(_,mie)) =
let names = inductive_names sp kn mie in
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until i) sp ref ) names
let open_inductive i ((sp,kn),(_,mie)) =
let names = inductive_names sp kn mie in
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Exactly i) sp ref) names
let cache_inductive ((sp,kn),(dhyps,mie)) =
let names = inductive_names sp kn mie in
List.iter check_exists (List.map fst names);
let id = basename sp in
let _,dir,_ = repr_kn kn in
let kn' = Global.add_mind dir id mie in
assert (kn'= mind_of_kn kn);
add_section_kn kn' (Global.lookup_mind kn').mind_hyps;
Dischargedhypsmap.set_discharged_hyps sp dhyps;
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until 1) sp ref) names;
List.iter (fun (sp,_) -> !cache_hook sp) (inductive_names sp kn mie)
let discharge_inductive ((sp,kn),(dhyps,mie)) =
let mind = Global.mind_of_delta_kn kn in
let mie = Global.lookup_mind mind in
let repl = replacement_context () in
let sechyps = section_segment_of_mutual_inductive mind in
Some (discharged_hyps kn sechyps,
Discharge.process_inductive (named_of_variable_context sechyps) repl mie)
let dummy_one_inductive_entry mie = {
mind_entry_typename = mie.mind_entry_typename;
mind_entry_arity = mkProp;
mind_entry_consnames = mie.mind_entry_consnames;
mind_entry_lc = []
}
(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_inductive_entry (_,m) = ([],{
mind_entry_params = [];
mind_entry_record = false;
mind_entry_finite = true;
mind_entry_inds = List.map dummy_one_inductive_entry m.mind_entry_inds })
type inductive_obj = Dischargedhypsmap.discharged_hyps * mutual_inductive_entry
let inInductive : inductive_obj -> obj =
declare_object {(default_object "INDUCTIVE") with
cache_function = cache_inductive;
load_function = load_inductive;
open_function = open_inductive;
classify_function = (fun a -> Substitute (dummy_inductive_entry a));
subst_function = ident_subst_function;
discharge_function = discharge_inductive }
(* for initial declaration *)
let declare_mind isrecord mie =
let id = match mie.mind_entry_inds with
| ind::_ -> ind.mind_entry_typename
| [] -> anomaly "cannot declare an empty list of inductives" in
let (sp,kn as oname) = add_leaf id (inInductive ([],mie)) in
let mind = Global.mind_of_delta_kn kn in
declare_mib_implicits mind;
declare_inductive_argument_scopes mind mie;
!xml_declare_inductive (isrecord,oname);
oname
(* Declaration messages *)
let pr_rank i = str (ordinal (i+1))
let fixpoint_message indexes l =
Flags.if_verbose msgnl (match l with
| [] -> anomaly "no recursive definition"
| [id] -> pr_id id ++ str " is recursively defined" ++
(match indexes with
| Some [|i|] -> str " (decreasing on "++pr_rank i++str " argument)"
| _ -> mt ())
| l -> hov 0 (prlist_with_sep pr_comma pr_id l ++
spc () ++ str "are recursively defined" ++
match indexes with
| Some a -> spc () ++ str "(decreasing respectively on " ++
prlist_with_sep pr_comma pr_rank (Array.to_list a) ++
str " arguments)"
| None -> mt ()))
let cofixpoint_message l =
Flags.if_verbose msgnl (match l with
| [] -> anomaly "No corecursive definition."
| [id] -> pr_id id ++ str " is corecursively defined"
| l -> hov 0 (prlist_with_sep pr_comma pr_id l ++
spc () ++ str "are corecursively defined"))
let recursive_message isfix i l =
(if isfix then fixpoint_message i else cofixpoint_message) l
let definition_message id =
Flags.if_verbose msgnl (pr_id id ++ str " is defined")
let assumption_message id =
Flags.if_verbose msgnl (pr_id id ++ str " is assumed")
|